run.py 19 KB
Newer Older
1
2
3
4
"""Brain Mapper Run File

Description:

5
6
7
8
9
    This file contains all the relevant functions for running BrainMapper.
    The network can be ran in one of these modes:
        - train
        - evaluate path
        - evaluate whole
10

11
    TODO: Might be worth adding some information on uncertaintiy estimation, later down the line
12

13
14
15
16
17
18
19
20
21
22
23
24
25
Usage:

    In order to run the network, in the terminal, the user needs to pass it relevant arguments:

        $ ./setup.sh
        $ source env/bin/activate
        $ python run.py --mode ...

    The arguments for mode are the following:

        mode=train # For training the model
        mode=evaluate-score # For evaluating the model score
        mode=evaluate-mapping # For evaluating the model mapping
26
27
        # For clearning the experiments and logs directories of the last experiment
        mode=clear-experiment
28
        mode=clear-all # For clearing all the files from the experiments and logs directories/
29
30
31

"""

32
import os
33
import shutil
34
35
import argparse
import logging
36
37
38
39
40
41
from settings import Settings

import torch
import torch.utils.data as data

from solver import Solver
42
from BrainMapperUNet import BrainMapperUNet3D
43
from utils.data_utils import get_datasets, data_test_train_validation_split, update_shuffling_flag, create_folder
44
45
import utils.data_evaluation_utils as evaluations
from utils.data_logging_utils import LogWriter
46
47
48
49
50

# Set the default floating point tensor type to FloatTensor

torch.set_default_tensor_type(torch.FloatTensor)

51

52
53
54
def load_data(data_parameters):
    """Dataset Loader

55
    This function loads the training and validation datasets.
56
57
58
59
60
61

    Args:
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

    Returns:
        train_data (dataset object): Pytorch map-style dataset object, mapping indices to training data samples.
62
        validation_data (dataset object): Pytorch map-style dataset object, mapping indices to testing data samples.
63
64
65

    """
    print("Data is loading...")
66
    train_data, validation_data = get_datasets(data_parameters)
67
68
    print("Data has loaded!")
    print("Training dataset size is {}".format(len(train_data)))
69
    print("Validation dataset size is {}".format(len(validation_data)))
70

71
    return train_data, validation_data
72

73

74
75
def train(data_parameters, training_parameters, network_parameters, misc_parameters):
    """Training Function
76

77
    This function trains a given model using the provided training data.
78
    Currently, the data loaded is set to have multiple sub-processes.
79
80
    A high enough number of workers assures that CPU computations are efficiently managed, i.e. that the bottleneck is indeed the neural network's forward and backward operations on the GPU (and not data generation)
    Loader memory is also pinned, to speed up data transfer from CPU to GPU  by using the page-locked memory.
81
    Train data is also re-shuffled at each training epoch.
82
83

    Args:
84
85
86
87
88
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'training_batch_size': 5
89
            'validation_batch_size: 5
90
91
92
93
94
95
96
97
98
99
100
101
102
            'use_pre_trained': False
            'pre_trained_path': 'pre_trained/path'
            'experiment_name': 'experiment_name'
            'learning_rate': 1e-4
            'optimizer_beta': (0.9, 0.999)
            'optimizer_epsilon': 1e-8
            'optimizer_weigth_decay': 1e-5
            'number_of_epochs': 10
            'loss_log_period': 50
            'learning_rate_scheduler_step_size': 3
            'learning_rate_scheduler_gamma': 1e-1
            'use_last_checkpoint': True
            'final_model_output_file': 'path/to/model'
103
        }
104

105
        network_parameters (dict): Contains information relevant parameters
106

107
108
109
110
111
112
113
114
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'save_model_directory': 'directory_name'
            'model_name': 'BrainMapper'
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }
115
116
    """

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters):
        """Wrapper for the training operation

        This function wraps the training operation for the network

        Args:
            data_parameters (dict): Dictionary containing relevant information for the datafiles.
            training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
            network_parameters (dict): Contains information relevant parameters
            misc_parameters (dict): Dictionary of aditional hyperparameters

        """
        train_data, validation_data = load_data(data_parameters)

        train_loader = data.DataLoader(
            dataset=train_data,
            batch_size=training_parameters['training_batch_size'],
            shuffle=True,
            num_workers=4,
            pin_memory=True
        )

        validation_loader = data.DataLoader(
            dataset=validation_data,
            batch_size=training_parameters['validation_batch_size'],
            shuffle=False,
            num_workers=4,
            pin_memory=True
        )

        if training_parameters['use_pre_trained']:
            BrainMapperModel = torch.load(
                training_parameters['pre_trained_path'])
        else:
            BrainMapperModel = BrainMapperUNet3D(network_parameters)

        solver = Solver(model=BrainMapperModel,
                        device=misc_parameters['device'],
                        number_of_classes=network_parameters['number_of_classes'],
                        experiment_name=training_parameters['experiment_name'],
                        optimizer_arguments={'lr': training_parameters['learning_rate'],
158
159
160
161
                                             'betas': training_parameters['optimizer_beta'],
                                             'eps': training_parameters['optimizer_epsilon'],
                                             'weight_decay': training_parameters['optimizer_weigth_decay']
                                             },
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
                        model_name=misc_parameters['model_name'],
                        number_epochs=training_parameters['number_of_epochs'],
                        loss_log_period=training_parameters['loss_log_period'],
                        learning_rate_scheduler_step_size=training_parameters[
                            'learning_rate_scheduler_step_size'],
                        learning_rate_scheduler_gamma=training_parameters['learning_rate_scheduler_gamma'],
                        use_last_checkpoint=training_parameters['use_last_checkpoint'],
                        experiment_directory=misc_parameters['experiments_directory'],
                        logs_directory=misc_parameters['logs_directory'],
                        checkpoint_directory=misc_parameters['checkpoint_directory']
                        )

        validation_loss = solver.train(train_loader, validation_loader)

        model_output_path = os.path.join(
            misc_parameters['save_model_directory'], training_parameters['final_model_output_file'])

        create_folder(misc_parameters['save_model_directory'])

        BrainMapperModel.save(model_output_path)

        print("Final Model Saved in: {}".format(model_output_path))

        del train_data, validation_data, train_loader, validation_loader, BrainMapperModel, solver
        torch.cuda.empty_cache()

        return validation_loss

    if data_parameters['k_fold'] is None:

        _ = _train_runner(data_parameters, training_parameters,
                          network_parameters, misc_parameters)
194

195
    else:
196
197
198
199
        print("Training initiated using K-fold Cross Validation!")
        for k in range(data_parameters['k_fold']):

            print("K-fold Number: {}".format(k+1))
200

201
            k_fold_losses = []
202

203
            data_parameters['train_list'] = os.path.join(
204
                data_parameters['data_folder_name'], 'train' + str(k+1)+'.txt')
205
            data_parameters['validation_list'] = os.path.join(
206
207
208
                data_parameters['data_folder_name'], 'validation' + str(k+1)+'.txt')
            training_parameters['final_model_output_file'] = training_parameters['final_model_output_file'].replace(
                ".pth.tar", str(k+1)+".pth.tar")
209

210
            validation_loss = _train_runner(
211
                data_parameters, training_parameters, network_parameters, misc_parameters)
212

213
            k_fold_losses.append(validation_loss)
214

215
216
217
        for k in range(data_parameters['k_fold']):
            print("K-fold Number: {} Loss: {}".format(k+1, k_fold_losses[k]))
        print("K-fold Cross Validation Avearge Loss: {}".format(np.mean(k_fold_losses)))
218
219

def evaluate_score(training_parameters, network_parameters, misc_parameters, evaluation_parameters):
220
221
222
223
224
225
226
227
228
229
230
    """Mapping Score Evaluator

    This function evaluates a given trained model by calculating the it's dice score prediction.

    Args:

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'experiment_name': 'experiment_name'
        }

231
        network_parameters (dict): Contains information relevant parameters
232
233
234
        network_parameters= {
            'number_of_classes': 1
        }
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }

        evaluation_parameters (dict): Dictionary of parameters useful during evaluation.
        evaluation_parameters = {
            'trained_model_path': 'path/to/model'
            'data_directory': 'path/to/data'
            'targets_directory': 'path/to/targets'
            'data_list': 'path/to/datalist.txt/
            'orientation': 'coronal'
            'saved_predictions_directory': 'directory-of-saved-predictions'
        }
    """

254
    # TODO - NEED TO UPDATE THE DATA FUNCTIONS!
255

256
257
258
    logWriter = LogWriter(number_of_classes=network_parameters['number_of_classes'],
                          logs_directory=misc_parameters['logs_directory'],
                          experiment_name=training_parameters['experiment_name']
259
                          )
260

261
    prediction_output_path = os.path.join(misc_parameters['experiments_directory'],
262
263
264
265
                                          training_parameters['experiment_name'],
                                          evaluation_parameters['saved_predictions_directory']
                                          )

266
    _ = evaluations.evaluate_dice_score(trained_model_path=evaluation_parameters['trained_model_path'],
267
268
269
270
271
272
273
274
275
276
                                        number_of_classes=network_parameters['number_of_classes'],
                                        data_directory=evaluation_parameters['data_directory'],
                                        targets_directory=evaluation_parameters[
        'targets_directory'],
        data_list=evaluation_parameters['data_list'],
        orientation=evaluation_parameters['orientation'],
        prediction_output_path=prediction_output_path,
        device=misc_parameters['device'],
        LogWriter=logWriter
    )
277
278
279

    logWriter.close()

280

281
282
def evaluate_mapping(mapping_evaluation_parameters):
    """Mapping Evaluator
283

284
285
    This function passes through the network an input and generates the rsfMRI outputs.
    This function allows the user to either use one or two or three paths.
286

287
288
289
290
    The convention for the different model paths is as follows:
    - model1: coronal
    - model2: axial
    - model3: saggital
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    However, this convention can be changed either bellow or the settings file.

    Args:
        mapping_evaluation_parameters (dict): Dictionary of parameters useful during mapping evaluation.
        mapping_evaluation_parameters = {
            'trained_model1_path': 'path/to/model1'
            'trained_model2_path': 'path/to/model2'
            'trained_model3_path': 'path/to/model3'
            'data_directory': 'path/to/data'
            'data_list': 'path/to/datalist.txt/
            'orientation1': 'coronal'
            'orientation2': 'axial'
            'orientation3': 'sagittal'
            'prediction_output_path': 'directory-of-saved-predictions'
            'batch_size': 2
            'device': 0
            'exit_on_error': True
            'number_of_paths': 3
        }

    """
    trained_model1_path = mapping_evaluation_parameters['trained_model1_path']
    trained_model2_path = mapping_evaluation_parameters['trained_model2_path']
    trained_model3_path = mapping_evaluation_parameters['trained_model3_path']
    data_directory = mapping_evaluation_parameters['data_directory']
    data_list = mapping_evaluation_parameters['data_list']
    orientation1 = mapping_evaluation_parameters['orientation1']
    orientation2 = mapping_evaluation_parameters['orientation2']
320
    orientation3 = mapping_evaluation_parameters['orientation3']
321
322
    prediction_output_path = mapping_evaluation_parameters['prediction_output_path']
    batch_size = mapping_evaluation_parameters['batch_size']
323
    device = mapping_evaluation_parameters['device']
324
325
326
    exit_on_error = mapping_evaluation_parameters['exit_on_error']

    if mapping_evaluation_parameters['number_of_paths'] == 1:
327
328
329
330
331
332
333
334
        evaluations.evaluate_single_path(trained_model1_path,
                                         data_directory,
                                         data_list,
                                         orientation1,
                                         prediction_output_path,
                                         batch_size,
                                         device=device,
                                         exit_on_error=exit_on_error)
335
336
    elif mapping_evaluation_parameters['number_of_paths'] == 2:
        evaluations.evaluate_two_paths(trained_model1_path,
337
338
339
340
341
342
343
344
345
                                       trained_model2_path,
                                       data_directory,
                                       data_list,
                                       orientation1,
                                       orientation2,
                                       prediction_output_path,
                                       batch_size,
                                       device=device,
                                       exit_on_error=exit_on_error)
346
347
    elif mapping_evaluation_parameters['number_of_paths'] == 3:
        evaluations.evaluate_all_paths(trained_model1_path,
348
349
350
351
352
353
354
355
356
357
358
359
360
361
                                       trained_model2_path,
                                       trained_model3_path,
                                       data_directory,
                                       data_list,
                                       orientation1,
                                       orientation2,
                                       orientation3,
                                       prediction_output_path,
                                       batch_size,
                                       device=device,
                                       exit_on_error=exit_on_error)


def delete_files(folder):
362
    """ Clear Folder Contents
363

364
365
366
367
    Function which clears contents (like experiments or logs)

    Args:
        folder (str): Name of folders whose conents is to be deleted
368

369
370
    Returns:
        None
371

372
373
    Raises:
        Exception: Any error
374
    """
375

376
377
378
379
380
381
382
383
384
385
    for object_name in os.listdir(folder):
        file_path = os.path.join(folder, object_name)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as exception:
            print(exception)

386
387

if __name__ == '__main__':
388
    parser = argparse.ArgumentParser()
389
390
391
392
    parser.add_argument('--mode', '-m', required=True,
                        help='run mode, valid values are train or evaluate')
    parser.add_argument('--settings_path', '-sp', required=False,
                        help='optional argument, set path to settings_evaluation.ini')
393
394
395
396
397
398
399
400
401
402

    arguments = parser.parse_args()

    settings = Settings('settings.ini')
    data_parameters = settings['DATA']
    training_parameters = settings['TRAINING']
    network_parameters = settings['NETWORK']
    misc_parameters = settings['MISC']
    evaluation_parameters = settings['EVALUATION']

403
404
405
406
    # Here we shuffle the data!

    if data_parameters['data_split_flag'] == True:
        if data_parameters['use_data_file'] == True:
407
408
409
410
411
412
            data_test_train_validation_split(data_parameters['data_folder_name'],
                                             data_parameters['test_percentage'],
                                             data_parameters['subject_number'],
                                             data_file=data_parameters['data_file'],
                                             K_fold=data_parameters['k_fold']
                                             )
413
        else:
414
415
416
417
418
419
            data_test_train_validation_split(data_parameters['data_folder_name'],
                                             data_parameters['test_percentage'],
                                             data_parameters['subject_number'],
                                             data_directory=data_parameters['data_directory'],
                                             K_fold=data_parameters['k_fold']
                                             )
420
        update_shuffling_flag('settings.ini')
421

422
423
    if arguments.mode == 'train':
        train(data_parameters, training_parameters,
424
              network_parameters, misc_parameters)
425
426
427
428
429

    # NOTE: THE EVAL FUNCTIONS HAVE NOT YET BEEN DEBUGGED (16/04/20)

    elif arguments.mode == 'evaluate-score':
        evaluate_score(training_parameters,
430
                       network_parameters, misc_parameters, evaluation_parameters)
431
432
433
434
    elif arguments.mode == 'evaluate-mapping':
        logging.basicConfig(filename='evaluate-mapping-error.log')
        if arguments.settings_path is not None:
            settings_evaluation = Settings(arguments.settings_path)
435
        else:
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
            settings_evaluation = Settings('settings_evaluation.ini')
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        evaluate_mapping(mapping_evaluation_parameters)
    elif arguments.mode == 'clear-experiments':
        shutil.rmtree(os.path.join(
            misc_parameters['experiments_directory'], training_parameters['experiment_name']))
        shutil.rmtree(os.path.join(
            misc_parameters['logs_directory'], training_parameters['experiment_name']))
        print('Cleared the current experiments and logs directory successfully!')
    elif arguments.mode == 'clear-everything':
        delete_files(misc_parameters['experiments_directory'])
        delete_files(misc_parameters['logs_directory'])
        print('Cleared the current experiments and logs directory successfully!')
    else:
        raise ValueError(
            'Invalid mode value! Only supports: train, evaluate-score, evaluate-mapping, clear-experiments and clear-everything')