Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Andrei-Claudiu Roibu
BrainMapper
Commits
3447ca2a
Commit
3447ca2a
authored
Jul 17, 2020
by
Andrei Roibu
Browse files
added new scaling based on uk biobank stats
parent
e37a0fe0
Changes
5
Hide whitespace changes
Inline
Side-by-side
solver.py
View file @
3447ca2a
...
...
@@ -90,8 +90,6 @@ class Solver():
self
.
loss_function
=
loss_function
self
.
MSE
=
MSELoss
()
# self.loss_function = loss_function
self
.
model_name
=
model_name
self
.
labels
=
labels
self
.
number_epochs
=
number_epochs
...
...
utils/data_evaluation_utils.py
View file @
3447ca2a
...
...
@@ -406,11 +406,14 @@ def _scale_input(volume, scaling_factors):
scaled_volume (np.array): Scaled volume
"""
with
open
(
scaling_factors
,
'rb'
)
as
input_file
:
min_value
,
max_value
,
_
,
_
=
pickle
.
load
(
input_file
)
#
with open(scaling_factors, 'rb') as input_file:
#
min_value, max_value, _, _ = pickle.load(input_file)
# Steve Scaling
min_value
,
max_value
,
_
,
_
=
[
0.0
,
0.2
,
0.0
,
10.0
]
# min_value, max_value, _, _ = [0.0, 0.2, 0.0, 10.0]
# Andrei Scaling
min_value
,
max_value
,
_
,
_
=
[
-
0.0539
,
0.0969
,
-
12.094
,
14.6319
]
# Eliminating outliers
volume
[
volume
>
max_value
]
=
max_value
...
...
@@ -419,8 +422,7 @@ def _scale_input(volume, scaling_factors):
# Normalization to [0, 1]
# scaled_volume = np.divide(np.subtract(volume, min_value), np.subtract(max_value, min_value))
# Scaling between [-1, 1]
scaled_volume
=
np
.
add
(
-
1.0
,
np
.
multiply
(
2.0
,
np
.
divide
(
np
.
subtract
(
volume
,
min_value
),
np
.
subtract
(
max_value
,
min_value
))))
scaled_volume
=
np
.
add
(
-
1.0
,
np
.
multiply
(
2.0
,
np
.
divide
(
np
.
subtract
(
volume
,
min_value
),
np
.
subtract
(
max_value
,
min_value
))))
return
scaled_volume
...
...
@@ -463,17 +465,19 @@ def _rescale_output(volume, scaling_factors):
rescaled_volume (np.array): Rescaled volume
"""
with
open
(
scaling_factors
,
'rb'
)
as
input_file
:
_
,
_
,
min_value
,
max_value
=
pickle
.
load
(
input_file
)
#
with open(scaling_factors, 'rb') as input_file:
#
_, _, min_value, max_value = pickle.load(input_file)
# Steve Scaling
_
,
_
,
min_value
,
max_value
=
[
0.0
,
0.2
,
0.0
,
10.0
]
# _, _, min_value, max_value = [0.0, 0.2, 0.0, 10.0]
# Andrei Scaling
_
,
_
,
min_value
,
max_value
=
[
-
0.0539
,
0.0969
,
-
12.094
,
14.6319
]
# Normalization to [0, 1]
# rescaled_volume = np.add(np.multiply(volume, np.subtract(max_value, min_value)), min_value)
# Scaling between [-1, 1]
rescaled_volume
=
np
.
add
(
np
.
multiply
(
np
.
divide
(
np
.
add
(
volume
,
1
),
2
),
np
.
subtract
(
max_value
,
min_value
)),
min_value
)
rescaled_volume
=
np
.
add
(
np
.
multiply
(
np
.
divide
(
np
.
add
(
volume
,
1
),
2
),
np
.
subtract
(
max_value
,
min_value
)),
min_value
)
return
rescaled_volume
...
...
utils/data_utils.py
View file @
3447ca2a
...
...
@@ -486,12 +486,14 @@ class DataMapper(data.Dataset):
scaled_volume (np.array): Scaled volume
"""
with
open
(
self
.
scaling_factors
,
'rb'
)
as
input_file
:
min_input
,
max_input
,
min_target
,
max_target
=
pickle
.
load
(
input_file
)
# with open(self.scaling_factors, 'rb') as input_file:
# min_input, max_input, min_target, max_target = pickle.load(input_file)
# Steve Scaling
min_input
,
max_input
,
min_target
,
max_target
=
[
0.0
,
0.2
,
0.0
,
10.0
]
# # Steve Scaling
# min_input, max_input, min_target, max_target = [0.0, 0.2, 0.0, 10.0]
# Andrei Scaling
min_input
,
max_input
,
min_target
,
max_target
=
[
-
0.0539
,
0.0969
,
-
12.094
,
14.6319
]
if
target_flag
==
False
:
min_value
=
min_input
...
...
@@ -501,15 +503,14 @@ class DataMapper(data.Dataset):
max_value
=
max_target
# Set all negative elements to 0
volume
[
volume
<
0
]
=
0.0
#
volume[volume < 0] = 0.0
# Eliminating outliers
volume
[
volume
>
max_value
]
=
max_value
volume
[
volume
<
min_value
]
=
min_value
# Normalization to [0, 1]
scaled_volume
=
np
.
divide
(
np
.
subtract
(
volume
,
min_value
),
np
.
subtract
(
max_value
,
min_value
))
scaled_volume
=
np
.
divide
(
np
.
subtract
(
volume
,
min_value
),
np
.
subtract
(
max_value
,
min_value
))
# Scaling between [-1, 1]
# scaled_volume = np.add(-1.0, np.multiply(2.0, np.divide(np.subtract(volume, min_value), np.subtract(max_value, min_value))))
...
...
utils/dmri_stats.pkl
0 → 100644
View file @
3447ca2a
File added
utils/rsfmri_stats.pkl
0 → 100644
View file @
3447ca2a
File added
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment