diff --git a/fsl/data/image.py b/fsl/data/image.py index 8387dce2c7a120c85eed494cbb416e7112928199..2c2ee579cee64948ef52bf6ca91d62b5b02f2e01 100644 --- a/fsl/data/image.py +++ b/fsl/data/image.py @@ -40,6 +40,7 @@ import numpy as np import fsl.utils.transform as transform import fsl.utils.notifier as notifier +import fsl.utils.memoize as memoize import fsl.utils.path as fslpath import fsl.data.constants as constants import fsl.data.imagewrapper as imagewrapper @@ -209,7 +210,11 @@ class Nifti1(object): return int(code) - + # TODO Check what has worse performance - hashing + # a 4x4 array (via memoizeMD5), or the call + # to aff2axcodes. I'm guessing the latter, + # but am not 100% sure. + @memoize.memoizeMD5 def axisMapping(self, xform): """Returns the (approximate) correspondence of each axis in the source coordinate system to the axes in the destination coordinate system, diff --git a/fsl/utils/memoize.py b/fsl/utils/memoize.py index 25a7df1de3988361396b26ca42572a36f8df8227..e7883434ddaaeba970dbe4bacf82152c783d7be0 100644 --- a/fsl/utils/memoize.py +++ b/fsl/utils/memoize.py @@ -100,7 +100,7 @@ def memoizeMD5(func): hashobj = hashlib.md5() for arg in args: - arg = six.u(arg).encode('utf-8') + arg = six.u(str(arg)).encode('utf-8') hashobj.update(arg) digest = hashobj.hexdigest()