BrainMapperUNet.py 10.9 KB
Newer Older
1
2
3
4
"""Brain Mapper U-Net Architecture

Description:

5
6
    This folder contains the Pytorch implementation of the core U-net architecture.
    This arcitecture predicts functional connectivity rsfMRI from structural connectivity information from dMRI.
7

8
9
10
11
12
13
Usage:

    To use this module, import it and instantiate is as you wish:

        from BrainMapperUNet import BrainMapperUNet
        deep_learning_model = BrainMapperUnet(parameters)
14
15
16
17
18
19

"""

import numpy as np
import torch
import torch.nn as nn
20
import utils.modules as modules
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class BrainMapperUNet(nn.Module):
    """Architecture class BrainMapper U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }
43

44
45
    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
46
    """
47

48
    def __init__(self, parameters):
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        super(BrainMapperUNet, self).__init__()

        # TODO: currently, architecture based on QuickNAT - need to adjust parameter values accordingly!

        self.encoderBlock1 = modules.EncoderBlock(parameters)
        parameters['input_channels'] = parameters['output_channels']
        self.encoderBlock2 = modules.EncoderBlock(parameters)
        self.encoderBlock3 = modules.EncoderBlock(parameters)
        self.encoderBlock4 = modules.EncoderBlock(parameters)

        self.bottleneck = modules.ConvolutionalBlock(parameters)

        parameters['input_channels'] = parameters['output_channels'] * 2.0
        self.decoderBlock1 = modules.DecoderBlock(parameters)
        self.decoderBlock2 = modules.DecoderBlock(parameters)
        self.decoderBlock3 = modules.DecoderBlock(parameters)
        self.decoderBlock4 = modules.DecoderBlock(parameters)

        parameters['input_channels'] = parameters['output_channels']
        self.classifier = modules.ClassifierBlock(parameters)
69
70

    def forward(self, X):
71
72
73
74
75
76
77
78
79
80
        """Forward pass for U-net

        Function computing the forward pass through the U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
81
        """
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        Y_encoder_1, Y_np1, pool_indices1 = self.encoderBlock1.forward(X)
        Y_encoder_2, Y_np2, pool_indices2 = self.encoderBlock2.forward(
            Y_encoder_1)
        Y_encoder_3, Y_np3, pool_indices3 = self.encoderBlock3.forward(
            Y_encoder_2)
        Y_encoder_4, Y_np4, pool_indices4 = self.encoderBlock4.forward(
            Y_encoder_3)

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4, pool_indices4)
        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3, pool_indices3)
        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2, pool_indices2)
        Y_decoder_4 = self.decoderBlock4.forwrad(
            Y_decoder_3, Y_np1, pool_indices1)

        probability_map = self.classifier.forward(Y_decoder_4)

        return probability_map

    def save(self, path):
        """Model Saver

        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.

        Args:
            path (str): Path string
        """

        print("Saving Model... {}".format(path))
        torch.save(self, path)

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda

    def predict(self, X, device=0):
        """Post-training Output Prediction

        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
            device (int/str): Device type used for training (int - GPU id, str- CPU)

        Returns:
            prediction (ndarray): predicted output after training

        """
        self.eval()  # PyToch module setting network to evaluation mode

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

        with torch.no_grad():  # Causes operations to have no gradients
            output = self.forward(X)

        _, idx = torch.max(output, 1)

        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

class BrainMapperUNet3D(nn.Module):
    """Architecture class BrainMapper 3D U-net.

    This class contains the pytorch implementation of the U-net architecture underpinning the BrainMapper project.

    Args:
        parameters (dict): Contains information relevant parameters
        parameters = {
            'kernel_heigth': 5
            'kernel_width': 5
            'kernel_depth': 5
            'kernel_classification': 1
            'input_channels': 1
            'output_channels': 64
            'convolution_stride': 1
            'dropout': 0.2
            'pool_kernel_size': 2
            'pool_stride': 2
            'up_mode': 'upconv'
            'number_of_classes': 1
        }

    Returns:
        probability_map (torch.tensor): Output forward passed tensor through the U-net block
    """

    def __init__(self, parameters):
        super(BrainMapperUNet3D, self).__init__()

        # TODO: currently, architecture based on QuickNAT - need to adjust parameter values accordingly!

        self.encoderBlock1 = modules.EncoderBlock3D(parameters)
        parameters['input_channels'] = parameters['output_channels']
        self.encoderBlock2 = modules.EncoderBlock3D(parameters)
        self.encoderBlock3 = modules.EncoderBlock3D(parameters)
        self.encoderBlock4 = modules.EncoderBlock3D(parameters)

        self.bottleneck = modules.ConvolutionalBlock3D(parameters)

207
        parameters['input_channels'] = parameters['output_channels'] * 2
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        self.decoderBlock1 = modules.DecoderBlock3D(parameters)
        self.decoderBlock2 = modules.DecoderBlock3D(parameters)
        self.decoderBlock3 = modules.DecoderBlock3D(parameters)
        self.decoderBlock4 = modules.DecoderBlock3D(parameters)

        parameters['input_channels'] = parameters['output_channels']
        self.classifier = modules.ClassifierBlock3D(parameters)

    def forward(self, X):
        """Forward pass for 3D U-net

        Function computing the forward pass through the 3D U-Net
        The input to the function is the dMRI map

        Args:
            X (torch.tensor): Input dMRI map, shape = (N x C x D x H x W) 

        Returns:
            probability_map (torch.tensor): Output forward passed tensor through the U-net block
        """

229
        Y_encoder_1, Y_np1, pool_indices1 = self.encoderBlock1.forward(X)
230
231
232
233
234
235
        Y_encoder_2, Y_np2, pool_indices2 = self.encoderBlock2.forward(
            Y_encoder_1)
        Y_encoder_3, Y_np3, pool_indices3 = self.encoderBlock3.forward(
            Y_encoder_2)
        Y_encoder_4, Y_np4, pool_indices4 = self.encoderBlock4.forward(
            Y_encoder_3)
236
237
238

        Y_bottleNeck = self.bottleneck.forward(Y_encoder_4)

239
240
241
242
243
244
245
246
        Y_decoder_1 = self.decoderBlock1.forward(
            Y_bottleNeck, Y_np4, pool_indices4)
        Y_decoder_2 = self.decoderBlock2.forward(
            Y_decoder_1, Y_np3, pool_indices3)
        Y_decoder_3 = self.decoderBlock3.forward(
            Y_decoder_2, Y_np2, pool_indices2)
        Y_decoder_4 = self.decoderBlock4.forwrad(
            Y_decoder_3, Y_np1, pool_indices1)
247
248

        probability_map = self.classifier.forward(Y_decoder_4)
249

250
        return probability_map
251

252
    def save(self, path):
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
253
        """Model Saver
254

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
255
256
        Function saving the model with all its parameters to a given path.
        The path must end with a *.model argument.
257

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
258
259
260
        Args:
            path (str): Path string
        """
261

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
262
263
        print("Saving Model... {}".format(path))
        torch.save(self, path)
264
265
266
267
268
269
270
271
272
273
274
275

    @property
    def test_if_cuda(self):
        """Cuda Test

        This function tests if the model parameters are allocated to a CUDA enabled GPU.

        Returns:
            bool: Flag indicating True if the tensor is stored on the GPU and Flase otherwhise
        """

        return next(self.parameters()).is_cuda
276
277

    def predict(self, X, device=0):
278
        """Post-training Output Prediction
279

280
281
282
283
        This function predicts the output of the of the U-net post-training

        Args:
            X (torch.tensor): input dMRI volume
284
            device (int/str): Device type used for training (int - GPU id, str- CPU)
285
286
287
288

        Returns:
            prediction (ndarray): predicted output after training

289
        """
290
        self.eval()  # PyToch module setting network to evaluation mode
291
292
293
294
295
296
297
298
299

        if type(X) is np.ndarray:
            X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor)
        elif type(X) is torch.Tensor and not X.is_cuda:
            X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)

        # .cuda() call transfers the densor from the CPU to the GPU if that is the case.
        # Non-blocking argument lets the caller bypas synchronization when necessary

300
        with torch.no_grad():  # Causes operations to have no gradients
301
302
303
304
            output = self.forward(X)

        _, idx = torch.max(output, 1)

305
306
307
        # We retrieve the tensor held by idx (.data), and map it to a cpu as an ndarray
        idx = idx.data.cpu().numpy()

308
309
310
311
312
313
        prediction = np.squeeze(idx)

        del X, output, idx

        return prediction

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
if __name__ == '__main__':

    # For debugging - To be deleted later! TODO

    parameters = {
        'kernel_heigth': 5,
        'kernel_width': 5,
        'kernel_depth': 5,
        'kernel_classification': 1,
        'input_channels': 1,
        'output_channels': 64,
        'convolution_stride': 1,
        'dropout': 0.2,
        'pool_kernel_size': 2,
        'pool_stride': 2,
        'up_mode': 'upconv',
        'number_of_classes': 1
    }

    network = BrainMapperUNet3D(parameters)