solver.py 13.9 KB
Newer Older
1
2
3
4
"""Brain Mapper U-Net Solver

Description:

5
    This folder contains the Pytorch implementation of the core U-net solver, used for training the network.
6

7
Usage:
8

9
10
11
    To use this module, import it and instantiate is as you wish:

        from solver import Solver
12
13
14
15
16
"""

import os
import numpy as np
import torch
17
18
import glob

19
from fsl.data.image import Image
20
from datetime import datetime
21
22
from utils.losses import MSELoss
from utils.data_utils import create_folder
23
from utils.data_logging_utils import LogWriter
24
from utils.early_stopping import EarlyStopping
25
from torch.optim import lr_scheduler
26
27
28

checkpoint_extension = 'path.tar'

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solver():
    """Solver class for the BrainMapper U-net.

    This class contains the pytorch implementation of the U-net solver required for the BrainMapper project.

    Args:
        model (class): BrainMapper model class
        experiment_name (str): Name of the experiment
        device (int/str): Device type used for training (int - GPU id, str- CPU)
        number_of_classes (int): Number of classes
        optimizer (class): Pytorch class of desired optimizer
        optimizer_arguments (dict): Dictionary of arguments to be optimized
        loss_function (func): Function describing the desired loss function
        model_name (str): Name of the model
        labels (arr): Vector/Array of labels (if applicable)
        number_epochs (int): Number of training epochs
        loss_log_period (int): Period for writing loss value
        learning_rate_scheduler_step_size (int): Period of learning rate decay
        learning_rate_scheduler_gamma (int): Multiplicative factor of learning rate decay
        use_last_checkpoint (bool): Flag for loading the previous checkpoint
        experiment_directory (str): Experiment output directory name
        logs_directory (str): Directory for outputing training logs

    Returns:
54
        trained model - working on this!
55
56

    """
57

58
    def __init__(self,
59
60
61
62
                 model,
                 device,
                 number_of_classes,
                 experiment_name,
63
                 optimizer,
64
65
66
67
68
69
70
71
72
73
                 optimizer_arguments={},
                 loss_function=MSELoss(),
                 model_name='BrainMapper',
                 labels=None,
                 number_epochs=10,
                 loss_log_period=5,
                 learning_rate_scheduler_step_size=5,
                 learning_rate_scheduler_gamma=0.5,
                 use_last_checkpoint=True,
                 experiment_directory='experiments',
74
                 logs_directory='logs',
75
76
77
                 checkpoint_directory='checkpoints',
                 save_model_directory='saved_models',
                 final_model_output_file='finetuned_alldata.pth.tar'
78
                 ):
79
80
81

        self.model = model
        self.device = device
82
83
84
85
86
87
88
89
90
91
92
        self.optimizer = optimizer(model.parameters(), **optimizer_arguments)

        if torch.cuda.is_available():
            self.loss_function = loss_function.cuda(device)
        else:
            self.loss_function = loss_function

        self.model_name = model_name
        self.labels = labels
        self.number_epochs = number_epochs
        self.loss_log_period = loss_log_period
93

94
95
        # We use a learning rate scheduler, that decays the LR of each paramter group by gamma every step_size epoch.
        self.learning_rate_scheduler = lr_scheduler.StepLR(self.optimizer,
96
97
98
                                                           step_size=learning_rate_scheduler_step_size,
                                                           gamma=learning_rate_scheduler_gamma)

99
100
        self.use_last_checkpoint = use_last_checkpoint

101
        experiment_directory_path = os.path.join(
102
            experiment_directory, experiment_name)
103
        self.experiment_directory_path = experiment_directory_path
104

105
106
        self.checkpoint_directory = checkpoint_directory

107
        create_folder(experiment_directory)
108
        create_folder(experiment_directory_path)
109
        create_folder(os.path.join(
110
            experiment_directory_path, self.checkpoint_directory))
111
112
113
114

        self.start_epoch = 1
        self.start_iteration = 1

115
116
117
118
119
        self.LogWriter = LogWriter(number_of_classes=number_of_classes,
                                   logs_directory=logs_directory,
                                   experiment_name=experiment_name,
                                   use_last_checkpoint=use_last_checkpoint,
                                   labels=labels)
120

121
122
123
        self.EarlyStopping = EarlyStopping()
        self.early_stop = False

124
125
126
        if use_last_checkpoint:
            self.load_checkpoint()

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
127
128
        self.MNI152_T1_2mm_brain_mask = torch.from_numpy(
            Image('utils/MNI152_T1_2mm_brain_mask.nii.gz').data)
129

130
131
132
        self.save_model_directory = save_model_directory
        self.final_model_output_file = final_model_output_file

133
    def train(self, train_loader, validation_loader):
134
135
136
137
138
139
        """Training Function

        This function trains a given model using the provided training data.

        Args:
            train_loader (class): Combined dataset and sampler, providing an iterable over the training dataset (torch.utils.data.DataLoader)
140
            validation_loader (class):  Combined dataset and sampler, providing an iterable over the validationing dataset (torch.utils.data.DataLoader)
141
142

        Returns:
143
            trained model
144
145
146
        """

        model, optimizer, learning_rate_scheduler = self.model, self.optimizer, self.learning_rate_scheduler
147
        dataloaders = {'train': train_loader, 'validation': validation_loader}
148
149

        if torch.cuda.is_available():
150
151
            torch.cuda.empty_cache()  # clear memory
            model.cuda(self.device)  # Moving the model to GPU
152

153
154
        previous_checkpoint = None

155
156
157
158
        print('****************************************************************')
        print('TRAINING IS STARTING!')
        print('=====================')
        print('Model Name: {}'.format(self.model_name))
159
        if torch.cuda.is_available():
160
161
            print('Device Type: {}'.format(
                torch.cuda.get_device_name(self.device)))
162
163
        else:
            print('Device Type: {}'.format(self.device))
164
165
166
167
168
169
170
171
172
        start_time = datetime.now()
        print('Started At: {}'.format(start_time))
        print('----------------------------------------')

        iteration = self.start_iteration

        for epoch in range(self.start_epoch, self.number_epochs+1):
            print("Epoch {}/{}".format(epoch, self.number_epochs))

173
            for phase in ['train', 'validation']:
174
175
176
177
178
179
180
181
182
183
184
                print('-> Phase: {}'.format(phase))

                losses = []

                if phase == 'train':
                    model.train()
                else:
                    model.eval()

                for batch_index, sampled_batch in enumerate(dataloaders[phase]):
                    X = sampled_batch[0].type(torch.FloatTensor)
185
                    y = sampled_batch[1].type(torch.FloatTensor)
186

187
                    # We add an extra dimension (~ number of channels) for the 3D convolutions.
188
189
                    X = torch.unsqueeze(X, dim=1)
                    y = torch.unsqueeze(y, dim=1)
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
190

191
                    MNI152_T1_2mm_brain_mask = self.MNI152_T1_2mm_brain_mask
192

193
                    if model.test_if_cuda:
194
195
                        X = X.cuda(self.device, non_blocking=True)
                        y = y.cuda(self.device, non_blocking=True)
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
196
197
                        MNI152_T1_2mm_brain_mask = MNI152_T1_2mm_brain_mask.cuda(
                            self.device, non_blocking=True)
198

199
                    y_hat = model(X)   # Forward pass & Masking
200

201
                    y_hat = torch.mul(y_hat, MNI152_T1_2mm_brain_mask)
202

203
                    loss = self.loss_function(y_hat, y)  # Loss computation
204
205

                    if phase == 'train':
206
207
                        optimizer.zero_grad()  # Zero the parameter gradients
                        loss.backward()  # Backward propagation
208
209
210
211
                        optimizer.step()

                        if batch_index % self.loss_log_period == 0:

212
213
                            self.LogWriter.loss_per_iteration(
                                loss.item(), batch_index, iteration)
214

215
216
                        iteration += 1

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
217
                    losses.append(loss.item())
218
219
220

                    # Clear the memory

221
                    del X, y, y_hat, loss, MNI152_T1_2mm_brain_mask
222
223
                    torch.cuda.empty_cache()

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
224
                    if phase == 'validation':
225

226
227
228
229
230
231
232
                        if batch_index != len(dataloaders[phase]) - 1:
                            print("#", end='', flush=True)
                        else:
                            print("100%", flush=True)

                with torch.no_grad():

233
234
                    self.LogWriter.loss_per_epoch(losses, phase, epoch)

235
                    if phase == 'validation':
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
236
237
                        early_stop, save_checkpoint = self.EarlyStopping(
                            np.mean(losses))
238
239
                        self.early_stop = early_stop
                        if save_checkpoint == True:
240
                            validation_loss = np.mean(losses)
241
242
                            checkpoint_name = os.path.join(
                                self.experiment_directory_path, self.checkpoint_directory, 'checkpoint_epoch_' + str(epoch) + '.' + checkpoint_extension)
243
244
245
246
247
248
249
                            self.save_checkpoint(state={'epoch': epoch + 1,
                                                        'start_iteration': iteration + 1,
                                                        'arch': self.model_name,
                                                        'state_dict': model.state_dict(),
                                                        'optimizer': optimizer.state_dict(),
                                                        'scheduler': learning_rate_scheduler.state_dict()
                                                        },
250
                                                 filename=checkpoint_name
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
251
                                                 )
252
253
254
255
256
257

                            if previous_checkpoint != None:
                                os.remove(previous_checkpoint)
                                previous_checkpoint = checkpoint_name
                            else:
                                previous_checkpoint = checkpoint_name
258

259
260
261
                if phase == 'train':
                    learning_rate_scheduler.step()

262
            print("Epoch {}/{} DONE!".format(epoch, self.number_epochs))
263

264
265
266
267
            # Early Stop Condition

            if self.early_stop == True:
                print("ATTENTION!: Training stopped early to prevent overfitting!")
268
                self.load_checkpoint()
269
270
271
                break
            else:
                continue
272

273
274
275
276
277
278
279
        model_output_path = os.path.join(
            self.save_model_directory, self.final_model_output_file)

        create_folder(self.save_model_directory)

        model.save(model_output_path)

280
        self.LogWriter.close()
281
282
283
284
285
286
287

        print('----------------------------------------')
        print('TRAINING IS COMPLETE!')
        print('=====================')
        end_time = datetime.now()
        print('Completed At: {}'.format(end_time))
        print('Training Duration: {}'.format(end_time - start_time))
288
        print('Final Model Saved in: {}'.format(model_output_path))
289
290
        print('****************************************************************')

291
292
        return validation_loss

293
294
295
296
297
298
299
300
301
302
    def save_checkpoint(self, state, filename):
        """General Checkpoint Save

        This function saves a general checkpoint for inference and/or resuming training

        Args:
            state (dict): Dictionary of all the relevant model components
        """

        torch.save(state, filename)
303

304
    def load_checkpoint(self, epoch=None):
305
306
307
308
309
310
311
        """General Checkpoint Loader

        This function loads a previous checkpoint for inference and/or resuming training

        Args:
            epoch (int): Current epoch value
        """
312

313
        if epoch is not None:
314
            checkpoint_file_path = os.path.join(
315
                self.experiment_directory_path, self.checkpoint_directory, 'checkpoint_epoch_' + str(epoch) + '.' + checkpoint_extension)
316
317
            self._checkpoint_reader(checkpoint_file_path)
        else:
318
            universal_path = os.path.join(
319
                self.experiment_directory_path, self.checkpoint_directory, '*.' + checkpoint_extension)
320
321
322
323
324
            files_in_universal_path = glob.glob(universal_path)

            # We will sort through all the files in path to see which one is most recent

            if len(files_in_universal_path) > 0:
325
326
                checkpoint_file_path = max(
                    files_in_universal_path, key=os.path.getatime)
327
328
329
                self._checkpoint_reader(checkpoint_file_path)

            else:
330
                self.LogWriter.log("No Checkpoint found at {}".format(
331
                    os.path.join(self.experiment_directory_path, self.checkpoint_directory)))
332

333
334
335
336
337
338
339
340
341
    def _checkpoint_reader(self, checkpoint_file_path):
        """Checkpoint Reader

        This private function reads a checkpoint file and then loads the relevant variables

        Args:
            checkpoint_file_path (str): path to checkpoint file
        """

342
343
        self.LogWriter.log(
            "Loading Checkpoint {}".format(checkpoint_file_path))
344
345
346
347

        checkpoint = torch.load(checkpoint_file_path)
        self.start_epoch = checkpoint['epoch']
        self.start_iteration = checkpoint['start_iteration']
348
        # We are not loading the model_name as we might want to pre-train a model and then use it.
349
350
        self.model.load_state_dict = checkpoint['state_dict']
        self.optimizer.load_state_dict = checkpoint['optimizer']
351
        self.learning_rate_scheduler.load_state_dict = checkpoint['scheduler']
352
353

        for state in self.optimizer.state.values():
354
            for key, value in state.items():
355
356
357
                if torch.is_tensor(value):
                    state[key] = value.to(self.device)

358
359
        self.LogWriter.log(
            "Checkpoint Loaded {} - epoch {}".format(checkpoint_file_path, checkpoint['epoch']))