run.py 19.1 KB
Newer Older
1
2
3
4
"""Brain Mapper Run File

Description:

5
6
7
8
9
    This file contains all the relevant functions for running BrainMapper.
    The network can be ran in one of these modes:
        - train
        - evaluate path
        - evaluate whole
10

11
    TODO: Might be worth adding some information on uncertaintiy estimation, later down the line
12

13
14
15
16
17
18
19
20
21
22
23
24
25
Usage:

    In order to run the network, in the terminal, the user needs to pass it relevant arguments:

        $ ./setup.sh
        $ source env/bin/activate
        $ python run.py --mode ...

    The arguments for mode are the following:

        mode=train # For training the model
        mode=evaluate-score # For evaluating the model score
        mode=evaluate-mapping # For evaluating the model mapping
26
27
        # For clearning the experiments and logs directories of the last experiment
        mode=clear-experiment
28
        mode=clear-all # For clearing all the files from the experiments and logs directories/
29
30
31

"""

32
import os
33
import shutil
34
35
import argparse
import logging
36
37
38
39
from settings import Settings

import torch
import torch.utils.data as data
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
40
import numpy as np
41
42

from solver import Solver
43
44
# from BrainMapperUNet import BrainMapperUNet3D, BrainMapperResUNet3D, BrainMapperResUNet3Dshallow, BrainMapperCompResUNet3D
from BrainMapperAE import BrainMapperAE3D
45
from utils.data_utils import get_datasets, data_test_train_validation_split, update_shuffling_flag, create_folder
46
47
import utils.data_evaluation_utils as evaluations
from utils.data_logging_utils import LogWriter
48
49
50
51
52

# Set the default floating point tensor type to FloatTensor

torch.set_default_tensor_type(torch.FloatTensor)

53

54
55
56
def load_data(data_parameters):
    """Dataset Loader

57
    This function loads the training and validation datasets.
58
59
60
61
62
63

    Args:
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

    Returns:
        train_data (dataset object): Pytorch map-style dataset object, mapping indices to training data samples.
64
        validation_data (dataset object): Pytorch map-style dataset object, mapping indices to testing data samples.
65
66
67

    """
    print("Data is loading...")
68
    train_data, validation_data = get_datasets(data_parameters)
69
70
    print("Data has loaded!")
    print("Training dataset size is {}".format(len(train_data)))
71
    print("Validation dataset size is {}".format(len(validation_data)))
72

73
    return train_data, validation_data
74

75

76
77
def train(data_parameters, training_parameters, network_parameters, misc_parameters):
    """Training Function
78

79
    This function trains a given model using the provided training data.
80
    Currently, the data loaded is set to have multiple sub-processes.
81
82
    A high enough number of workers assures that CPU computations are efficiently managed, i.e. that the bottleneck is indeed the neural network's forward and backward operations on the GPU (and not data generation)
    Loader memory is also pinned, to speed up data transfer from CPU to GPU  by using the page-locked memory.
83
    Train data is also re-shuffled at each training epoch.
84
85

    Args:
86
87
88
89
90
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'training_batch_size': 5
91
            'validation_batch_size: 5
92
93
94
95
96
97
98
99
100
101
102
103
104
            'use_pre_trained': False
            'pre_trained_path': 'pre_trained/path'
            'experiment_name': 'experiment_name'
            'learning_rate': 1e-4
            'optimizer_beta': (0.9, 0.999)
            'optimizer_epsilon': 1e-8
            'optimizer_weigth_decay': 1e-5
            'number_of_epochs': 10
            'loss_log_period': 50
            'learning_rate_scheduler_step_size': 3
            'learning_rate_scheduler_gamma': 1e-1
            'use_last_checkpoint': True
            'final_model_output_file': 'path/to/model'
105
        }
106

107
        network_parameters (dict): Contains information relevant parameters
108

109
110
111
112
113
114
115
116
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'save_model_directory': 'directory_name'
            'model_name': 'BrainMapper'
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }
117
118
    """

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters):
        """Wrapper for the training operation

        This function wraps the training operation for the network

        Args:
            data_parameters (dict): Dictionary containing relevant information for the datafiles.
            training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
            network_parameters (dict): Contains information relevant parameters
            misc_parameters (dict): Dictionary of aditional hyperparameters

        """
        train_data, validation_data = load_data(data_parameters)

        train_loader = data.DataLoader(
            dataset=train_data,
            batch_size=training_parameters['training_batch_size'],
            shuffle=True,
            num_workers=4,
            pin_memory=True
        )

        validation_loader = data.DataLoader(
            dataset=validation_data,
            batch_size=training_parameters['validation_batch_size'],
            shuffle=False,
            num_workers=4,
            pin_memory=True
        )

        if training_parameters['use_pre_trained']:
            BrainMapperModel = torch.load(
                training_parameters['pre_trained_path'])
        else:
153
            # BrainMapperModel = BrainMapperUNet3D(network_parameters)
154
155
            # BrainMapperModel = BrainMapperResUNet3D(network_parameters)
            # BrainMapperModel = BrainMapperResUNet3Dshallow(network_parameters)
156
            # BrainMapperModel = BrainMapperCompResUNet3D(network_parameters)
157
158
            
            BrainMapperModel = BrainMapperAE3D(network_parameters)
159

160
161
        BrainMapperModel.reset_parameters()

162
163
        optimizer = torch.optim.Adam

164
165
166
167
        solver = Solver(model=BrainMapperModel,
                        device=misc_parameters['device'],
                        number_of_classes=network_parameters['number_of_classes'],
                        experiment_name=training_parameters['experiment_name'],
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
168
                        optimizer=optimizer,
169
                        optimizer_arguments={'lr': training_parameters['learning_rate'],
170
171
172
173
                                             'betas': training_parameters['optimizer_beta'],
                                             'eps': training_parameters['optimizer_epsilon'],
                                             'weight_decay': training_parameters['optimizer_weigth_decay']
                                             },
174
                        model_name=training_parameters['experiment_name'],
175
176
177
178
179
180
181
182
                        number_epochs=training_parameters['number_of_epochs'],
                        loss_log_period=training_parameters['loss_log_period'],
                        learning_rate_scheduler_step_size=training_parameters[
                            'learning_rate_scheduler_step_size'],
                        learning_rate_scheduler_gamma=training_parameters['learning_rate_scheduler_gamma'],
                        use_last_checkpoint=training_parameters['use_last_checkpoint'],
                        experiment_directory=misc_parameters['experiments_directory'],
                        logs_directory=misc_parameters['logs_directory'],
183
184
185
                        checkpoint_directory=misc_parameters['checkpoint_directory'],
                        save_model_directory=misc_parameters['save_model_directory'],
                        final_model_output_file=training_parameters['final_model_output_file']
186
187
188
189
                        )

        validation_loss = solver.train(train_loader, validation_loader)

190
        del train_data, validation_data, train_loader, validation_loader, BrainMapperModel, solver, optimizer
191
192
193
194
195
196
197
198
        torch.cuda.empty_cache()

        return validation_loss

    if data_parameters['k_fold'] is None:

        _ = _train_runner(data_parameters, training_parameters,
                          network_parameters, misc_parameters)
199

200
    else:
201
        print("Training initiated using K-fold Cross Validation!")
202
        k_fold_losses = []
203

204
        for k in range(data_parameters['k_fold']):
205

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
206
            print("K-fold Number: {}".format(k+1))
207

208
            data_parameters['train_list'] = os.path.join(
209
                data_parameters['data_folder_name'], 'train' + str(k+1)+'.txt')
210
            data_parameters['validation_list'] = os.path.join(
211
212
213
                data_parameters['data_folder_name'], 'validation' + str(k+1)+'.txt')
            training_parameters['final_model_output_file'] = training_parameters['final_model_output_file'].replace(
                ".pth.tar", str(k+1)+".pth.tar")
214

215
            validation_loss = _train_runner(
216
                data_parameters, training_parameters, network_parameters, misc_parameters)
217

218
            k_fold_losses.append(validation_loss)
219

220
221
222
        for k in range(data_parameters['k_fold']):
            print("K-fold Number: {} Loss: {}".format(k+1, k_fold_losses[k]))
        print("K-fold Cross Validation Avearge Loss: {}".format(np.mean(k_fold_losses)))
223

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
224

225
def evaluate_score(training_parameters, network_parameters, misc_parameters, evaluation_parameters):
226
227
228
229
230
231
232
233
234
235
236
    """Mapping Score Evaluator

    This function evaluates a given trained model by calculating the it's dice score prediction.

    Args:

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'experiment_name': 'experiment_name'
        }

237
        network_parameters (dict): Contains information relevant parameters
238
239
240
        network_parameters= {
            'number_of_classes': 1
        }
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }

        evaluation_parameters (dict): Dictionary of parameters useful during evaluation.
        evaluation_parameters = {
            'trained_model_path': 'path/to/model'
            'data_directory': 'path/to/data'
            'targets_directory': 'path/to/targets'
            'data_list': 'path/to/datalist.txt/
            'orientation': 'coronal'
            'saved_predictions_directory': 'directory-of-saved-predictions'
        }
    """

260
    # TODO - NEED TO UPDATE THE DATA FUNCTIONS!
261

262
263
264
    logWriter = LogWriter(number_of_classes=network_parameters['number_of_classes'],
                          logs_directory=misc_parameters['logs_directory'],
                          experiment_name=training_parameters['experiment_name']
265
                          )
266

267
    prediction_output_path = os.path.join(misc_parameters['experiments_directory'],
268
269
270
271
                                          training_parameters['experiment_name'],
                                          evaluation_parameters['saved_predictions_directory']
                                          )

272
    _ = evaluations.evaluate_dice_score(trained_model_path=evaluation_parameters['trained_model_path'],
273
274
                                        number_of_classes=network_parameters['number_of_classes'],
                                        data_directory=evaluation_parameters['data_directory'],
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
275
276
277
278
279
280
                                        targets_directory=evaluation_parameters['targets_directory'],
                                        data_list=evaluation_parameters['data_list'],
                                        orientation=evaluation_parameters['orientation'],
                                        prediction_output_path=prediction_output_path,
                                        device=misc_parameters['device'],
                                        LogWriter=logWriter
281
                                        )
282
283
284

    logWriter.close()

285

286
287
def evaluate_mapping(mapping_evaluation_parameters):
    """Mapping Evaluator
288

289
290
291
292
293
    This function passes through the network an input and generates the rsfMRI outputs.

    Args:
        mapping_evaluation_parameters (dict): Dictionary of parameters useful during mapping evaluation.
        mapping_evaluation_parameters = {
294
            'trained_model_path': 'path/to/model'
295
296
297
298
299
300
301
302
303
            'data_directory': 'path/to/data'
            'data_list': 'path/to/datalist.txt/
            'prediction_output_path': 'directory-of-saved-predictions'
            'batch_size': 2
            'device': 0
            'exit_on_error': True
        }

    """
304
    trained_model_path = mapping_evaluation_parameters['trained_model_path']
305
    data_directory = mapping_evaluation_parameters['data_directory']
306
    mapping_data_file = mapping_evaluation_parameters['mapping_data_file']
307
308
    data_list = mapping_evaluation_parameters['data_list']
    prediction_output_path = mapping_evaluation_parameters['prediction_output_path']
309
    device = mapping_evaluation_parameters['device']
310
    exit_on_error = mapping_evaluation_parameters['exit_on_error']
311
312
313
    brain_mask_path = mapping_evaluation_parameters['brain_mask_path']
    mean_mask_path = mapping_evaluation_parameters['mean_mask_path']
    mean_reduction = mapping_evaluation_parameters['mean_reduction']
314
    scaling_factors = mapping_evaluation_parameters['scaling_factors']
315

316
    evaluations.evaluate_mapping(trained_model_path,
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
317
318
319
320
                                 data_directory,
                                 mapping_data_file,
                                 data_list,
                                 prediction_output_path,
321
322
323
                                 brain_mask_path,
                                 mean_mask_path,
                                 mean_reduction,
324
                                 scaling_factors,
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
325
326
327
                                 device=device,
                                 exit_on_error=exit_on_error)

328
329

def delete_files(folder):
330
    """ Clear Folder Contents
331

332
333
334
335
    Function which clears contents (like experiments or logs)

    Args:
        folder (str): Name of folders whose conents is to be deleted
336

337
    """
338

339
340
341
342
343
344
345
346
347
348
    for object_name in os.listdir(folder):
        file_path = os.path.join(folder, object_name)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as exception:
            print(exception)

349
350

if __name__ == '__main__':
351
    parser = argparse.ArgumentParser()
352
353
354
355
    parser.add_argument('--mode', '-m', required=True,
                        help='run mode, valid values are train or evaluate')
    parser.add_argument('--settings_path', '-sp', required=False,
                        help='optional argument, set path to settings_evaluation.ini')
356
357
358
359
360
361
362
363
364
365

    arguments = parser.parse_args()

    settings = Settings('settings.ini')
    data_parameters = settings['DATA']
    training_parameters = settings['TRAINING']
    network_parameters = settings['NETWORK']
    misc_parameters = settings['MISC']
    evaluation_parameters = settings['EVALUATION']

366
367
    # Here we shuffle the data!

368
369
370
371
    if data_parameters['data_split_flag'] == True:

        print('Data is shuffling... This could take a few minutes!')

372
373
    if data_parameters['data_split_flag'] == True:
        if data_parameters['use_data_file'] == True:
374
375
376
            data_test_train_validation_split(data_parameters['data_folder_name'],
                                             data_parameters['test_percentage'],
                                             data_parameters['subject_number'],
377
                                             data_directory=data_parameters['data_directory'],
378
379
380
                                             train_inputs=data_parameters['train_data_file'],
                                             train_targets=data_parameters['train_output_targets'],
                                             mean_mask_path=data_parameters['mean_mask_path'],
381
382
383
                                             data_file=data_parameters['data_file'],
                                             K_fold=data_parameters['k_fold']
                                             )
384
        else:
385
386
387
388
            data_test_train_validation_split(data_parameters['data_folder_name'],
                                             data_parameters['test_percentage'],
                                             data_parameters['subject_number'],
                                             data_directory=data_parameters['data_directory'],
389
390
391
                                             train_inputs=data_parameters['train_data_file'],
                                             train_targets=data_parameters['train_output_targets'],
                                             mean_mask_path=data_parameters['mean_mask_path'],
392
393
                                             K_fold=data_parameters['k_fold']
                                             )
394
        update_shuffling_flag('settings.ini')
395

396
397
        print('Data is shuffling... Complete!')

398
399
    if arguments.mode == 'train':
        train(data_parameters, training_parameters,
400
              network_parameters, misc_parameters)
401
402

    # NOTE: THE EVAL FUNCTIONS HAVE NOT YET BEEN DEBUGGED (16/04/20)
403
    # NOTE: THE EVAL-MAPPING FUNCTION HAS BEEN DEBUGGED (28/04/20)
404
405
406

    elif arguments.mode == 'evaluate-score':
        evaluate_score(training_parameters,
407
                       network_parameters, misc_parameters, evaluation_parameters)
408
409
410
411
    elif arguments.mode == 'evaluate-mapping':
        logging.basicConfig(filename='evaluate-mapping-error.log')
        if arguments.settings_path is not None:
            settings_evaluation = Settings(arguments.settings_path)
412
        else:
413
414
415
416
417
418
419
420
421
422
423
424
425
            settings_evaluation = Settings('settings_evaluation.ini')
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        evaluate_mapping(mapping_evaluation_parameters)
    elif arguments.mode == 'clear-experiments':
        shutil.rmtree(os.path.join(
            misc_parameters['experiments_directory'], training_parameters['experiment_name']))
        shutil.rmtree(os.path.join(
            misc_parameters['logs_directory'], training_parameters['experiment_name']))
        print('Cleared the current experiments and logs directory successfully!')
    elif arguments.mode == 'clear-everything':
        delete_files(misc_parameters['experiments_directory'])
        delete_files(misc_parameters['logs_directory'])
        print('Cleared the current experiments and logs directory successfully!')
426
427
428
429
430
431
432
433
434
435
    elif arguments.mode == 'train-and-evaluate-mapping':
        if arguments.settings_path is not None:
            settings_evaluation = Settings(arguments.settings_path)
        else:
            settings_evaluation = Settings('settings_evaluation.ini')
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        train(data_parameters, training_parameters,
              network_parameters, misc_parameters)
        logging.basicConfig(filename='evaluate-mapping-error.log')
        evaluate_mapping(mapping_evaluation_parameters)
436
437
    else:
        raise ValueError(
438
            'Invalid mode value! Only supports: train, evaluate-score, evaluate-mapping, train-and-evaluate-mapping, clear-experiments and clear-everything')