run.py 14.1 KB
Newer Older
1
2
3
4
"""Brain Mapper Run File

Description:

5
6
7
8
9
    This file contains all the relevant functions for running BrainMapper.
    The network can be ran in one of these modes:
        - train
        - evaluate path
        - evaluate whole
10

11
    TODO: Might be worth adding some information on uncertaintiy estimation, later down the line
12

13
14
15
16
17
18
19
20
21
22
23
24
25
Usage:

    In order to run the network, in the terminal, the user needs to pass it relevant arguments:

        $ ./setup.sh
        $ source env/bin/activate
        $ python run.py --mode ...

    The arguments for mode are the following:

        mode=train # For training the model
        mode=evaluate-score # For evaluating the model score
        mode=evaluate-mapping # For evaluating the model mapping
26
27
        # For clearning the experiments and logs directories of the last experiment
        mode=clear-experiment
28
        mode=clear-all # For clearing all the files from the experiments and logs directories/
29
30
31

"""

32
import os
33
import shutil
34
35
import argparse
import logging
36
37
38

import torch
import torch.utils.data as data
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
39
import numpy as np
40
41

from solver import Solver
42
from BrainMapperAE import BrainMapperAE3D
43
44
from utils.data_utils import get_datasets
from utils.settings import Settings
45
46
import utils.data_evaluation_utils as evaluations
from utils.data_logging_utils import LogWriter
47
from utils.common_utils import create_folder
48
49
50
51
52

# Set the default floating point tensor type to FloatTensor

torch.set_default_tensor_type(torch.FloatTensor)

53

54
55
56
def load_data(data_parameters):
    """Dataset Loader

57
    This function loads the training and validation datasets.
58
59
60
61
62
63

    Args:
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

    Returns:
        train_data (dataset object): Pytorch map-style dataset object, mapping indices to training data samples.
64
        validation_data (dataset object): Pytorch map-style dataset object, mapping indices to testing data samples.
65
66
67

    """
    print("Data is loading...")
68
    train_data, validation_data = get_datasets(data_parameters)
69
70
    print("Data has loaded!")
    print("Training dataset size is {}".format(len(train_data)))
71
    print("Validation dataset size is {}".format(len(validation_data)))
72

73
    return train_data, validation_data
74

75

76
77
def train(data_parameters, training_parameters, network_parameters, misc_parameters):
    """Training Function
78

79
    This function trains a given model using the provided training data.
80
    Currently, the data loaded is set to have multiple sub-processes.
81
82
    A high enough number of workers assures that CPU computations are efficiently managed, i.e. that the bottleneck is indeed the neural network's forward and backward operations on the GPU (and not data generation)
    Loader memory is also pinned, to speed up data transfer from CPU to GPU  by using the page-locked memory.
83
    Train data is also re-shuffled at each training epoch.
84
85

    Args:
86
87
88
89
90
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'training_batch_size': 5
91
            'validation_batch_size: 5
92
93
94
95
96
97
98
99
100
101
102
103
104
            'use_pre_trained': False
            'pre_trained_path': 'pre_trained/path'
            'experiment_name': 'experiment_name'
            'learning_rate': 1e-4
            'optimizer_beta': (0.9, 0.999)
            'optimizer_epsilon': 1e-8
            'optimizer_weigth_decay': 1e-5
            'number_of_epochs': 10
            'loss_log_period': 50
            'learning_rate_scheduler_step_size': 3
            'learning_rate_scheduler_gamma': 1e-1
            'use_last_checkpoint': True
            'final_model_output_file': 'path/to/model'
105
        }
106

107
        network_parameters (dict): Contains information relevant parameters
108

109
110
111
112
113
114
115
116
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'save_model_directory': 'directory_name'
            'model_name': 'BrainMapper'
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }
117
118
    """

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters):
        """Wrapper for the training operation

        This function wraps the training operation for the network

        Args:
            data_parameters (dict): Dictionary containing relevant information for the datafiles.
            training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
            network_parameters (dict): Contains information relevant parameters
            misc_parameters (dict): Dictionary of aditional hyperparameters

        """
        train_data, validation_data = load_data(data_parameters)

        train_loader = data.DataLoader(
            dataset=train_data,
            batch_size=training_parameters['training_batch_size'],
            shuffle=True,
            num_workers=4,
            pin_memory=True
        )

        validation_loader = data.DataLoader(
            dataset=validation_data,
            batch_size=training_parameters['validation_batch_size'],
            shuffle=False,
            num_workers=4,
            pin_memory=True
        )

        if training_parameters['use_pre_trained']:
            BrainMapperModel = torch.load(
                training_parameters['pre_trained_path'])
Andrei Roibu's avatar
Andrei Roibu committed
152
        else:
153
            BrainMapperModel = BrainMapperAE3D(network_parameters)
154

155
156
        BrainMapperModel.reset_parameters()

157
        optimizer = torch.optim.Adam
Andrei Roibu's avatar
Andrei Roibu committed
158
        # optimizer = torch.optim.AdamW
159

160
161
162
163
        solver = Solver(model=BrainMapperModel,
                        device=misc_parameters['device'],
                        number_of_classes=network_parameters['number_of_classes'],
                        experiment_name=training_parameters['experiment_name'],
Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
164
                        optimizer=optimizer,
165
                        optimizer_arguments={'lr': training_parameters['learning_rate'],
166
167
168
169
                                             'betas': training_parameters['optimizer_beta'],
                                             'eps': training_parameters['optimizer_epsilon'],
                                             'weight_decay': training_parameters['optimizer_weigth_decay']
                                             },
170
                        model_name=training_parameters['experiment_name'],
171
172
173
174
175
176
177
178
                        number_epochs=training_parameters['number_of_epochs'],
                        loss_log_period=training_parameters['loss_log_period'],
                        learning_rate_scheduler_step_size=training_parameters[
                            'learning_rate_scheduler_step_size'],
                        learning_rate_scheduler_gamma=training_parameters['learning_rate_scheduler_gamma'],
                        use_last_checkpoint=training_parameters['use_last_checkpoint'],
                        experiment_directory=misc_parameters['experiments_directory'],
                        logs_directory=misc_parameters['logs_directory'],
179
180
                        checkpoint_directory=misc_parameters['checkpoint_directory'],
                        save_model_directory=misc_parameters['save_model_directory'],
181
182
                        final_model_output_file=training_parameters['final_model_output_file'],
                        crop_flag = data_parameters['crop_flag']
183
184
185
186
                        )

        validation_loss = solver.train(train_loader, validation_loader)

187
        del train_data, validation_data, train_loader, validation_loader, BrainMapperModel, solver, optimizer
188
189
190
191
192
        torch.cuda.empty_cache()

        return validation_loss


193
    _ = _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters)
194

Andrei-Claudiu Roibu's avatar
Andrei-Claudiu Roibu committed
195

196
197
def evaluate_mapping(mapping_evaluation_parameters):
    """Mapping Evaluator
198

199
200
201
202
203
    This function passes through the network an input and generates the rsfMRI outputs.

    Args:
        mapping_evaluation_parameters (dict): Dictionary of parameters useful during mapping evaluation.
        mapping_evaluation_parameters = {
204
            'trained_model_path': 'path/to/model'
205
206
207
208
209
210
211
212
213
            'data_directory': 'path/to/data'
            'data_list': 'path/to/datalist.txt/
            'prediction_output_path': 'directory-of-saved-predictions'
            'batch_size': 2
            'device': 0
            'exit_on_error': True
        }

    """
214
    trained_model_path = mapping_evaluation_parameters['trained_model_path']
215
    data_directory = mapping_evaluation_parameters['data_directory']
216
    mapping_data_file = mapping_evaluation_parameters['mapping_data_file']
217
218
    data_list = mapping_evaluation_parameters['data_list']
    prediction_output_path = mapping_evaluation_parameters['prediction_output_path']
Andrei Roibu's avatar
Andrei Roibu committed
219
220
    dmri_mean_mask_path = mapping_evaluation_parameters['dmri_mean_mask_path']
    rsfmri_mean_mask_path = mapping_evaluation_parameters['rsfmri_mean_mask_path']
221
    device = mapping_evaluation_parameters['device']
222
    exit_on_error = mapping_evaluation_parameters['exit_on_error']
223
    brain_mask_path = mapping_evaluation_parameters['brain_mask_path']
Andrei Roibu's avatar
Andrei Roibu committed
224
    regression_factors = mapping_evaluation_parameters['regression_factors']
225
226
227
228
229
230
231
232
233
234
    mean_regression_flag = mapping_evaluation_parameters['mean_regression_flag']
    mean_regression_all_flag = mapping_evaluation_parameters['mean_regression_all_flag']
    mean_subtraction_flag = mapping_evaluation_parameters['mean_subtraction_flag']
    scale_volumes_flag = mapping_evaluation_parameters['scale_volumes_flag']
    normalize_flag = mapping_evaluation_parameters['normalize_flag']
    negative_flag = mapping_evaluation_parameters['negative_flag']
    outlier_flag = mapping_evaluation_parameters['outlier_flag']
    shrinkage_flag = mapping_evaluation_parameters['shrinkage_flag']
    hard_shrinkage_flag = mapping_evaluation_parameters['hard_shrinkage_flag']
    crop_flag = mapping_evaluation_parameters['crop_flag']
235

236
    evaluations.evaluate_mapping(trained_model_path,
Andrei Roibu's avatar
Andrei Roibu committed
237
238
239
240
241
242
243
244
                                 data_directory,
                                 mapping_data_file,
                                 data_list,
                                 prediction_output_path,
                                 brain_mask_path,
                                 dmri_mean_mask_path,
                                 rsfmri_mean_mask_path,
                                 regression_factors,
245
246
247
248
249
250
251
252
253
254
255
256
                                 mean_regression_flag,
                                 mean_regression_all_flag, 
                                 mean_subtraction_flag,
                                 scale_volumes_flag,
                                 normalize_flag,
                                 negative_flag, 
                                 outlier_flag,
                                 shrinkage_flag,
                                 hard_shrinkage_flag,
                                 crop_flag,
                                 device, 
                                 exit_on_error)
257
258

def delete_files(folder):
259
    """ Clear Folder Contents
260

261
262
263
264
    Function which clears contents (like experiments or logs)

    Args:
        folder (str): Name of folders whose conents is to be deleted
265

266
    """
267

268
269
270
271
272
273
274
275
276
277
    for object_name in os.listdir(folder):
        file_path = os.path.join(folder, object_name)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as exception:
            print(exception)

278
279

if __name__ == '__main__':
280
    parser = argparse.ArgumentParser()
281
282
283
284
    parser.add_argument('--mode', '-m', required=True,
                        help='run mode, valid values are train or evaluate')
    parser.add_argument('--settings_path', '-sp', required=False,
                        help='optional argument, set path to settings_evaluation.ini')
285
286
287
288
289
290
291
292
293
294

    arguments = parser.parse_args()

    settings = Settings('settings.ini')
    data_parameters = settings['DATA']
    training_parameters = settings['TRAINING']
    network_parameters = settings['NETWORK']
    misc_parameters = settings['MISC']
    evaluation_parameters = settings['EVALUATION']

295
296
    if arguments.mode == 'train':
        train(data_parameters, training_parameters,
297
              network_parameters, misc_parameters)
298
299
300
301
302
303
304

    # NOTE: THE EVAL FUNCTIONS HAVE NOT YET BEEN DEBUGGED (16/04/20)

    elif arguments.mode == 'evaluate-mapping':
        logging.basicConfig(filename='evaluate-mapping-error.log')
        if arguments.settings_path is not None:
            settings_evaluation = Settings(arguments.settings_path)
305
        else:
306
307
308
309
310
311
312
313
314
315
316
317
318
            settings_evaluation = Settings('settings_evaluation.ini')
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        evaluate_mapping(mapping_evaluation_parameters)
    elif arguments.mode == 'clear-experiments':
        shutil.rmtree(os.path.join(
            misc_parameters['experiments_directory'], training_parameters['experiment_name']))
        shutil.rmtree(os.path.join(
            misc_parameters['logs_directory'], training_parameters['experiment_name']))
        print('Cleared the current experiments and logs directory successfully!')
    elif arguments.mode == 'clear-everything':
        delete_files(misc_parameters['experiments_directory'])
        delete_files(misc_parameters['logs_directory'])
        print('Cleared the current experiments and logs directory successfully!')
319
320
321
322
323
324
325
326
327
328
    elif arguments.mode == 'train-and-evaluate-mapping':
        if arguments.settings_path is not None:
            settings_evaluation = Settings(arguments.settings_path)
        else:
            settings_evaluation = Settings('settings_evaluation.ini')
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        train(data_parameters, training_parameters,
              network_parameters, misc_parameters)
        logging.basicConfig(filename='evaluate-mapping-error.log')
        evaluate_mapping(mapping_evaluation_parameters)
329
330
    else:
        raise ValueError(
331
            'Invalid mode value! Only supports: train, evaluate-score, evaluate-mapping, train-and-evaluate-mapping, clear-experiments and clear-everything')