BrainMapperUNet.py 46.6 KB
Newer Older
1
2
3
4
"""Brain Mapper U-Net Architecture

Description:

5
6
    This folder contains the Pytorch implementation of the core U-net architecture.
    This arcitecture predicts functional connectivity rsfMRI from structural connectivity information from dMRI.
7

8
9
10
11
12
13
Usage:

    To use this module, import it and instantiate is as you wish:

        from BrainMapperUNet import BrainMapperUNet
        deep_learning_model = BrainMapperUnet(parameters)
14
15
16
17
18
19

"""

import numpy as np
import torch
import torch.nn as nn
20
import utils.modules as modules
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
class BrainMapperCompResUNet3D(nn.Module):
    """Architecture class for Competitive Residual DenseBlock BrainMapper 3D U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_depth': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

    def __init__(self, parameters):
        super(BrainMapperCompResUNet3D, self).__init__()

        original_input_channels = parameters['input_channels']
        original_output_channels = parameters['output_channels']

        self.encoderBlock1 = modules.InCompDensEncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        self.encoderBlock2 = modules.CompDensEncoderBlock3D(parameters)
        self.encoderBlock3 = modules.CompDensEncoderBlock3D(parameters)
        self.encoderBlock4 = modules.CompDensEncoderBlock3D(parameters)

        self.bottleneck = modules.CompDensBlock3D(parameters)

        self.decoderBlock1 = modules.CompDensDecoderBlock3D(parameters)
        self.decoderBlock2 = modules.CompDensDecoderBlock3D(parameters)
        self.decoderBlock3 = modules.CompDensDecoderBlock3D(parameters)
        self.decoderBlock4 = modules.CompDensDecoderBlock3D(parameters)

        self.classifier = modules.DensClassifierBlock3D(parameters)

        parameters['input_channels'] = original_input_channels
        parameters['output_channels'] = original_output_channels

    def forward(self, X):
        """Forward pass for 3D U-net

        Function computing the forward pass through the 3D U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

        Y_encoder_1, Y_np1, _ = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, _ = self.encoderBlock2.forward(
            Y_encoder_1)

        del Y_encoder_1

        Y_encoder_3, Y_np3, _ = self.encoderBlock3.forward(
            Y_encoder_2)

        del Y_encoder_2

        Y_encoder_4, Y_np4, _ = self.encoderBlock4.forward(
            Y_encoder_3)

        del Y_encoder_3

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

        del Y_encoder_4

        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4)

        del Y_bottleNeck, Y_np4

        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3)

        del Y_decoder_1, Y_np3

        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2)

        del Y_decoder_2, Y_np2

        Y_decoder_4 = self.decoderBlock4.forward(
            Y_decoder_3, Y_np1)

        del Y_decoder_3, Y_np1

        probability_map = self.classifier.forward(Y_decoder_4)

        del Y_decoder_4

        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                for _, subsubmodule in submodule.named_children():
                    if isinstance(subsubmodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                        subsubmodule.reset_parameters()

        print("Initialized network parameters!")



class BrainMapperResUNet3Dshallow(nn.Module):
    """Architecture class for Residual DenseBlock BrainMapper 3D U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_depth': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

    def __init__(self, parameters):
        super(BrainMapperResUNet3Dshallow, self).__init__()

        original_input_channels = parameters['input_channels']
        original_output_channels = parameters['output_channels']

        self.encoderBlock1 = modules.DensEncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        self.encoderBlock2 = modules.DensEncoderBlock3D(parameters)
        self.encoderBlock3 = modules.DensEncoderBlock3D(parameters)

        self.bottleneck = modules.DensBlock3D(parameters)

        parameters['input_channels'] = parameters['output_channels'] * 2
        self.decoderBlock1 = modules.DensDecoderBlock3D(parameters)
        self.decoderBlock2 = modules.DensDecoderBlock3D(parameters)
        self.decoderBlock3 = modules.DensDecoderBlock3D(parameters)

        parameters['input_channels'] = parameters['output_channels']
        self.classifier = modules.DensClassifierBlock3D(parameters)

        parameters['input_channels'] = original_input_channels
        parameters['output_channels'] = original_output_channels

    def forward(self, X):
        """Forward pass for 3D U-net

        Function computing the forward pass through the 3D U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

        Y_encoder_1, Y_np1, _ = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, _ = self.encoderBlock2.forward(
            Y_encoder_1)

        del Y_encoder_1

        Y_encoder_3, Y_np3, _ = self.encoderBlock3.forward(
            Y_encoder_2)

        del Y_encoder_2

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_3)

        del Y_encoder_3

        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np3)

        del Y_bottleNeck, Y_np3

        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np2)

        del Y_decoder_1, Y_np2

        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np1)

        del Y_decoder_2, Y_np1

        probability_map = self.classifier.forward(Y_decoder_3)

        del Y_decoder_3

        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                for _, subsubmodule in submodule.named_children():
                    if isinstance(subsubmodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                        subsubmodule.reset_parameters()

        print("Initialized network parameters!")


396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
class BrainMapperResUNet3D(nn.Module):
    """Architecture class for Residual DenseBlock BrainMapper 3D U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_depth': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

    def __init__(self, parameters):
        super(BrainMapperResUNet3D, self).__init__()

        original_input_channels = parameters['input_channels']
        original_output_channels = parameters['output_channels']

        self.encoderBlock1 = modules.DensEncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        self.encoderBlock2 = modules.DensEncoderBlock3D(parameters)
        self.encoderBlock3 = modules.DensEncoderBlock3D(parameters)
        self.encoderBlock4 = modules.DensEncoderBlock3D(parameters)

        self.bottleneck = modules.DensBlock3D(parameters)

        parameters['input_channels'] = parameters['output_channels'] * 2
        self.decoderBlock1 = modules.DensDecoderBlock3D(parameters)
        self.decoderBlock2 = modules.DensDecoderBlock3D(parameters)
        self.decoderBlock3 = modules.DensDecoderBlock3D(parameters)
        self.decoderBlock4 = modules.DensDecoderBlock3D(parameters)

        parameters['input_channels'] = parameters['output_channels']
        self.classifier = modules.DensClassifierBlock3D(parameters)

        parameters['input_channels'] = original_input_channels
        parameters['output_channels'] = original_output_channels

    def forward(self, X):
        """Forward pass for 3D U-net

        Function computing the forward pass through the 3D U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

        Y_encoder_1, Y_np1, _ = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, _ = self.encoderBlock2.forward(
            Y_encoder_1)

        del Y_encoder_1

        Y_encoder_3, Y_np3, _ = self.encoderBlock3.forward(
            Y_encoder_2)

        del Y_encoder_2

        Y_encoder_4, Y_np4, _ = self.encoderBlock4.forward(
            Y_encoder_3)

        del Y_encoder_3

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

        del Y_encoder_4

        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4)

        del Y_bottleNeck, Y_np4

        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3)

        del Y_decoder_1, Y_np3

        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2)

        del Y_decoder_2, Y_np2

        Y_decoder_4 = self.decoderBlock4.forward(
            Y_decoder_3, Y_np1)

        del Y_decoder_3, Y_np1

        probability_map = self.classifier.forward(Y_decoder_4)

        del Y_decoder_4

        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                for _, subsubmodule in submodule.named_children():
                    if isinstance(subsubmodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                        subsubmodule.reset_parameters()

        print("Initialized network parameters!")


589
class BrainMapperUNet3D(nn.Module):
590
    """Architecture class for Traditional BrainMapper 3D U-net.
591
592
593
594
595
596
597
598

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
599
            'kernel_depth': 5
600
601
602
603
604
605
606
607
608
609
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }
610

611
612
    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
613
    """
614

615
    def __init__(self, parameters):
616
        super(BrainMapperUNet3D, self).__init__()
617

618
619
        original_input_channels = parameters['input_channels']
        original_output_channels = parameters['output_channels']
620

621
        self.encoderBlock1 = modules.EncoderBlock3D(parameters)
622
        parameters['input_channels'] = parameters['output_channels']
623
624
625
626
627
628
629
630
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.encoderBlock2 = modules.EncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.encoderBlock3 = modules.EncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.encoderBlock4 = modules.EncoderBlock3D(parameters)
631

632
633
634
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.bottleneck = modules.ConvolutionalBlock3D(parameters)
635

636
637
638
639
640
641
642
643
644
645
646
647
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock1 = modules.DecoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock2 = modules.DecoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock3 = modules.DecoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock4 = modules.DecoderBlock3D(parameters)
648
649

        parameters['input_channels'] = parameters['output_channels']
650
651
652
653
        self.classifier = modules.ClassifierBlock3D(parameters)

        parameters['input_channels'] = original_input_channels
        parameters['output_channels'] = original_output_channels
654
655

    def forward(self, X):
656
        """Forward pass for 3D U-net
657

658
        Function computing the forward pass through the 3D U-Net
659
660
661
        The input to the function is the dMRI map

        Args:
662
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 
663
664
665

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
666
        """
667

668
669
        Y_encoder_1, Y_np1, _ = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, _ = self.encoderBlock2.forward(
670
            Y_encoder_1)
671
672
673

        del Y_encoder_1

674
        Y_encoder_3, Y_np3, _ = self.encoderBlock3.forward(
675
            Y_encoder_2)
676
677
678

        del Y_encoder_2

679
        Y_encoder_4, Y_np4, _ = self.encoderBlock4.forward(
680
681
            Y_encoder_3)

682
683
        del Y_encoder_3

684
685
        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

686
687
        del Y_encoder_4

688
        Y_decoder_1 = self.decoderBlock1.forward(
689
            Y_bottleNeck, Y_np4)
690

691
        del Y_bottleNeck, Y_np4
692

693
        Y_decoder_2 = self.decoderBlock2.forward(
694
            Y_decoder_1, Y_np3)
695

696
        del Y_decoder_1, Y_np3
697

698
        Y_decoder_3 = self.decoderBlock3.forward(
699
            Y_decoder_2, Y_np2)
700

701
        del Y_decoder_2, Y_np2
702

703
        Y_decoder_4 = self.decoderBlock4.forward(
704
            Y_decoder_3, Y_np1)
705

706
        del Y_decoder_3, Y_np1
707

708
709
        probability_map = self.classifier.forward(Y_decoder_4)

710
711
        del Y_decoder_4

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                for _, subsubmodule in submodule.named_children():
                    if isinstance(subsubmodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                        subsubmodule.reset_parameters()

        print("Initialized network parameters!")


class BrainMapperUNet3Dsimple(nn.Module):
    """Architecture class for  Simple BrainMapper 3D U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_depth': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

    def __init__(self, parameters):
        super(BrainMapperUNet3D, self).__init__()

        original_input_channels = parameters['input_channels']
        original_output_channels = parameters['output_channels']

        self.encoderBlock1 = modules.EncoderBlock3Dsimple(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.encoderBlock2 = modules.EncoderBlock3Dsimple(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.encoderBlock3 = modules.EncoderBlock3Dsimple(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.encoderBlock4 = modules.EncoderBlock3Dsimple(parameters)

        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] * 2
        self.bottleneck = modules.ConvolutionalBlock3Dsimple(parameters)

        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock1 = modules.DecoderBlock3Dsimple(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock2 = modules.DecoderBlock3Dsimple(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock3 = modules.DecoderBlock3Dsimple(parameters)
        parameters['input_channels'] = parameters['output_channels']
        parameters['output_channels'] = parameters['output_channels'] // 2
        self.decoderBlock4 = modules.DecoderBlock3Dsimple(parameters)

        parameters['input_channels'] = parameters['output_channels']
        self.classifier = modules.ClassifierBlock3Dsimple(parameters)

        parameters['input_channels'] = original_input_channels
        parameters['output_channels'] = original_output_channels

    def forward(self, X):
        """Forward pass for 3D U-net

        Function computing the forward pass through the 3D U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

        Y_encoder_1, Y_np1, _ = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, _ = self.encoderBlock2.forward(
            Y_encoder_1)

        del Y_encoder_1

        Y_encoder_3, Y_np3, _ = self.encoderBlock3.forward(
            Y_encoder_2)

        del Y_encoder_2

        Y_encoder_4, Y_np4, _ = self.encoderBlock4.forward(
            Y_encoder_3)

        del Y_encoder_3

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

        del Y_encoder_4

        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4)

        del Y_bottleNeck, Y_np4

        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3)

        del Y_decoder_1, Y_np3

        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2)

        del Y_decoder_2, Y_np2

        Y_decoder_4 = self.decoderBlock4.forward(
            Y_decoder_3, Y_np1)

        del Y_decoder_3, Y_np1

        probability_map = self.classifier.forward(Y_decoder_4)

        del Y_decoder_4

        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                if isinstance(submodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                    submodule.reset_parameters()

        print("Initialized network parameters!")

1001

1002
1003
# DEPRECATED ARCHITECTURES!

1004

1005
1006
class BrainMapperUNet(nn.Module):
    """Architecture class BrainMapper U-net.
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

1030
    def __init__(self, parameters):
1031
        super(BrainMapperUNet, self).__init__()
1032

1033
        # TODO: currently, architecture based on QuickNAT - need to adjust parameter values accordingly!
1034

1035
        self.encoderBlock1 = modules.EncoderBlock(parameters)
1036
        parameters['input_channels'] = parameters['output_channels']
1037
1038
1039
        self.encoderBlock2 = modules.EncoderBlock(parameters)
        self.encoderBlock3 = modules.EncoderBlock(parameters)
        self.encoderBlock4 = modules.EncoderBlock(parameters)
1040

1041
        self.bottleneck = modules.ConvolutionalBlock(parameters)
1042

1043
1044
1045
1046
1047
        parameters['input_channels'] = parameters['output_channels'] * 2.0
        self.decoderBlock1 = modules.DecoderBlock(parameters)
        self.decoderBlock2 = modules.DecoderBlock(parameters)
        self.decoderBlock3 = modules.DecoderBlock(parameters)
        self.decoderBlock4 = modules.DecoderBlock(parameters)
1048
1049

        parameters['input_channels'] = parameters['output_channels']
1050
        self.classifier = modules.ClassifierBlock(parameters)
1051
1052

    def forward(self, X):
1053
        """Forward pass for U-net
1054

1055
        Function computing the forward pass through the U-Net
1056
1057
1058
        The input to the function is the dMRI map

        Args:
1059
            X (torch.tensor): Input dMRI map, shape = (N x C x H x W) 
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

        Y_encoder_1, Y_np1, pool_indices1 = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, pool_indices2 = self.encoderBlock2.forward(
            Y_encoder_1)

        del Y_encoder_1

        Y_encoder_3, Y_np3, pool_indices3 = self.encoderBlock3.forward(
            Y_encoder_2)

        del Y_encoder_2

        Y_encoder_4, Y_np4, pool_indices4 = self.encoderBlock4.forward(
            Y_encoder_3)

        del Y_encoder_3

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

        del Y_encoder_4

        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4, pool_indices4)

        del Y_bottleNeck, Y_np4, pool_indices4
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3, pool_indices3)

        del Y_decoder_1, Y_np3, pool_indices3

        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2, pool_indices2)

        del Y_decoder_2, Y_np2, pool_indices2

1100
        Y_decoder_4 = self.decoderBlock4.forward(
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
            Y_decoder_3, Y_np1, pool_indices1)

        del Y_decoder_3, Y_np1, pool_indices1

        probability_map = self.classifier.forward(Y_decoder_4)

        del Y_decoder_4

        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                if isinstance(submodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                    submodule.reset_parameters()

        print("Initialized network parameters!")
1190

1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
class BrainMapperUNet3D_Simple(nn.Module):
    """Architecture class BrainMapper 3D U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_depth': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

1218
    def __init__(self, parameters):
1219
        super(BrainMapperUNet3D_Simple, self).__init__()
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

        # TODO: currently, architecture based on QuickNAT - need to adjust parameter values accordingly!

        self.encoderBlock1 = modules.EncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        self.encoderBlock2 = modules.EncoderBlock3D(parameters)
        self.encoderBlock3 = modules.EncoderBlock3D(parameters)
        self.encoderBlock4 = modules.EncoderBlock3D(parameters)

        self.bottleneck = modules.ConvolutionalBlock3D(parameters)

1231
        parameters['input_channels'] = parameters['output_channels'] * 2
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        self.decoderBlock1 = modules.DecoderBlock3D(parameters)
        self.decoderBlock2 = modules.DecoderBlock3D(parameters)
        self.decoderBlock3 = modules.DecoderBlock3D(parameters)
        self.decoderBlock4 = modules.DecoderBlock3D(parameters)

        parameters['input_channels'] = parameters['output_channels']
        self.classifier = modules.ClassifierBlock3D(parameters)

    def forward(self, X):
        """Forward pass for 3D U-net

        Function computing the forward pass through the 3D U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

1253
        Y_encoder_1, Y_np1, pool_indices1 = self.encoderBlock1.forward(X)
1254
1255
        Y_encoder_2, Y_np2, pool_indices2 = self.encoderBlock2.forward(
            Y_encoder_1)
1256
1257
1258

        del Y_encoder_1

1259
1260
        Y_encoder_3, Y_np3, pool_indices3 = self.encoderBlock3.forward(
            Y_encoder_2)
1261
1262
1263

        del Y_encoder_2

1264
1265
        Y_encoder_4, Y_np4, pool_indices4 = self.encoderBlock4.forward(
            Y_encoder_3)
1266

1267
1268
        del Y_encoder_3

1269
1270
        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

1271
1272
        del Y_encoder_4

1273
1274
        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4, pool_indices4)
1275
1276

        del Y_bottleNeck, Y_np4, pool_indices4
1277

1278
1279
        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3, pool_indices3)
1280
1281
1282

        del Y_decoder_1, Y_np3, pool_indices3

1283
1284
        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2, pool_indices2)
1285
1286
1287

        del Y_decoder_2, Y_np2, pool_indices2

1288
        Y_decoder_4 = self.decoderBlock4.forward(
1289
            Y_decoder_3, Y_np1, pool_indices1)
1290

1291
1292
1293
1294
1295
1296
        del Y_decoder_3, Y_np1, pool_indices1

        probability_map = self.classifier.forward(Y_decoder_4)

        del Y_decoder_4

1297
        probability_map = self.classifier.forward(Y_decoder_4)
1298

1299
        return probability_map
1300

1301
    def save(self, path):
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
1302
        """Model Saver
1303

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
1304
1305
        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.
1306

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
1307
1308
1309
        Args:
            path (str): Path string
        """
1310

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
1311
1312
        print("Saving Model... {}".format(path))
        torch.save(self, path)
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda
1325
1326

    def predict(self, X, device=0):
1327
        """Post-training Output Prediction
1328

1329
1330
1331
1332
        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
1333
            device (int/str): Device type used for training (int - GPU id, str- CPU)
1334
1335
1336
1337

        Returns:
            prediction (ndarray): predicted output after training

1338
        """
1339
        self.eval()  # PyToch module setting network to evaluation mode
1340
1341
1342
1343
1344
1345
1346
1347
1348

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

1349
        with torch.no_grad():  # Causes operations to have no gradients
1350
1351
1352
1353
            output = self.forward(X)

        _, idx = torch.max(output, 1)

1354
1355
1356
        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

1357
1358
1359
1360
1361
1362
        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
    def reset_parameters(self):
        """Parameter Initialization

        This function (re)initializes the parameters of the defined network.
        This function is a wrapper for the reset_parameters() function defined for each module. 
        More information can be found here: https://discuss.pytorch.org/t/what-is-the-default-initialization-of-a-conv2d-layer-and-linear-layer/16055 + https://discuss.pytorch.org/t/how-to-reset-model-weights-to-effectively-implement-crossvalidation/53859 
        An alternative (re)initialization method is described here: https://discuss.pytorch.org/t/how-to-reset-variables-values-in-nn-modules/32639 
        """

        print("Initializing network parameters...")

        for _, module in self.named_children():
            for _, submodule in module.named_children():
                if isinstance(submodule, (torch.nn.PReLU, torch.nn.Dropout3d, torch.nn.MaxPool3d)) == False:
                    submodule.reset_parameters()

        print("Initialized network parameters!")

1381