data_logging_utils.py 8.47 KB
Newer Older
1
2
3
4
"""Data Logging Functions

Description:

5
    This folder contains several functions which, either on their own or included in larger pieces of software, perform data logging tasks.
6

7
8
9
10
11
Usage:

    To use content from this folder, import the functions and instantiate them as you wish to use them:

        from utils.data_logging_utils import function_name
12
13
14

"""

15
import os
16
import matplotlib
17
18
19
import matplotlib.pyplot as plt
import shutil
import logging
20
import numpy as np
21
import re
22
from textwrap import wrap
23
import torch
24
25
26

# The SummaryWriter class provides a high-level API to create an event file in a given directory and add summaries and events to it.
# More here: https://tensorboardx.readthedocs.io/en/latest/tensorboard.html
27
28

from torch.utils.tensorboard import SummaryWriter
29

30
31
import utils.data_evaluation_utils as evaluation

32
33
plt.axis('scaled')

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class LogWriter():

    """Log Writer class for the BrainMapper U-net.

    This class contains the pytorch implementation of the several logging functions required for the BrainMapper project.
    These functions are designed to keep track of progress during training, and also aid debugging.

    Args:
        number_of_classes (int): Number of classes
        logs_directory (str): Directory for outputing training logs
        experiment_name (str): Name of the experiment
        use_last_checkpoint (bool): Flag for loading the previous checkpoint
        labels (arr): Vector/Array of labels (if applicable)
        confusion_matrix_cmap (class): Colour Map to be used for the Conusion Matrix
    """

51
52
    def __init__(self, number_of_classes, logs_directory, experiment_name, use_last_checkpoint=False, labels=None, confusion_matrix_cmap=plt.cm.Blues):

53
        self.number_of_classes = number_of_classes
54
55
56
57
        training_logs_directory = os.path.join(
            logs_directory, experiment_name, "train")
        testing_logs_directory = os.path.join(
            logs_directory, experiment_name, "test")
58
59
60
61
62
63
64
65
66

        # If the logs directory exist, we clear their contents to allow new logs to be created
        if not use_last_checkpoint:
            if os.path.exists(training_logs_directory):
                shutil.rmtree(training_logs_directory)
            if os.path.exists(testing_logs_directory):
                shutil.rmtree(testing_logs_directory)

        self.log_writer = {
67
68
            'train': SummaryWriter(log_dir=training_logs_directory),
            'test': SummaryWriter(log_dir=testing_logs_directory)
69
        }
70
71
72
73
74

        self.confusion_matrix_color_map = confusion_matrix_cmap

        self.current_iteration = 1

75
76
77
        if labels is not None:
            self.labels = self.labels_generator(labels)
        else:
78
            self.labels = ['rsfMRI']
79
80

        self.logger = logging.getLogger()
81
82
        file_handler = logging.FileHandler(
            "{}/{}.log".format(os.path.join(logs_directory, experiment_name), "console_logs"))
83
84
        self.logger.addHandler(file_handler)

85
86
87
88
89
90
91
92
93
94
95
    def labels_generator(self, labels):
        """ Label Generator Function

        This function processess an input array of labels.

        Args:
            labels (arr): Vector/Array of labels (if applicable)

        Returns:
            label_classes (list): List of processed labels
        """
96
97
98
99
100

        label_classes = []

        for label in labels:

101
102
103
104
            label_class = re.sub(
                r'([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))', r'\1 ', label)
            label_class = ['\n'.join(wrap(element, 40))
                           for element in label_class]
105
106
107
            label_classes.append(label_class)

        return label_classes
108

109
110
111
112
113
114
115
116
117
    def log(self, message):
        """Log function

        This function logs a message in the logger.

        Args:
            message (str): Message to be logged
        """

118
        self.logger.info(msg=message)
119

120
    def loss_per_iteration(self, loss_per_iteration, batch_index, iteration):
121
        """Log of loss / iteration
122

123
124
125
126
127
        This function records the loss for every iteration.

        Args:
            loss_per_iteration (torch.tensor): Value of loss for every iteration step
            batch_index (int): Index of current batch
128
            iteration (int): Current iteration value
129
130
        """

131
132
133
134
        print("Loss for Iteration {} is: {}".format(
            batch_index, loss_per_iteration))
        self.log_writer['train'].add_scalar(
            'loss / iteration', loss_per_iteration, iteration)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    def loss_per_epoch(self, losses, phase, epoch):
        """Log function

        This function records the loss for every epoch.

        Args:
            losses (list): Values of all the losses recorded during the training epoch
            phase (str): Current run mode or phase
            epoch (int): Current epoch value
        """

        if phase == 'train':
            loss = losses[-1]
        else:
            loss = np.mean(losses)

        print("Loss for Epoch {} of {} is: {}".format(epoch, phase, loss))
153
        self.log_writer[phase].add_scalar('loss / iteration', loss, epoch)
154

155
156
    # Currently, no confusion matrix is required
    # TODO: add a confusion matrix per epoch and confusion matrix plot functions if required
157

158
159
160
161
    def dice_score_per_epoch(self, phase, outputs, correct_labels, epoch):
        """Function calculating dice score for each epoch

        This function computes the dice score for each epoch.
162

163
        Args:
164
165
166
167
            phase (str): Current run mode or phase
            outputs (torch.tensor): Tensor of all the network outputs (Y-hat)
            correct_labels (torch.tensor): Output ground-truth labelled data (Y)
            epoch (int): Current epoch value
168
169
        """

170
171
172
        print("Dice Score is being calculated...", end='', flush=True)
        dice_score = evaluation.dice_score_calculator(
            outputs, correct_labels, self.number_of_classes)
173
        mean_dice_score = torch.mean(dice_score)
174
175
        self.plot_dice_score(
            dice_score, phase, plot_name='dice_score_per_epoch', title='Dice Score', epochs=epoch)
176
        print("Dice Score calculated successfully")
177
        return mean_dice_score.item()
178

179
    def plot_dice_score(self, dice_score, phase, plot_name, title, epochs=None):
180
        """Function plotting dice score for multiple epochs
181

182
        This function plots the dice score for each epoch.
183

184
185
186
187
188
189
190
191
        Args:
            dice_score (torch.tensor): Dice score value for each class
            phase (str): Current run mode or phase
            plot_name (str): Caption name for later refference
            title (str): Plot title
            epoch (int): Current epoch value
        """

192
        figure = matplotlib.figure.Figure()  # Might add some arguments here later
193
194
195
196
197
        ax = figure.add_subplot(1, 1, 1)
        ax.set_xlabel(title)
        ax.xaxis.set_label_position('top')
        ax.bar(np.arange(self.number_of_classes), dice_score)
        ax.set_xticks(np.arange(self.number_of_classes))
198
199
200
201
202
203

        if self.labels is None:
            pass
        else:
            ax.set_xticklabels(self.labels)
            ax.xaxis.tick_bottom()
204

205
        if epochs:
206
207
            self.log_writer[phase].add_figure(
                plot_name + '/' + phase, figure, global_step=epochs)
208
209
        else:
            self.log_writer[phase].add_figure(plot_name + '/' + phase, figure)
210

211
    # Currently, also no need for an evaluation box plot
212

213
214
215
216
217
218
219
220
221
222
223
224
    def sample_image_per_epoch(self, prediction, ground_truth, phase, epoch):
        """Function plotting mirrored images

        This function plots a predicted and a grond truth images side-by-side.

        Args:
            prediction (torch.tensor): Predicted image after passing throught the network
            ground_truth (torch.tensor): Labelled ground truth image
            phase (str): Current run mode or phase
            epoch (int): Current epoch value
        """

225
226
        print("Sample Image is being loaded...", end='', flush=True)
        figure, ax = plt.subplots(nrows=len(prediction), ncols=2)
227
228
229
230
231
232
233
234
235
236
237

        for i in range(len(prediction)):
            ax[i][0].imshow(prediction[i])
            ax[i][0].set_title("Predicted Image")
            ax[i][0].axis('off')

            ax[i][1].imshow(ground_truth[i])
            ax[i][1].set_title('Ground Truth Image')
            ax[i][1].axis('off')

        figure.set_tight_layout()
238
239
        self.log_writer[phase].add_figure(
            'sample_prediction/'+phase, figure, epoch)
240
241

        print("Sample Image successfully loaded!")
242
243

    def close(self):
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
244
245
246
247
        """Close the log writer

        This function closes the two log writers.
        """
248

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
249
        self.log_writer['train'].close()
250
        self.log_writer['test'].close()