run.py 18.7 KB
Newer Older
1
2
3
4
"""Brain Mapper Run File

Description:

5
6
7
8
9
    This file contains all the relevant functions for running BrainMapper.
    The network can be ran in one of these modes:
        - train
        - evaluate path
        - evaluate whole
10

11
    TODO: Might be worth adding some information on uncertaintiy estimation, later down the line
12

13
14
15
16
17
18
19
20
21
22
23
24
25
Usage:

    In order to run the network, in the terminal, the user needs to pass it relevant arguments:

        $ ./setup.sh
        $ source env/bin/activate
        $ python run.py --mode ...

    The arguments for mode are the following:

        mode=train # For training the model
        mode=evaluate-score # For evaluating the model score
        mode=evaluate-mapping # For evaluating the model mapping
26
27
        # For clearning the experiments and logs directories of the last experiment
        mode=clear-experiment
28
        mode=clear-all # For clearing all the files from the experiments and logs directories/
29
30
31

"""

32
import os
33
import shutil
34
35
import argparse
import logging
36
37
38
39
40
41
from settings import Settings

import torch
import torch.utils.data as data

from solver import Solver
42
from BrainMapperUNet import BrainMapperUNet3D
43
from utils.data_utils import get_datasets, data_test_train_validation_split, update_shuffling_flag, create_folder
44
45
import utils.data_evaluation_utils as evaluations
from utils.data_logging_utils import LogWriter
46
47
48
49
50

# Set the default floating point tensor type to FloatTensor

torch.set_default_tensor_type(torch.FloatTensor)

51

52
53
54
def load_data(data_parameters):
    """Dataset Loader

55
    This function loads the training and validation datasets.
56
57
58
59
60
61

    Args:
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

    Returns:
        train_data (dataset object): Pytorch map-style dataset object, mapping indices to training data samples.
62
        validation_data (dataset object): Pytorch map-style dataset object, mapping indices to testing data samples.
63
64
65

    """
    print("Data is loading...")
66
    train_data, validation_data = get_datasets(data_parameters)
67
68
    print("Data has loaded!")
    print("Training dataset size is {}".format(len(train_data)))
69
    print("Validation dataset size is {}".format(len(validation_data)))
70

71
    return train_data, validation_data
72

73

74
75
def train(data_parameters, training_parameters, network_parameters, misc_parameters):
    """Training Function
76

77
    This function trains a given model using the provided training data.
78
    Currently, the data loaded is set to have multiple sub-processes.
79
80
    A high enough number of workers assures that CPU computations are efficiently managed, i.e. that the bottleneck is indeed the neural network's forward and backward operations on the GPU (and not data generation)
    Loader memory is also pinned, to speed up data transfer from CPU to GPU  by using the page-locked memory.
81
    Train data is also re-shuffled at each training epoch.
82
83

    Args:
84
85
86
87
88
        data_parameters (dict): Dictionary containing relevant information for the datafiles.

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'training_batch_size': 5
89
            'validation_batch_size: 5
90
91
92
93
94
95
96
97
98
99
100
101
102
            'use_pre_trained': False
            'pre_trained_path': 'pre_trained/path'
            'experiment_name': 'experiment_name'
            'learning_rate': 1e-4
            'optimizer_beta': (0.9, 0.999)
            'optimizer_epsilon': 1e-8
            'optimizer_weigth_decay': 1e-5
            'number_of_epochs': 10
            'loss_log_period': 50
            'learning_rate_scheduler_step_size': 3
            'learning_rate_scheduler_gamma': 1e-1
            'use_last_checkpoint': True
            'final_model_output_file': 'path/to/model'
103
        }
104

105
        network_parameters (dict): Contains information relevant parameters
106

107
108
109
110
111
112
113
114
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'save_model_directory': 'directory_name'
            'model_name': 'BrainMapper'
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }
115
116
    """

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def _train_runner(data_parameters, training_parameters, network_parameters, misc_parameters):
        """Wrapper for the training operation

        This function wraps the training operation for the network

        Args:
            data_parameters (dict): Dictionary containing relevant information for the datafiles.
            training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
            network_parameters (dict): Contains information relevant parameters
            misc_parameters (dict): Dictionary of aditional hyperparameters

        """
        train_data, validation_data = load_data(data_parameters)

        train_loader = data.DataLoader(
            dataset=train_data,
            batch_size=training_parameters['training_batch_size'],
            shuffle=True,
            num_workers=4,
            pin_memory=True
        )

        validation_loader = data.DataLoader(
            dataset=validation_data,
            batch_size=training_parameters['validation_batch_size'],
            shuffle=False,
            num_workers=4,
            pin_memory=True
        )

        if training_parameters['use_pre_trained']:
            BrainMapperModel = torch.load(
                training_parameters['pre_trained_path'])
        else:
            BrainMapperModel = BrainMapperUNet3D(network_parameters)

        solver = Solver(model=BrainMapperModel,
                        device=misc_parameters['device'],
                        number_of_classes=network_parameters['number_of_classes'],
                        experiment_name=training_parameters['experiment_name'],
                        optimizer_arguments={'lr': training_parameters['learning_rate'],
                                            'betas': training_parameters['optimizer_beta'],
                                            'eps': training_parameters['optimizer_epsilon'],
                                            'weight_decay': training_parameters['optimizer_weigth_decay']
                                            },
                        model_name=misc_parameters['model_name'],
                        number_epochs=training_parameters['number_of_epochs'],
                        loss_log_period=training_parameters['loss_log_period'],
                        learning_rate_scheduler_step_size=training_parameters[
                            'learning_rate_scheduler_step_size'],
                        learning_rate_scheduler_gamma=training_parameters['learning_rate_scheduler_gamma'],
                        use_last_checkpoint=training_parameters['use_last_checkpoint'],
                        experiment_directory=misc_parameters['experiments_directory'],
                        logs_directory=misc_parameters['logs_directory'],
                        checkpoint_directory=misc_parameters['checkpoint_directory']
                        )

        validation_loss = solver.train(train_loader, validation_loader)

        model_output_path = os.path.join(
            misc_parameters['save_model_directory'], training_parameters['final_model_output_file'])

        create_folder(misc_parameters['save_model_directory'])

        BrainMapperModel.save(model_output_path)

        print("Final Model Saved in: {}".format(model_output_path))

        del train_data, validation_data, train_loader, validation_loader, BrainMapperModel, solver
        torch.cuda.empty_cache()

        return validation_loss

    if data_parameters['k_fold'] is None:

        _ = _train_runner(data_parameters, training_parameters,
                          network_parameters, misc_parameters)
194

195
196
    else:
        for k in range of data_parameters['k_fold']:
197

198
            k_fold_losses = []
199

200
201
202
203
204
            data_parameters['train_list'] = os.path.join(
                data_folder_name, 'train' + str(k+1)+'.txt')
            data_parameters['validation_list'] = os.path.join(
                data_folder_name, 'validation' + str(k+1)+'.txt')
            training_parameters['final_model_output_file'])=final_model_output_file.replace(".pth.tar", str(k+1)+".pth.tar")
205

206
207
            validation_loss=_train_runner(
                data_parameters, training_parameters, network_parameters, misc_parameters)
208

209
            k_fold_losses.append(validation_loss)
210

211
        mean_k_fold_loss=k_fold_losses.mean()
212
213

def evaluate_score(training_parameters, network_parameters, misc_parameters, evaluation_parameters):
214
215
216
217
218
219
220
221
222
223
224
    """Mapping Score Evaluator

    This function evaluates a given trained model by calculating the it's dice score prediction.

    Args:

        training_parameters(dict): Dictionary containing relevant hyperparameters for training the network.
        training_parameters = {
            'experiment_name': 'experiment_name'
        }

225
        network_parameters (dict): Contains information relevant parameters
226
227
228
        network_parameters= {
            'number_of_classes': 1
        }
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        misc_parameters (dict): Dictionary of aditional hyperparameters
        misc_parameters = {
            'logs_directory': 'log-directory'
            'device': 1
            'experiments_directory': 'experiments-directory'
        }

        evaluation_parameters (dict): Dictionary of parameters useful during evaluation.
        evaluation_parameters = {
            'trained_model_path': 'path/to/model'
            'data_directory': 'path/to/data'
            'targets_directory': 'path/to/targets'
            'data_list': 'path/to/datalist.txt/
            'orientation': 'coronal'
            'saved_predictions_directory': 'directory-of-saved-predictions'
        }
    """

248
    # TODO - NEED TO UPDATE THE DATA FUNCTIONS!
249

250
251
252
    logWriter=LogWriter(number_of_classes = network_parameters['number_of_classes'],
                          logs_directory = misc_parameters['logs_directory'],
                          experiment_name = training_parameters['experiment_name']
253
                          )
254

255
    prediction_output_path=os.path.join(misc_parameters['experiments_directory'],
256
257
258
259
                                          training_parameters['experiment_name'],
                                          evaluation_parameters['saved_predictions_directory']
                                          )

260
    _=evaluations.evaluate_dice_score(trained_model_path = evaluation_parameters['trained_model_path'],
261
262
263
264
265
266
267
268
269
270
                                        number_of_classes=network_parameters['number_of_classes'],
                                        data_directory=evaluation_parameters['data_directory'],
                                        targets_directory=evaluation_parameters[
        'targets_directory'],
        data_list=evaluation_parameters['data_list'],
        orientation=evaluation_parameters['orientation'],
        prediction_output_path=prediction_output_path,
        device=misc_parameters['device'],
        LogWriter=logWriter
    )
271
272
273

    logWriter.close()

274

275
276
def evaluate_mapping(mapping_evaluation_parameters):
    """Mapping Evaluator
277

278
279
    This function passes through the network an input and generates the rsfMRI outputs.
    This function allows the user to either use one or two or three paths.
280

281
282
283
284
    The convention for the different model paths is as follows:
    - model1: coronal
    - model2: axial
    - model3: saggital
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    However, this convention can be changed either bellow or the settings file.

    Args:
        mapping_evaluation_parameters (dict): Dictionary of parameters useful during mapping evaluation.
        mapping_evaluation_parameters = {
            'trained_model1_path': 'path/to/model1'
            'trained_model2_path': 'path/to/model2'
            'trained_model3_path': 'path/to/model3'
            'data_directory': 'path/to/data'
            'data_list': 'path/to/datalist.txt/
            'orientation1': 'coronal'
            'orientation2': 'axial'
            'orientation3': 'sagittal'
            'prediction_output_path': 'directory-of-saved-predictions'
            'batch_size': 2
            'device': 0
            'exit_on_error': True
            'number_of_paths': 3
        }

    """
    trained_model1_path = mapping_evaluation_parameters['trained_model1_path']
    trained_model2_path = mapping_evaluation_parameters['trained_model2_path']
    trained_model3_path = mapping_evaluation_parameters['trained_model3_path']
    data_directory = mapping_evaluation_parameters['data_directory']
    data_list = mapping_evaluation_parameters['data_list']
    orientation1 = mapping_evaluation_parameters['orientation1']
    orientation2 = mapping_evaluation_parameters['orientation2']
314
    orientation3 = mapping_evaluation_parameters['orientation3']
315
316
    prediction_output_path = mapping_evaluation_parameters['prediction_output_path']
    batch_size = mapping_evaluation_parameters['batch_size']
317
    device = mapping_evaluation_parameters['device']
318
319
320
    exit_on_error = mapping_evaluation_parameters['exit_on_error']

    if mapping_evaluation_parameters['number_of_paths'] == 1:
321
322
323
324
325
326
327
328
        evaluations.evaluate_single_path(trained_model1_path,
                                         data_directory,
                                         data_list,
                                         orientation1,
                                         prediction_output_path,
                                         batch_size,
                                         device=device,
                                         exit_on_error=exit_on_error)
329
330
    elif mapping_evaluation_parameters['number_of_paths'] == 2:
        evaluations.evaluate_two_paths(trained_model1_path,
331
332
333
334
335
336
337
338
339
                                       trained_model2_path,
                                       data_directory,
                                       data_list,
                                       orientation1,
                                       orientation2,
                                       prediction_output_path,
                                       batch_size,
                                       device=device,
                                       exit_on_error=exit_on_error)
340
341
    elif mapping_evaluation_parameters['number_of_paths'] == 3:
        evaluations.evaluate_all_paths(trained_model1_path,
342
343
344
345
346
347
348
349
350
351
352
353
354
355
                                       trained_model2_path,
                                       trained_model3_path,
                                       data_directory,
                                       data_list,
                                       orientation1,
                                       orientation2,
                                       orientation3,
                                       prediction_output_path,
                                       batch_size,
                                       device=device,
                                       exit_on_error=exit_on_error)


def delete_files(folder):
356
    """ Clear Folder Contents
357

358
359
360
361
    Function which clears contents (like experiments or logs)

    Args:
        folder (str): Name of folders whose conents is to be deleted
362

363
364
    Returns:
        None
365

366
367
    Raises:
        Exception: Any error
368
    """
369

370
371
372
373
374
375
376
377
378
379
    for object_name in os.listdir(folder):
        file_path = os.path.join(folder, object_name)
        try:
            if os.path.isfile(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as exception:
            print(exception)

380
381

if __name__ == '__main__':
382
    parser = argparse.ArgumentParser()
383
384
385
386
    parser.add_argument('--mode', '-m', required=True,
                        help='run mode, valid values are train or evaluate')
    parser.add_argument('--settings_path', '-sp', required=False,
                        help='optional argument, set path to settings_evaluation.ini')
387
388
389
390
391
392
393
394
395
396

    arguments = parser.parse_args()

    settings = Settings('settings.ini')
    data_parameters = settings['DATA']
    training_parameters = settings['TRAINING']
    network_parameters = settings['NETWORK']
    misc_parameters = settings['MISC']
    evaluation_parameters = settings['EVALUATION']

397
398
399
400
401
    # Here we shuffle the data!

    if data_parameters['data_split_flag'] == True:
        if data_parameters['use_data_file'] == True:
            data_test_train_validation_split(data_parameters['data_folder_name'], 
402
403
404
405
406
                                            data_parameters['test_percentage'], 
                                            data_parameters['subject_number'],
                                            data_file= data_parameters['data_file'],
                                            K_fold= data_parameters['k_fold']
                                            )
407
408
        else:
            data_test_train_validation_split(data_parameters['data_folder_name'], 
409
410
411
412
413
                                            data_parameters['test_percentage'], 
                                            data_parameters['subject_number'],
                                            data_directory= data_parameters['data_directory'],
                                            K_fold= data_parameters['k_fold']
                                            )                                              
414
        update_shuffling_flag('settings.ini')
415

416

417
418
419
420
421
422
423
424
425
426
427
428
429
    if arguments.mode == 'train':
        train(data_parameters, training_parameters,
                network_parameters, misc_parameters)

    # NOTE: THE EVAL FUNCTIONS HAVE NOT YET BEEN DEBUGGED (16/04/20)

    elif arguments.mode == 'evaluate-score':
        evaluate_score(training_parameters,
                        network_parameters, misc_parameters, evaluation_parameters)
    elif arguments.mode == 'evaluate-mapping':
        logging.basicConfig(filename='evaluate-mapping-error.log')
        if arguments.settings_path is not None:
            settings_evaluation = Settings(arguments.settings_path)
430
        else:
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
            settings_evaluation = Settings('settings_evaluation.ini')
        mapping_evaluation_parameters = settings_evaluation['MAPPING']
        evaluate_mapping(mapping_evaluation_parameters)
    elif arguments.mode == 'clear-experiments':
        shutil.rmtree(os.path.join(
            misc_parameters['experiments_directory'], training_parameters['experiment_name']))
        shutil.rmtree(os.path.join(
            misc_parameters['logs_directory'], training_parameters['experiment_name']))
        print('Cleared the current experiments and logs directory successfully!')
    elif arguments.mode == 'clear-everything':
        delete_files(misc_parameters['experiments_directory'])
        delete_files(misc_parameters['logs_directory'])
        print('Cleared the current experiments and logs directory successfully!')
    else:
        raise ValueError(
            'Invalid mode value! Only supports: train, evaluate-score, evaluate-mapping, clear-experiments and clear-everything')