data_logging_utils.py 3.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""Data Logging Functions

Description:
-------------
This folder contains several functions which, either on their own or included in larger pieces of software, perform data logging tasks.

Usage
-------------
To use content from this folder, import the functions and instantiate them as you wish to use them:

    from utils.data_logging_utils import function_name

"""

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import matplotlib.pyplot as plt
import shutil
import logging

# The SummaryWriter class provides a high-level API to create an event file in a given directory and add summaries and events to it.
# More here: https://tensorboardx.readthedocs.io/en/latest/tensorboard.html
from tensorboardX import SummaryWriter

plt.axis('scaled')

class LogWriter():

    """Log Writer class for the BrainMapper U-net.

    This class contains the pytorch implementation of the several logging functions required for the BrainMapper project.
    These functions are designed to keep track of progress during training, and also aid debugging.

    Args:
        number_of_classes (int): Number of classes
        logs_directory (str): Directory for outputing training logs
        experiment_name (str): Name of the experiment
        use_last_checkpoint (bool): Flag for loading the previous checkpoint
        labels (arr): Vector/Array of labels (if applicable)
        confusion_matrix_cmap (class): Colour Map to be used for the Conusion Matrix

    Returns:
        None

    Raises:
        None
    """

    def __init__(self, number_of_classes, logs_directory, experiment_name, use_last_checkpoint=False, labels=None, confusion_matrix_cmap= plt.cm.Blues):
        
        self.number_of_classes = number_of_classes
        training_logs_directory = os.path.join(logs_directory, experiment_name, "train")
        testing_logs_directory = os.path.join(logs_directory, experiment_name, "test")

        # If the logs directory exist, we clear their contents to allow new logs to be created
        if not use_last_checkpoint:
            if os.path.exists(training_logs_directory):
                shutil.rmtree(training_logs_directory)
            if os.path.exists(testing_logs_directory):
                shutil.rmtree(testing_logs_directory)

        self.log_writer = {
            'train': SummaryWriter(logdir= training_logs_directory),
            'test:': SummaryWriter(logdir= testing_logs_directory)
        }

        self.confusion_matrix_color_map = confusion_matrix_cmap

        self.current_iteration = 1

        self.labels = self.labels_generator(labels)

        self.logger = logging.getLogger()
        file_handler = logging.FileHandler("{}/{}.log".format(os.path.join(logs_directory, experiment_name), "console_logs"))
        self.logger.addHandler(file_handler)

    def log(self):
        pass

    def loss_per_iteration(self):
        pass

    def loss_per_epoch(self):
        pass

    def confusion_matrix_per_epoch(self):
        pass

    def plot_confusion_matrix(self):
        pass

    def dice_score_per_epoch(self):
        pass

    def plot_dice_score(self):
        pass

    def plot_evaluation_box(self):
        pass

    def sample_image_per_epoch(self):
        pass

    def graph(self):
        pass

    def close(self):
        pass

    def labels_generator(self):
        pass