run.py 14.8 KB
Newer Older
1
2
3
4
"""Brain Mapper Run File

Description:

5
6
7
8
9
    This file contains all the relevant functions for running BrainMapper.
    The network can be ran in one of these modes:
        - train
        - evaluate path
        - evaluate whole
10

11
    TODO: Might be worth adding some information on uncertaintiy estimation, later down the line
12

13
14
15
16
17
18
19
20
21
22
23
24
25
Usage:

    In order to run the network, in the terminal, the user needs to pass it relevant arguments:

        $ ./setup.sh
        $ source env/bin/activate
        $ python run.py --mode ...

    The arguments for mode are the following:

        mode=train # For training the model
        mode=evaluate-score # For evaluating the model score
        mode=evaluate-mapping # For evaluating the model mapping
26
27
        # For clearning the experiments and logs directories of the last experiment
        mode=clear-experiment
28
        mode=clear-all # For clearing all the files from the experiments and logs directories/
29
30
31

"""

32
import os
33
import shutil
34
35
import argparse
import logging
36
37
38

import torch
import torch.utils.data as data
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
39
import numpy as np
40
41

from solver import Solver
42
from BrainMapperAE import BrainMapperAE3D
43
44
from utils.data_utils import get_datasets
from utils.settings import Settings
45
46
import utils.data_evaluation_utils as evaluations
from utils.data_logging_utils import LogWriter
47
from utils.common_utils import create_folder
48
49
50
51
52

# Set the default floating point tensor type to FloatTensor

torch.set_default_tensor_type(torch.FloatTensor)

53

54
55
56
def load_data(data_parameters):
    """Dataset Loader

57
    This function loads the training and validation datasets.
58
59
60
61
62
63

    Args:
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

    Returns:
        train_data (dataset object): Pytorch map-style dataset object, mapping indices to training data samples.
64
        validation_data (dataset object): Pytorch map-style dataset object, mapping indices to testing data samples.
65
66
67

    """
    print("Data is loading...")
68
    train_data, validation_data = get_datasets(data_parameters)
69
70
    print("Data has loaded!")
    print("Training dataset size is {}".format(len(train_data)))
71
    print("Validation dataset size is {}".format(len(validation_data)))
72

73
    return train_data, validation_data
74

75

76
77
def train(data_parameters, training_parameters, network_parameters, misc_parameters):
    """Training Function
78

79
    This function trains a given model using the provided training data.
80
    Currently, the data loaded is set to have multiple sub-processes.
81
82
    A high enough number of workers assures that CPU computations are efficiently managed, i.e. that the bottleneck is indeed the neural network's forward and backward operations on the GPU (and not data generation)
    Loader memory is also pinned, to speed up data transfer from CPU to GPU  by using the page-locked memory.
83
    Train data is also re-shuffled at each training epoch.
84
85

    Args:
86
87
88
89
90
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'training_batch_size': 5
91
            'validation_batch_size: 5
92
93
94
95
96
97
98
99
100
101
102
103
104
            'use_pre_trained': False
            'pre_trained_path': 'pre_trained/path'
            'experiment_name': 'experiment_name'
            'learning_rate': 1e-4
            'optimizer_beta': (0.9, 0.999)
            'optimizer_epsilon': 1e-8
            'optimizer_weigth_decay': 1e-5
            'number_of_epochs': 10
            'loss_log_period': 50
            'learning_rate_scheduler_step_size': 3
            'learning_rate_scheduler_gamma': 1e-1
            'use_last_checkpoint': True
            'final_model_output_file': 'path/to/model'
105
        }
106

107
        network_parameters (dict): Contains information relevant parameters
108

109
110
111
112
113
114
115
116
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'save_model_directory': 'directory_name'
            'model_name': 'BrainMapper'
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }
117
118
    """

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    def _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters):
        """Wrapper for the training operation

        This function wraps the training operation for the network

        Args:
            data_parameters (dict): Dictionary containing relevant information for the datafiles.
            training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
            network_parameters (dict): Contains information relevant parameters
            misc_parameters (dict): Dictionary of aditional hyperparameters

        """
        train_data, validation_data = load_data(data_parameters)

        train_loader = data.DataLoader(
            dataset=train_data,
            batch_size=training_parameters['training_batch_size'],
            shuffle=True,
            pin_memory=True
        )

        validation_loader = data.DataLoader(
            dataset=validation_data,
            batch_size=training_parameters['validation_batch_size'],
            shuffle=False,
            pin_memory=True
        )

        if training_parameters['use_pre_trained']:
            BrainMapperModel = torch.load(
                training_parameters['pre_trained_path'])
Andrei Roibu's avatar
Andrei Roibu committed
150
        else:
151
            BrainMapperModel = BrainMapperAE3D(network_parameters)
152

153
154
155
        custom_weight_reset_flag = network_parameters['custom_weight_reset_flag']

        BrainMapperModel.reset_parameters(custom_weight_reset_flag)
156

Andrei Roibu's avatar
Andrei Roibu committed
157
158
159
160
        if training_parameters['adam_w_flag'] == True:
            optimizer = torch.optim.AdamW
        else:
            optimizer = torch.optim.Adam
161

162
163
164
165
        solver = Solver(model=BrainMapperModel,
                        device=misc_parameters['device'],
                        number_of_classes=network_parameters['number_of_classes'],
                        experiment_name=training_parameters['experiment_name'],
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
166
                        optimizer=optimizer,
167
                        optimizer_arguments={'lr': training_parameters['learning_rate'],
168
169
170
171
                                             'betas': training_parameters['optimizer_beta'],
                                             'eps': training_parameters['optimizer_epsilon'],
                                             'weight_decay': training_parameters['optimizer_weigth_decay']
                                             },
172
                        model_name=training_parameters['experiment_name'],
173
174
175
176
177
178
179
180
                        number_epochs=training_parameters['number_of_epochs'],
                        loss_log_period=training_parameters['loss_log_period'],
                        learning_rate_scheduler_step_size=training_parameters[
                            'learning_rate_scheduler_step_size'],
                        learning_rate_scheduler_gamma=training_parameters['learning_rate_scheduler_gamma'],
                        use_last_checkpoint=training_parameters['use_last_checkpoint'],
                        experiment_directory=misc_parameters['experiments_directory'],
                        logs_directory=misc_parameters['logs_directory'],
181
182
                        checkpoint_directory=misc_parameters['checkpoint_directory'],
                        save_model_directory=misc_parameters['save_model_directory'],
183
184
                        final_model_output_file=training_parameters['final_model_output_file'],
                        crop_flag = data_parameters['crop_flag']
185
186
187
188
                        )

        validation_loss = solver.train(train_loader, validation_loader)

189
        del train_data, validation_data, train_loader, validation_loader, BrainMapperModel, solver, optimizer
190
191
192
193
194
        torch.cuda.empty_cache()

        return validation_loss


195
    _ = _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters)
196

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
197

198
199
def evaluate_mapping(mapping_evaluation_parameters):
    """Mapping Evaluator
200

201
202
203
204
205
    This function passes through the network an input and generates the rsfMRI outputs.

    Args:
        mapping_evaluation_parameters (dict): Dictionary of parameters useful during mapping evaluation.
        mapping_evaluation_parameters = {
206
            'trained_model_path': 'path/to/model'
207
208
209
210
211
212
213
214
215
            'data_directory': 'path/to/data'
            'data_list': 'path/to/datalist.txt/
            'prediction_output_path': 'directory-of-saved-predictions'
            'batch_size': 2
            'device': 0
            'exit_on_error': True
        }

    """
216
    trained_model_path = mapping_evaluation_parameters['trained_model_path']
217
    data_directory = mapping_evaluation_parameters['data_directory']
218
    mapping_data_file = mapping_evaluation_parameters['mapping_data_file']
219
220
    data_list = mapping_evaluation_parameters['data_list']
    prediction_output_path = mapping_evaluation_parameters['prediction_output_path']
Andrei Roibu's avatar
Andrei Roibu committed
221
222
    dmri_mean_mask_path = mapping_evaluation_parameters['dmri_mean_mask_path']
    rsfmri_mean_mask_path = mapping_evaluation_parameters['rsfmri_mean_mask_path']
223
    device = mapping_evaluation_parameters['device']
224
    exit_on_error = mapping_evaluation_parameters['exit_on_error']
225
    brain_mask_path = mapping_evaluation_parameters['brain_mask_path']
Andrei Roibu's avatar
Andrei Roibu committed
226
    regression_factors = mapping_evaluation_parameters['regression_factors']
227
228
229
230
231
232
233
234
235
236
    mean_regression_flag = mapping_evaluation_parameters['mean_regression_flag']
    mean_regression_all_flag = mapping_evaluation_parameters['mean_regression_all_flag']
    mean_subtraction_flag = mapping_evaluation_parameters['mean_subtraction_flag']
    scale_volumes_flag = mapping_evaluation_parameters['scale_volumes_flag']
    normalize_flag = mapping_evaluation_parameters['normalize_flag']
    negative_flag = mapping_evaluation_parameters['negative_flag']
    outlier_flag = mapping_evaluation_parameters['outlier_flag']
    shrinkage_flag = mapping_evaluation_parameters['shrinkage_flag']
    hard_shrinkage_flag = mapping_evaluation_parameters['hard_shrinkage_flag']
    crop_flag = mapping_evaluation_parameters['crop_flag']
237

238
    evaluations.evaluate_mapping(trained_model_path,
Andrei Roibu's avatar
Andrei Roibu committed
239
240
241
242
243
244
245
246
                                 data_directory,
                                 mapping_data_file,
                                 data_list,
                                 prediction_output_path,
                                 brain_mask_path,
                                 dmri_mean_mask_path,
                                 rsfmri_mean_mask_path,
                                 regression_factors,
247
248
249
250
251
252
253
254
255
256
257
258
                                 mean_regression_flag,
                                 mean_regression_all_flag, 
                                 mean_subtraction_flag,
                                 scale_volumes_flag,
                                 normalize_flag,
                                 negative_flag, 
                                 outlier_flag,
                                 shrinkage_flag,
                                 hard_shrinkage_flag,
                                 crop_flag,
                                 device, 
                                 exit_on_error)
259
260

def delete_files(folder):
261
    """ Clear Folder Contents
262

263
264
265
266
    Function which clears contents (like experiments or logs)

    Args:
        folder (str): Name of folders whose conents is to be deleted
267

268
    """
269

270
271
272
273
274
275
276
277
278
279
    for object_name in os.listdir(folder):
        file_path = os.path.join(folder, object_name)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as exception:
            print(exception)

280
281

if __name__ == '__main__':
282
    parser = argparse.ArgumentParser()
283
284
    parser.add_argument('--mode', '-m', required=True,
                        help='run mode, valid values are train or evaluate')
285
286
    parser.add_argument('--model_name', '-n', required=True,
                        help='model name, required for identifying the settings file modelName.ini & modelName_eval.ini')
287
    parser.add_argument('--use_last_checkpoint', '-c', required=False,
288
                        help='flag indicating if the last checkpoint should be used if 1; useful when wanting to time-limit jobs.')
289
290
    parser.add_argument('--number_of_epochs', '-e', required=False,
                        help='flag indicating how many epochs the network will train for; should be limited to ~3 hours or 2/3 epochs')
291
292
293

    arguments = parser.parse_args()

294
295
296
297
    settings_file_name = arguments.model_name + '.ini'
    evaluation_settings_file_name = arguments.model_name + '_eval.ini'

    settings = Settings(settings_file_name)
298
299
300
301
302
303
    data_parameters = settings['DATA']
    training_parameters = settings['TRAINING']
    network_parameters = settings['NETWORK']
    misc_parameters = settings['MISC']
    evaluation_parameters = settings['EVALUATION']

304
    if arguments.use_last_checkpoint == '1':
305
        training_parameters['use_last_checkpoint'] = True
306
307
308
309
310
    elif arguments.use_last_checkpoint == '0':
        training_parameters['use_last_checkpoint'] = False

    if arguments.number_of_epochs is not None:
        training_parameters['number_of_epochs'] = int(arguments.number_of_epochs)
311

312
313
    if arguments.mode == 'train':
        train(data_parameters, training_parameters,
314
              network_parameters, misc_parameters)
315
316
317
318
319

    # NOTE: THE EVAL FUNCTIONS HAVE NOT YET BEEN DEBUGGED (16/04/20)

    elif arguments.mode == 'evaluate-mapping':
        logging.basicConfig(filename='evaluate-mapping-error.log')
320
        settings_evaluation = Settings(evaluation_settings_file_name)
321
322
323
324
325
326
327
328
329
330
331
332
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        evaluate_mapping(mapping_evaluation_parameters)
    elif arguments.mode == 'clear-experiments':
        shutil.rmtree(os.path.join(
            misc_parameters['experiments_directory'], training_parameters['experiment_name']))
        shutil.rmtree(os.path.join(
            misc_parameters['logs_directory'], training_parameters['experiment_name']))
        print('Cleared the current experiments and logs directory successfully!')
    elif arguments.mode == 'clear-everything':
        delete_files(misc_parameters['experiments_directory'])
        delete_files(misc_parameters['logs_directory'])
        print('Cleared the current experiments and logs directory successfully!')
333
    elif arguments.mode == 'train-and-evaluate-mapping':
334
        settings_evaluation = Settings(evaluation_settings_file_name)
335
336
337
338
339
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        train(data_parameters, training_parameters,
              network_parameters, misc_parameters)
        logging.basicConfig(filename='evaluate-mapping-error.log')
        evaluate_mapping(mapping_evaluation_parameters)
340
341
    else:
        raise ValueError(
342
            'Invalid mode value! Only supports: train, evaluate-score, evaluate-mapping, train-and-evaluate-mapping, clear-experiments and clear-everything')