run.py 19.8 KB
Newer Older
1
2
3
4
"""Brain Mapper Run File

Description:

5
6
7
8
9
    This file contains all the relevant functions for running BrainMapper.
    The network can be ran in one of these modes:
        - train
        - evaluate path
        - evaluate whole
10

11
    TODO: Might be worth adding some information on uncertaintiy estimation, later down the line
12

13
14
15
16
17
18
19
20
21
22
23
24
25
Usage:

    In order to run the network, in the terminal, the user needs to pass it relevant arguments:

        $ ./setup.sh
        $ source env/bin/activate
        $ python run.py --mode ...

    The arguments for mode are the following:

        mode=train # For training the model
        mode=evaluate-score # For evaluating the model score
        mode=evaluate-mapping # For evaluating the model mapping
26
27
        # For clearning the experiments and logs directories of the last experiment
        mode=clear-experiment
28
        mode=clear-all # For clearing all the files from the experiments and logs directories/
29
30
31

"""

32
import os
33
import shutil
34
35
import argparse
import logging
36
37
38

import torch
import torch.utils.data as data
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
39
import numpy as np
40
41

from solver import Solver
42
from BrainMapperAE import BrainMapperAE3D
43
44
from utils.data_utils import get_datasets
from utils.settings import Settings
45
46
import utils.data_evaluation_utils as evaluations
from utils.data_logging_utils import LogWriter
47
from utils.common_utils import create_folder
48
49
50
51
52

# Set the default floating point tensor type to FloatTensor

torch.set_default_tensor_type(torch.FloatTensor)

53

54
def load_data(data_parameters, cross_domain_x2x_flag, cross_domain_y2y_flag):
55
56
    """Dataset Loader

57
    This function loads the training and validation datasets.
58
59
60

    Args:
        data_parameters (dict): Dictionary containing relevant information for the datafiles.
61
62
        cross_domain_x2x_flag (bool): Flag indicating if cross-domain training is occuring between the inputs
        cross_domain_y2y_flag (bool): Flag indicating if cross-domain training is occuring between the targets
63
64
65

    Returns:
        train_data (dataset object): Pytorch map-style dataset object, mapping indices to training data samples.
66
        validation_data (dataset object): Pytorch map-style dataset object, mapping indices to testing data samples.
67
68
69

    """
    print("Data is loading...")
70
    train_data, validation_data = get_datasets(data_parameters, cross_domain_x2x_flag, cross_domain_y2y_flag)
71
72
    print("Data has loaded!")
    print("Training dataset size is {}".format(len(train_data)))
73
    print("Validation dataset size is {}".format(len(validation_data)))
74

75
    return train_data, validation_data
76

77

78
79
def train(data_parameters, training_parameters, network_parameters, misc_parameters):
    """Training Function
80

81
    This function trains a given model using the provided training data.
82
    Currently, the data loaded is set to have multiple sub-processes.
83
84
    A high enough number of workers assures that CPU computations are efficiently managed, i.e. that the bottleneck is indeed the neural network's forward and backward operations on the GPU (and not data generation)
    Loader memory is also pinned, to speed up data transfer from CPU to GPU  by using the page-locked memory.
85
    Train data is also re-shuffled at each training epoch.
86
87

    Args:
88
89
90
91
92
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'training_batch_size': 5
93
            'validation_batch_size: 5
94
95
96
97
98
99
100
101
102
103
104
105
106
            'use_pre_trained': False
            'pre_trained_path': 'pre_trained/path'
            'experiment_name': 'experiment_name'
            'learning_rate': 1e-4
            'optimizer_beta': (0.9, 0.999)
            'optimizer_epsilon': 1e-8
            'optimizer_weigth_decay': 1e-5
            'number_of_epochs': 10
            'loss_log_period': 50
            'learning_rate_scheduler_step_size': 3
            'learning_rate_scheduler_gamma': 1e-1
            'use_last_checkpoint': True
            'final_model_output_file': 'path/to/model'
107
        }
108

109
        network_parameters (dict): Contains information relevant parameters
110

111
112
113
114
115
116
117
118
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'save_model_directory': 'directory_name'
            'model_name': 'BrainMapper'
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }
119
120
    """

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def _load_pretrained_cross_domain(x2y_model, save_model_directory, experiment_name):
        """ Pretrained cross-domain loader

        This function loads the pretrained X2X and Y2Y autuencoders.
        After, it initializes the X2Y model's weights using the X2X encoder and teh Y2Y decoder weights.

        Args:
            x2y_model (class): Original x2y model initialised using the standard parameters.
            save_model_directory (str): Name of the directory where the model is saved
            experiment_name (str): Name of the experiment

        Returns:
            x2y_model (class): New x2y model with encoder and decoder paths weights reinitialised.
        """

        x2y_model_state_dict = x2y_model.state_dict()
        x2x_model_state_dict = torch.load(os.path.join(save_model_directory, experiment_name + '_x2x.pth.tar')).state_dict()
        y2y_model_state_dict = torch.load(os.path.join(save_model_directory, experiment_name + '_y2y.pth.tar')).state_dict()

        half_point = len(x2x_model_state_dict)//2 + 1

        counter = 1
        for key, _ in x2y_model_state_dict.items():
            if counter <= half_point:
                x2y_model_state_dict.update({key : x2x_model_state_dict[key]})
                counter+=1
            else:
                if key in y2y_model_state_dict:
                    x2y_model_state_dict.update({key : y2y_model_state_dict[key]})

        x2y_model.load_state_dict(x2y_model_state_dict)

        return x2y_model


    def _train_runner(data_parameters, 
                      training_parameters, 
                      network_parameters, 
                      misc_parameters,
                      optimizer = torch.optim.Adam,
                      loss_function = torch.nn.MSELoss(),
                      ):
164
165
166
167
168
169
170
171
172
173
174
        """Wrapper for the training operation

        This function wraps the training operation for the network

        Args:
            data_parameters (dict): Dictionary containing relevant information for the datafiles.
            training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
            network_parameters (dict): Contains information relevant parameters
            misc_parameters (dict): Dictionary of aditional hyperparameters

        """
175
176
177
178
179

        train_data, validation_data = load_data(data_parameters,
                                                cross_domain_x2x_flag = network_parameters['cross_domain_x2x_flag'], 
                                                cross_domain_y2y_flag = network_parameters['cross_domain_y2y_flag']
                                                )
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

        train_loader = data.DataLoader(
            dataset=train_data,
            batch_size=training_parameters['training_batch_size'],
            shuffle=True,
            pin_memory=True
        )

        validation_loader = data.DataLoader(
            dataset=validation_data,
            batch_size=training_parameters['validation_batch_size'],
            shuffle=False,
            pin_memory=True
        )

        if training_parameters['use_pre_trained']:
196
            BrainMapperModel = torch.load(training_parameters['pre_trained_path'])
Andrei Roibu's avatar
Andrei Roibu committed
197
        else:
198
            BrainMapperModel = BrainMapperAE3D(network_parameters)
199

200
201
202
        custom_weight_reset_flag = network_parameters['custom_weight_reset_flag']

        BrainMapperModel.reset_parameters(custom_weight_reset_flag)
203

204
205
206
207
208
        if network_parameters['cross_domain_x2y_flag'] == True:
            BrainMapperModel = _load_pretrained_cross_domain(x2y_model=BrainMapperModel, 
                                                             save_model_directory=misc_parameters['save_model_directory'], 
                                                             experiment_name=training_parameters['experiment_name']
                                                             )
209

210
211
212
213
        solver = Solver(model=BrainMapperModel,
                        device=misc_parameters['device'],
                        number_of_classes=network_parameters['number_of_classes'],
                        experiment_name=training_parameters['experiment_name'],
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
214
                        optimizer=optimizer,
215
                        optimizer_arguments={'lr': training_parameters['learning_rate'],
216
217
218
219
                                             'betas': training_parameters['optimizer_beta'],
                                             'eps': training_parameters['optimizer_epsilon'],
                                             'weight_decay': training_parameters['optimizer_weigth_decay']
                                             },
220
                        loss_function=loss_function,
221
                        model_name=training_parameters['experiment_name'],
222
223
224
225
226
227
228
229
                        number_epochs=training_parameters['number_of_epochs'],
                        loss_log_period=training_parameters['loss_log_period'],
                        learning_rate_scheduler_step_size=training_parameters[
                            'learning_rate_scheduler_step_size'],
                        learning_rate_scheduler_gamma=training_parameters['learning_rate_scheduler_gamma'],
                        use_last_checkpoint=training_parameters['use_last_checkpoint'],
                        experiment_directory=misc_parameters['experiments_directory'],
                        logs_directory=misc_parameters['logs_directory'],
230
231
                        checkpoint_directory=misc_parameters['checkpoint_directory'],
                        save_model_directory=misc_parameters['save_model_directory'],
232
                        crop_flag = data_parameters['crop_flag']
233
234
235
236
                        )

        validation_loss = solver.train(train_loader, validation_loader)

237
        del train_data, validation_data, train_loader, validation_loader, BrainMapperModel, solver, optimizer
238
239
240
241
242
        torch.cuda.empty_cache()

        return validation_loss


243
244
245
246
    if training_parameters['adam_w_flag'] == True:
        optimizer = torch.optim.AdamW
    else:
        optimizer = torch.optim.Adam
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    loss_function = torch.nn.MSELoss()
    # loss_function=torch.nn.L1Loss()
    # loss_function=torch.nn.CosineEmbeddingLoss()

    if network_parameters['cross_domain_flag'] == False:
        _ = _train_runner(data_parameters, 
                          training_parameters, 
                          network_parameters, 
                          misc_parameters,
                          optimizer=optimizer,
                          loss_function=loss_function
                          )
    
    elif network_parameters['cross_domain_flag'] == True:
        if network_parameters['cross_domain_x2x_flag'] == True:

            training_parameters['experiment_name'] = training_parameters['experiment_name'] + '_x2x'
            data_parameters['target_data_train'] = data_parameters['input_data_train']
            data_parameters['target_data_validation'] = data_parameters['input_data_validation']

            loss_function = torch.nn.L1Loss()

            _ = _train_runner(data_parameters, 
                            training_parameters, 
                            network_parameters, 
                            misc_parameters,
                            optimizer=optimizer,
                            loss_function=loss_function
                            )

        if network_parameters['cross_domain_y2y_flag'] == True:

            training_parameters['experiment_name'] = training_parameters['experiment_name'] + '_y2y'
            data_parameters['input_data_train'] = data_parameters['target_data_train']
            data_parameters['input_data_validation'] = data_parameters['target_data_validation']

            loss_function = torch.nn.L1Loss()

            _ = _train_runner(data_parameters, 
                            training_parameters, 
                            network_parameters, 
                            misc_parameters,
                            optimizer=optimizer,
                            loss_function=loss_function
                            )

        if network_parameters['cross_domain_x2y_flag'] == True:

            _ = _train_runner(data_parameters, 
                            training_parameters, 
                            network_parameters, 
                            misc_parameters,
                            optimizer=optimizer,
                            loss_function=loss_function
                            )
303

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
304

305
306
def evaluate_mapping(mapping_evaluation_parameters):
    """Mapping Evaluator
307

308
309
310
311
312
    This function passes through the network an input and generates the rsfMRI outputs.

    Args:
        mapping_evaluation_parameters (dict): Dictionary of parameters useful during mapping evaluation.
        mapping_evaluation_parameters = {
313
            'trained_model_path': 'path/to/model'
314
315
316
317
318
319
320
321
322
            'data_directory': 'path/to/data'
            'data_list': 'path/to/datalist.txt/
            'prediction_output_path': 'directory-of-saved-predictions'
            'batch_size': 2
            'device': 0
            'exit_on_error': True
        }

    """
323
    trained_model_path = mapping_evaluation_parameters['trained_model_path']
324
    data_directory = mapping_evaluation_parameters['data_directory']
325
    mapping_data_file = mapping_evaluation_parameters['mapping_data_file']
326
327
    data_list = mapping_evaluation_parameters['data_list']
    prediction_output_path = mapping_evaluation_parameters['prediction_output_path']
Andrei Roibu's avatar
Andrei Roibu committed
328
329
    dmri_mean_mask_path = mapping_evaluation_parameters['dmri_mean_mask_path']
    rsfmri_mean_mask_path = mapping_evaluation_parameters['rsfmri_mean_mask_path']
330
    device = mapping_evaluation_parameters['device']
331
    exit_on_error = mapping_evaluation_parameters['exit_on_error']
332
    brain_mask_path = mapping_evaluation_parameters['brain_mask_path']
Andrei Roibu's avatar
Andrei Roibu committed
333
    regression_factors = mapping_evaluation_parameters['regression_factors']
334
335
336
337
338
    mean_regression_flag = mapping_evaluation_parameters['mean_regression_flag']
    mean_regression_all_flag = mapping_evaluation_parameters['mean_regression_all_flag']
    mean_subtraction_flag = mapping_evaluation_parameters['mean_subtraction_flag']
    scale_volumes_flag = mapping_evaluation_parameters['scale_volumes_flag']
    normalize_flag = mapping_evaluation_parameters['normalize_flag']
339
    minus_one_scaling_flag = mapping_evaluation_parameters['minus_one_scaling_flag']
340
341
342
343
344
    negative_flag = mapping_evaluation_parameters['negative_flag']
    outlier_flag = mapping_evaluation_parameters['outlier_flag']
    shrinkage_flag = mapping_evaluation_parameters['shrinkage_flag']
    hard_shrinkage_flag = mapping_evaluation_parameters['hard_shrinkage_flag']
    crop_flag = mapping_evaluation_parameters['crop_flag']
345

346
    evaluations.evaluate_mapping(trained_model_path,
Andrei Roibu's avatar
Andrei Roibu committed
347
348
349
350
351
352
353
354
                                 data_directory,
                                 mapping_data_file,
                                 data_list,
                                 prediction_output_path,
                                 brain_mask_path,
                                 dmri_mean_mask_path,
                                 rsfmri_mean_mask_path,
                                 regression_factors,
355
356
357
358
359
                                 mean_regression_flag,
                                 mean_regression_all_flag, 
                                 mean_subtraction_flag,
                                 scale_volumes_flag,
                                 normalize_flag,
360
                                 minus_one_scaling_flag,
361
362
363
364
365
366
367
                                 negative_flag, 
                                 outlier_flag,
                                 shrinkage_flag,
                                 hard_shrinkage_flag,
                                 crop_flag,
                                 device, 
                                 exit_on_error)
368
369

def delete_files(folder):
370
    """ Clear Folder Contents
371

372
373
374
375
    Function which clears contents (like experiments or logs)

    Args:
        folder (str): Name of folders whose conents is to be deleted
376

377
    """
378

379
380
381
382
383
384
385
386
387
388
    for object_name in os.listdir(folder):
        file_path = os.path.join(folder, object_name)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as exception:
            print(exception)

389
390

if __name__ == '__main__':
391
    parser = argparse.ArgumentParser()
392
393
    parser.add_argument('--mode', '-m', required=True,
                        help='run mode, valid values are train or evaluate')
394
395
    parser.add_argument('--model_name', '-n', required=True,
                        help='model name, required for identifying the settings file modelName.ini & modelName_eval.ini')
396
    parser.add_argument('--use_last_checkpoint', '-c', required=False,
397
                        help='flag indicating if the last checkpoint should be used if 1; useful when wanting to time-limit jobs.')
398
399
    parser.add_argument('--number_of_epochs', '-e', required=False,
                        help='flag indicating how many epochs the network will train for; should be limited to ~3 hours or 2/3 epochs')
400
401
402

    arguments = parser.parse_args()

403
404
405
406
    settings_file_name = arguments.model_name + '.ini'
    evaluation_settings_file_name = arguments.model_name + '_eval.ini'

    settings = Settings(settings_file_name)
407
408
409
410
411
412
    data_parameters = settings['DATA']
    training_parameters = settings['TRAINING']
    network_parameters = settings['NETWORK']
    misc_parameters = settings['MISC']
    evaluation_parameters = settings['EVALUATION']

413
    if arguments.use_last_checkpoint == '1':
414
        training_parameters['use_last_checkpoint'] = True
415
416
417
418
419
    elif arguments.use_last_checkpoint == '0':
        training_parameters['use_last_checkpoint'] = False

    if arguments.number_of_epochs is not None:
        training_parameters['number_of_epochs'] = int(arguments.number_of_epochs)
420

421
422
    if arguments.mode == 'train':
        train(data_parameters, training_parameters,
423
              network_parameters, misc_parameters)
424
425
426
427
428

    # NOTE: THE EVAL FUNCTIONS HAVE NOT YET BEEN DEBUGGED (16/04/20)

    elif arguments.mode == 'evaluate-mapping':
        logging.basicConfig(filename='evaluate-mapping-error.log')
429
        settings_evaluation = Settings(evaluation_settings_file_name)
430
431
432
433
434
435
436
437
438
439
440
441
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        evaluate_mapping(mapping_evaluation_parameters)
    elif arguments.mode == 'clear-experiments':
        shutil.rmtree(os.path.join(
            misc_parameters['experiments_directory'], training_parameters['experiment_name']))
        shutil.rmtree(os.path.join(
            misc_parameters['logs_directory'], training_parameters['experiment_name']))
        print('Cleared the current experiments and logs directory successfully!')
    elif arguments.mode == 'clear-everything':
        delete_files(misc_parameters['experiments_directory'])
        delete_files(misc_parameters['logs_directory'])
        print('Cleared the current experiments and logs directory successfully!')
442
    elif arguments.mode == 'train-and-evaluate-mapping':
443
        settings_evaluation = Settings(evaluation_settings_file_name)
444
445
446
447
448
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        train(data_parameters, training_parameters,
              network_parameters, misc_parameters)
        logging.basicConfig(filename='evaluate-mapping-error.log')
        evaluate_mapping(mapping_evaluation_parameters)
449
450
    else:
        raise ValueError(
451
            'Invalid mode value! Only supports: train, evaluate-score, evaluate-mapping, train-and-evaluate-mapping, clear-experiments and clear-everything')