diff --git a/README b/README
deleted file mode 100644
index cff636962d6a01cca7287f26920bcc4b558d51cd..0000000000000000000000000000000000000000
--- a/README
+++ /dev/null
@@ -1,12 +0,0 @@
--------------------------------------------
-BRAIN IMAGING PIPELINE
-Fidel Alfaro Almagro, WIN-FMRIB
-June, 2022
--------------------------------------------
-Automated tool
-
-Installation
-------------
-If you want to install everythong that is needed from scratch, run:
-```cd /path-to-lib/install_dir/
-python setup.py install```
diff --git a/__init__.py b/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/bb_pipeline/.gitignore b/bb_pipeline/.gitignore
deleted file mode 100644
index e43b0f988953ae3a84b00331d0ccf5f7d51cb3cf..0000000000000000000000000000000000000000
--- a/bb_pipeline/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-.DS_Store
diff --git a/bb_pipeline/__init__.py b/bb_pipeline/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/bb_pipeline/bb_pipeline.py b/bb_pipeline/bb_pipeline.py
deleted file mode 100755
index 8607956853374037a4bc2a664c2b3507218fd35e..0000000000000000000000000000000000000000
--- a/bb_pipeline/bb_pipeline.py
+++ /dev/null
@@ -1,181 +0,0 @@
-#!/usr/bin/env python
-
-import os
-import sys
-import nibabel as nib
-from fsl import data
-from fsl import utils
-from fsl import scripts
-from fsl import wrappers
-from shutil import copyfile
-from file_tree import FileTree
-from pipe_tree import Pipeline, In, Out, Ref, Var, update_closure
-#from bb_struct.bb_struct import bb_struct
-from my_wrappers.standard_space_roi import standard_space_roi
-from gradunwarp.core.gradient_unwarp_apply import gradient_unwarp_apply
-
-pipe = Pipeline()
-
-BB_BIN_DIR = os.environ['BB_BIN_DIR']
-FSLDIR     = os.environ['FSLDIR']
-coeff      = BB_BIN_DIR + '/data/bb_GDC_coeff.grad'
-MNI        = FSLDIR + '/data/standard/MNI152_T1_1mm'
-
-with open(BB_BIN_DIR + '/data/subj.txt', 'r') as f:
-    subjects = [x.replace('\n','') for x in f.readlines()]
-
-tree = FileTree.read(BB_BIN_DIR + '/data/FileTree').update(subject=subjects)
-
-log_conf = {'cmd': sys.stdout}
-#Alternative (needs to be moved inside bb_struct, as logs_dir is not accessible here):
-#script_name = os.path.splitext(os.path.basename(__file__))[0]
-#log_conf = {'cmd': logs_dir + "/" + script_name + "_cmd.txt"}
-
-@pipe(submit=dict(logdir=Ref("logs_dir"), jobtime=200))
-def bb_struct(  T1_orig:            In,
-                T1_brain:           Out,
-                logs_dir:           Out,
-                T1:                 Out,
-                T1_orig_ud:         Out,
-                T1_orig_ud_warp:    Out,
-                T1_brain_mask:      Out,
-                T1_orig_defaced:    Out,
-                T1_defacing_mask:   Out,
-                T1_unbiased:        Out,
-                T1_unbiased_brain:  Out,
-                T1_brain_to_MNI:    Out,
-                T1_QC_face_mask_inside_brain_mask: Out,
-                transform_outputs:  Out("T1*_to_*"),
-                fast_outputs:       Out("T1_fast_*"),
-                first_outputs:      Out("T1_first_*"),
-                T1_GDC:             Ref,
-                temp_outputs:       Ref("T1_tmp_*")):
-
-    with update_closure(temp_outputs, transform_outputs, fast_outputs,
-                        first_outputs):
-
-        if [ coeff != '' ] :
-            #Calculate and apply the Gradient Distortion Unwarp
-            gradient_unwarp_apply(WD=T1_GDC, infile=T1_orig, outfile=T1_orig_ud,
-                            owarp=T1_orig_ud_warp,gradcoeff=coeff,
-                            vendor='siemens', nojac=True)
-        else:
-            pipe(copyfile, kwargs={'src': In('A'), 'dst': Out('B')})
-
-        #Calculate where does the brain start in the z dimension and extract the roi
-        head_top=int(round(float(wrappers.robustfov(T1_orig_ud).stdout[0].split()[7])))
-        wrappers.fslmaths(T1_orig_ud).roi(0,-1,0,-1,head_top,170,0,1,).run(T1_tmp_1,
-                                                                   log=log_conf)
-
-        #Run a (Recursive) brain extraction on the roi
-        wrappers.bet(T1_tmp_1, T1_tmp_1_brain, robust=True, log=log_conf)
-
-        #Reduce the FOV of T1_orig_ud by calculating a registration
-        #from T1_tmp_brain to ssref and apply it to T1_orig_ud
-        # TODO: Once this wrapper is ready, merge it with FSL wrappers
-        standard_space_roi(T1_tmp_1_brain, T1, maskNONE=True, ssref = MNI + '_brain',
-                           altinput=T1_orig_ud, d=True, log=log_conf)
-
-        #Generate the actual affine from the orig_ud volume to the cut version
-        #we haveand combine it to have an affine matrix from orig_ud to MNI
-        wrappers.flirt(src=T1, ref=T1_orig_ud, omat=T1_to_T1_orig_ud_mat,
-                 schedule = FSLDIR + '/etc/flirtsch/xyztrans.sch', log=log_conf)
-        wrappers.invxfm(inmat=T1_to_T1_orig_ud_mat, omat=T1_orig_ud_to_T1_mat,
-                        log=log_conf)
-        wrappers.concatxfm(atob=T1_to_T1_orig_ud_mat, btoc=T1_orig_ud_to_std_mat,
-                           atoc=T1_to_MNI_linear_mat, log=log_conf)
-
-        #Non-linear registration to MNI using the previously calculated alignment
-        wrappers.fnirt(src = T1, ref = MNI, aff = T1_to_MNI_linear_mat,
-                       config = BB_BIN_DIR + '/data/bb_fnirt.cnf',
-                       refmask = BB_BIN_DIR + '/data/MNI152_T1_1mm_brain_mask_dil_GD7.nii.gz',
-                       logout = logs_dir + '/bb_T1_to_MNI_fnirt.log',
-                       cout = T1_to_MNI_warp_coef, fout = T1_to_MNI_warp,
-                       jout = T1_to_MNI_warp_jac, iout = T1_tmp_3,
-                       interp = 'spline',log=log_conf)
-
-        #Combine all transforms (Gradient Distortion Unwarp and T1 to MNI) into one
-        if coeff != '' :
-            wrappers.convertwarp(ref=MNI, warp1=T1_orig_ud_warp,
-                                 midmat=T1_orig_ud_to_T1_mat, warp2=T1_to_MNI_warp,
-                                 out=T1_orig_to_MNI_warp,log=log_conf)
-        else:
-            wrappers.convertwarp(ref=MNI, premat=T1_orig_ud_to_T1_mat,
-                                 warp1=T1_orig_ud_warp, out=T1_orig_to_MNI_warp,
-                                 log=log_conf)
-
-        # Apply the previously generated transformation
-        wrappers.applywarp(src=T1_orig, ref=MNI, w=T1_orig_to_MNI_warp,
-                           out=T1_brain_to_MNI, rel=True, interp='spline',
-                           log=log_conf)
-
-        #Create brain mask
-        wrappers.invwarp(ref=T1, warp=T1_to_MNI_warp_coef,
-                         out=T1_to_MNI_warp_coef_inv,
-                         log=log_conf)
-        wrappers.applywarp(src=MNI + '_brain_mask', ref=T1 ,
-                           w=T1_to_MNI_warp_coef_inv, out=T1_brain_mask,
-                           rel=True, interp='trilinear', log=log_conf)
-        wrappers.fslmaths(T1).mul(T1_brain_mask).run(T1_brain,log=log_conf)
-        wrappers.fslmaths(T1_brain_to_MNI).mul(MNI + '_brain_mask').run(T1_brain_to_MNI,
-                                                                   log=log_conf)
-
-        #TODO: Replace this part with proper call to fsl_deface
-        #Defacing T1_orig
-        wrappers.concatxfm(atob=T1_orig_ud_to_T1_mat, btoc=T1_to_MNI_linear_mat,
-                           atoc=T1_tmp_mat, log=log_conf)
-        wrappers.concatxfm(atob=T1_tmp_mat,
-                           btoc=BB_BIN_DIR + '/data/MNI_to_MNI_BigFoV_facemask.mat',
-                           atoc=T1_tmp_mat, log=log_conf)
-        wrappers.invxfm(inmat=T1_tmp_mat, omat=T1_tmp_mat, log=log_conf)
-        wrappers.applyxfm(src=BB_BIN_DIR + '/data/MNI152_T1_1mm_BigFoV_facemask', 
-                          ref=T1_orig, mat=T1_tmp_mat, out=T1_defacing_mask,
-                          log=log_conf)
-        wrappers.fslmaths(T1_defacing_mask).binv().mul(T1_orig).run(T1_orig_defaced,
-                                                                    log=log_conf)
-
-        #Defacing T1
-        wrappers.concatxfm(atob=T1_to_MNI_linear_mat,
-                           btoc = BB_BIN_DIR + '/data/MNI_to_MNI_BigFoV_facemask.mat',
-                           atoc = T1_tmp_mat, log=log_conf)
-        wrappers.invxfm(inmat=T1_tmp_mat, omat=T1_tmp_mat, log=log_conf)
-        wrappers.applyxfm(src=BB_BIN_DIR + '/data/MNI152_T1_1mm_BigFoV_facemask',
-                          ref=T1, mat=T1_tmp_mat, out=T1_defacing_mask,
-                          log=log_conf)
-        wrappers.fslmaths(T1_defacing_mask).binv().mul(T1).run(T1, log=log_conf)
-
-        #Generation of QC value: Number of voxels in which
-        #the defacing mask goes into the brain mask
-        wrappers.fslmaths(T1_brain_mask).thr(0.5).bin().run(T1_tmp_4,
-                                                            log=log_conf)
-        wrappers.fslmaths(T1_defacing_mask).thr(0.5).bin().add(T1_tmp_4).run(T1_tmp_4,
-                                                                   log=log_conf)
-        vals = wrappers.fslstats(T1_tmp_4).V.run(log=log_conf)[0]
-        with open(T1_QC_face_mask_inside_brain_mask, 'w') as f:
-            f.write(str(vals))
-
-        #Run fast
-        wrappers.fast(T1_brain, out = T1_fast_dir + '/T1_brain', b=True,
-                      log=log_conf)
-
-        #Binarize PVE masks
-        wrappers.fslmaths(T1_fast_pve_0).thr(0.5).bin().run(T1_fast_CSF_mask,
-                                                            log=log_conf)
-        wrappers.fslmaths(T1_fast_pve_1).thr(0.5).bin().run(T1_fast_WM_mask,
-                                                            log=log_conf)
-        wrappers.fslmaths(T1_fast_pve_2).thr(0.5).bin().run(T1_fast_GM_mask,
-                                                            log=log_conf)
-
-        #Apply bias field correction to T1
-        wrappers.fslmaths(T1).div(T1_fast_brain_bias).run(T1_unbiased,
-                                                          log=log_conf)
-        wrappers.fslmaths(T1_brain).div(T1_fast_brain_bias).run(T1_unbiased_brain,
-                                                                log=log_conf)
-
-        #Creates a link inside T1_first to T1_unbiased_brain.nii.gz
-        os.symlink(src="../T1_unbiased_brain.nii.gz", dst=T1_first_unbiased_brain)
-
-        #pipe(copyfile, kwargs={'src': In('A'), 'dst': Out('B')})
-
-if __name__ == "__main__":
-    pipe.cli(tree)
diff --git a/bb_struct/.gitignore b/bb_struct/.gitignore
deleted file mode 100644
index e43b0f988953ae3a84b00331d0ccf5f7d51cb3cf..0000000000000000000000000000000000000000
--- a/bb_struct/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-.DS_Store
diff --git a/bb_struct/__init__.py b/bb_struct/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/bb_struct/bb_struct.py b/bb_struct/bb_struct.py
deleted file mode 100755
index 7fd3162a5d2e910ed4da7b50631da21c14167fc5..0000000000000000000000000000000000000000
--- a/bb_struct/bb_struct.py
+++ /dev/null
@@ -1,147 +0,0 @@
-#!/usr/bin/env python
-
-@pipe(submit=dict(logdir=Ref("logs_dir"), jobtime=200))
-def bb_struct(  T1_orig:            In,
-                T1_brain:           Out,
-                logs_dir:           Out,
-                T1:                 Out,
-                T1_orig_ud:         Out,
-                T1_orig_ud_warp:    Out,
-                T1_brain_mask:      Out,
-                T1_orig_defaced:    Out,
-                T1_defacing_mask:   Out,
-                T1_unbiased:        Out,
-                T1_unbiased_brain:  Out,
-                T1_brain_to_MNI:    Out,
-                T1_QC_face_mask_inside_brain_mask: Out,
-                transform_outputs:  Out("T1*_to_*"),
-                fast_outputs:       Out("T1_fast_*"),
-                first_outputs:      Out("T1_first_*"),
-                T1_GDC:             Ref,
-                temp_outputs:       Ref("T1_tmp_*")):
-
-    with update_closure(temp_outputs, transform_outputs, fast_outputs,
-                        first_outputs):
-
-        if [ coeff != '' ] :
-            #Calculate and apply the Gradient Distortion Unwarp
-            gradient_unwarp_apply(WD=T1_GDC, infile=T1_orig, outfile=T1_orig_ud,
-                            owarp=T1_orig_ud_warp,gradcoeff=coeff,
-                            vendor='siemens', nojac=True)
-        else:
-            pipe(copyfile, kwargs={'src': In('A'), 'dst': Out('B')})
-
-        #Calculate where does the brain start in the z dimension and extract the roi
-        head_top=int(round(float(wrappers.robustfov(T1_orig_ud).stdout[0].split()[7])))
-        wrappers.fslmaths(T1_orig_ud).roi(0,-1,0,-1,head_top,170,0,1,).run(T1_tmp_1,
-                                                                   log=log_conf)
-
-        #Run a (Recursive) brain extraction on the roi
-        wrappers.bet(T1_tmp_1, T1_tmp_1_brain, robust=True, log=log_conf)
-
-        #Reduce the FOV of T1_orig_ud by calculating a registration
-        #from T1_tmp_brain to ssref and apply it to T1_orig_ud
-        # TODO: Once this wrapper is ready, merge it with FSL wrappers
-        standard_space_roi(T1_tmp_1_brain, T1, maskNONE=True, ssref = MNI + '_brain',
-                           altinput=T1_orig_ud, d=True, log=log_conf)
-
-        #Generate the actual affine from the orig_ud volume to the cut version
-        #we haveand combine it to have an affine matrix from orig_ud to MNI
-        wrappers.flirt(src=T1, ref=T1_orig_ud, omat=T1_to_T1_orig_ud_mat,
-                 schedule = FSLDIR + '/etc/flirtsch/xyztrans.sch', log=log_conf)
-        wrappers.invxfm(inmat=T1_to_T1_orig_ud_mat, omat=T1_orig_ud_to_T1_mat,
-                        log=log_conf)
-        wrappers.concatxfm(atob=T1_to_T1_orig_ud_mat, btoc=T1_orig_ud_to_std_mat,
-                           atoc=T1_to_MNI_linear_mat, log=log_conf)
-
-        #Non-linear registration to MNI using the previously calculated alignment
-        wrappers.fnirt(src = T1, ref = MNI, aff = T1_to_MNI_linear_mat,
-                       config = BB_BIN_DIR + '/data/bb_fnirt.cnf',
-                       refmask = BB_BIN_DIR + '/data/MNI152_T1_1mm_brain_mask_dil_GD7.nii.gz',
-                       logout = logs_dir + '/bb_T1_to_MNI_fnirt.log',
-                       cout = T1_to_MNI_warp_coef, fout = T1_to_MNI_warp,
-                       jout = T1_to_MNI_warp_jac, iout = T1_tmp_3,
-                       interp = 'spline',log=log_conf)
-
-        #Combine all transforms (Gradient Distortion Unwarp and T1 to MNI) into one
-        if coeff != '' :
-            wrappers.convertwarp(ref=MNI, warp1=T1_orig_ud_warp,
-                                 midmat=T1_orig_ud_to_T1_mat, warp2=T1_to_MNI_warp,
-                                 out=T1_orig_to_MNI_warp,log=log_conf)
-        else:
-            wrappers.convertwarp(ref=MNI, premat=T1_orig_ud_to_T1_mat,
-                                 warp1=T1_orig_ud_warp, out=T1_orig_to_MNI_warp,
-                                 log=log_conf)
-
-        # Apply the previously generated transformation
-        wrappers.applywarp(src=T1_orig, ref=MNI, w=T1_orig_to_MNI_warp,
-                           out=T1_brain_to_MNI, rel=True, interp='spline',
-                           log=log_conf)
-
-        #Create brain mask
-        wrappers.invwarp(ref=T1, warp=T1_to_MNI_warp_coef,
-                         out=T1_to_MNI_warp_coef_inv,
-                         log=log_conf)
-        wrappers.applywarp(src=MNI + '_brain_mask', ref=T1 ,
-                           w=T1_to_MNI_warp_coef_inv, out=T1_brain_mask,
-                           rel=True, interp='trilinear', log=log_conf)
-        wrappers.fslmaths(T1).mul(T1_brain_mask).run(T1_brain,log=log_conf)
-        wrappers.fslmaths(T1_brain_to_MNI).mul(MNI + '_brain_mask').run(T1_brain_to_MNI,
-                                                                   log=log_conf)
-
-        #TODO: Replace this part with proper call to fsl_deface
-        #Defacing T1_orig
-        wrappers.concatxfm(atob=T1_orig_ud_to_T1_mat, btoc=T1_to_MNI_linear_mat,
-                           atoc=T1_tmp_mat, log=log_conf)
-        wrappers.concatxfm(atob=T1_tmp_mat,
-                           btoc=BB_BIN_DIR + '/data/MNI_to_MNI_BigFoV_facemask.mat',
-                           atoc=T1_tmp_mat, log=log_conf)
-        wrappers.invxfm(inmat=T1_tmp_mat, omat=T1_tmp_mat, log=log_conf)
-        wrappers.applyxfm(src=BB_BIN_DIR + '/data/MNI152_T1_1mm_BigFoV_facemask',
-                          ref=T1_orig, mat=T1_tmp_mat, out=T1_defacing_mask,
-                          log=log_conf)
-        wrappers.fslmaths(T1_defacing_mask).binv().mul(T1_orig).run(T1_orig_defaced,
-                                                                    log=log_conf)
-
-        #Defacing T1
-        wrappers.concatxfm(atob=T1_to_MNI_linear_mat,
-                           btoc = BB_BIN_DIR + '/data/MNI_to_MNI_BigFoV_facemask.mat',
-                           atoc = T1_tmp_mat, log=log_conf)
-        wrappers.invxfm(inmat=T1_tmp_mat, omat=T1_tmp_mat, log=log_conf)
-        wrappers.applyxfm(src=BB_BIN_DIR + '/data/MNI152_T1_1mm_BigFoV_facemask',
-                          ref=T1, mat=T1_tmp_mat, out=T1_defacing_mask,
-                          log=log_conf)
-        wrappers.fslmaths(T1_defacing_mask).binv().mul(T1).run(T1, log=log_conf)
-
-        #Generation of QC value: Number of voxels in which
-        #the defacing mask goes into the brain mask
-        wrappers.fslmaths(T1_brain_mask).thr(0.5).bin().run(T1_tmp_4,
-                                                            log=log_conf)
-        wrappers.fslmaths(T1_defacing_mask).thr(0.5).bin().add(T1_tmp_4).run(T1_tmp_4,
-                                                                   log=log_conf)
-        vals = wrappers.fslstats(T1_tmp_4).V.run(log=log_conf)[0]
-        with open(T1_QC_face_mask_inside_brain_mask, 'w') as f:
-            f.write(str(vals))
-
-        #Run fast
-        wrappers.fast(T1_brain, out = T1_fast_dir + '/T1_brain', b=True,
-                      log=log_conf)
-
-        #Binarize PVE masks
-        wrappers.fslmaths(T1_fast_pve_0).thr(0.5).bin().run(T1_fast_CSF_mask,
-                                                            log=log_conf)
-        wrappers.fslmaths(T1_fast_pve_1).thr(0.5).bin().run(T1_fast_WM_mask,
-                                                            log=log_conf)
-        wrappers.fslmaths(T1_fast_pve_2).thr(0.5).bin().run(T1_fast_GM_mask,
-                                                            log=log_conf)
-
-        #Apply bias field correction to T1
-        wrappers.fslmaths(T1).div(T1_fast_brain_bias).run(T1_unbiased,
-                                                          log=log_conf)
-        wrappers.fslmaths(T1_brain).div(T1_fast_brain_bias).run(T1_unbiased_brain,
-                                                                log=log_conf)
-
-        #Creates a link inside T1_first to T1_unbiased_brain.nii.gz
-        os.symlink(src="../T1_unbiased_brain.nii.gz", dst=T1_first_unbiased_brain)
-
-        #pipe(copyfile, kwargs={'src': In('A'), 'dst': Out('B')})
diff --git a/bb_tools/.gitignore b/bb_tools/.gitignore
deleted file mode 100644
index e43b0f988953ae3a84b00331d0ccf5f7d51cb3cf..0000000000000000000000000000000000000000
--- a/bb_tools/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-.DS_Store
diff --git a/bb_tools/__init__.py b/bb_tools/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/bb_tools/correct_file_org.sh b/bb_tools/correct_file_org.sh
deleted file mode 100644
index c3817fefef1f2c2034223af9e33c2691ed4f46ee..0000000000000000000000000000000000000000
--- a/bb_tools/correct_file_org.sh
+++ /dev/null
@@ -1,105 +0,0 @@
-for elem in `cat subj.txt ` ; do
-  cd $elem/DICOM ;
-  mv T2.dcm T2_FLAIR.dcm ;
-  mv T2.txt T2_FLAIR.txt ;
-  mv T2_strings.txt T2_FLAIR_strings.txt ;
-  cd ../.. ;
-done
-
-for elem in `cat subj.txt ` ; do
-  cd $elem/raw ;
-  if [ -f SWI_TOTAL_MAG_notNorm.nii.gz ] ; then
-    mv SWI_TOTAL_MAG_notNorm.nii.gz SWI_TOTAL_MAG_notNorm_TE1.nii.gz
-  fi
-  if [ -f SWI_TOTAL_MAG_notNorm.json ] ; then
-    mv SWI_TOTAL_MAG_notNorm.json SWI_TOTAL_MAG_notNorm_TE1.json
-  fi
-  cd ../.. ;
-done
-
-for elem in `cat subj.txt ` ; do
-  cd $elem/
-  mv fMRI rfMRI;
-  mkdir tfMRI;
-  if [ -f rfMRI/tfMRI.nii.gz ] ; then
-    mv rfMRI/tfMRI.nii.gz tfMRI/
-  fi
-  if [ -f rfMRI/tfMRI.json ] ; then
-    mv rfMRI/tfMRI.json tfMRI/
-  fi
-  if [ -f rfMRI/tfMRI_SBREF.nii.gz ] ; then
-    mv rfMRI/tfMRI_SBREF.nii.gz tfMRI/
-  fi
-  if [ -f rfMRI/tfMRI_SBREF.json ] ; then
-    mv rfMRI/tfMRI_SBREF.json tfMRI/
-  fi
-  cd ../
-done
-
-for elem in `cat subj.txt ` ; do
-  cd $elem/SWI ;
-  if [ -f SWI_TOTAL_MAG.nii.gz ] ; then
-    mv SWI_TOTAL_MAG.nii.gz SWI_TOTAL_MAG_TE1.nii.gz
-  fi
-  if [ -f SWI_TOTAL_MAG.json ] ; then
-    mv SWI_TOTAL_MAG.json SWI_TOTAL_MAG_TE1.json
-  fi
-  if [ -f SWI_TOTAL_PHA.nii.gz ] ; then
-    mv SWI_TOTAL_PHA.nii.gz SWI_TOTAL_PHA_TE1.nii.gz
-  fi
-  if [ -f SWI_TOTAL_PHA.json ] ; then
-    mv SWI_TOTAL_PHA.json SWI_TOTAL_PHA_TE1.json
-  fi
-  cd ../.. ;
-done
-
-for elem in `cat subj.txt` ; do
-   cd $elem/T1 ;
-   if [ -f T1.nii.gz ] ; then
-      mv T1.nii.gz T1_orig.nii.gz
-   fi
-   if [ -f T1.json ] ; then
-      mv T1.json T1_orig.json
-   fi
-   cd ../..;
-done
-
-for elem in `cat subj.txt` ; do
-   cd $elem/T2_FLAIR ;
-   if [ -f T2_FLAIR.nii.gz ] ; then
-      mv T2_FLAIR.nii.gz T2_FLAIR_orig.nii.gz
-   fi
-   if [ -f T2_FLAIR.json ] ; then
-      mv T2_FLAIR.json T2_FLAIR_orig.json
-   fi
-   cd ../..;
-done
-
-for elem in `cat subj.txt ` ; do
-  cd $elem/SWI ;
-  if [ -f SWI_TOTAL_MAG_TE1.nii.gz ] ; then
-    mv SWI_TOTAL_MAG_TE1.nii.gz SWI_TOTAL_MAG_TE1_orig.nii.gz
-  fi
-  if [ -f SWI_TOTAL_MAG_TE1.json ] ; then
-    mv SWI_TOTAL_MAG_TE1.json SWI_TOTAL_MAG_TE1_orig.json
-  fi
-  if [ -f SWI_TOTAL_MAG_TE2.nii.gz ] ; then
-    mv SWI_TOTAL_MAG_TE2.nii.gz SWI_TOTAL_MAG_TE2_orig.nii.gz
-  fi
-  if [ -f SWI_TOTAL_MAG_TE2.json ] ; then
-    mv SWI_TOTAL_MAG_TE2.json SWI_TOTAL_MAG_TE2_orig.json
-  fi
-  if [ -f SWI_TOTAL_PHA_TE1.nii.gz ] ; then
-    mv SWI_TOTAL_PHA_TE1.nii.gz SWI_TOTAL_PHA_TE1_orig.nii.gz
-  fi
-  if [ -f SWI_TOTAL_PHA_TE1.json ] ; then
-    mv SWI_TOTAL_PHA_TE1.json SWI_TOTAL_PHA_TE1_orig.json
-  fi
-  if [ -f SWI_TOTAL_PHA_TE2.nii.gz ] ; then
-    mv SWI_TOTAL_PHA_TE2.nii.gz SWI_TOTAL_PHA_TE2_orig.nii.gz
-  fi
-  if [ -f SWI_TOTAL_PHA_TE2.json ] ; then
-    mv SWI_TOTAL_PHA_TE2.json SWI_TOTAL_PHA_TE2_orig.json
-  fi
-  cd ../.. ;
-done
diff --git a/data/.gitignore b/data/.gitignore
deleted file mode 100644
index 13494ec472379c0fb984df51fe7b5e2a97607214..0000000000000000000000000000000000000000
--- a/data/.gitignore
+++ /dev/null
@@ -1,3 +0,0 @@
-.DS_Store
-bb_GDC_*.grad
-subj.txt
diff --git a/data/FileTree.tree b/data/FileTree.tree
deleted file mode 100644
index 32891e9c7b448891477f196159eea845365f9dc4..0000000000000000000000000000000000000000
--- a/data/FileTree.tree
+++ /dev/null
@@ -1,109 +0,0 @@
-subject = dummy
-tissue_idx = 0,1,2
-
-{subject}
-   logs (logs_dir)
-   T1 (T1_dir)
-      T1_orig.nii.gz (T1_orig)
-      T1_GDC (T1_GDC)
-      T1.nii.gz (T1)
-      T1_orig_ud.nii.gz (T1_orig_ud)
-      T1_orig_ud_warp.nii.gz (T1_orig_ud_warp)
-      T1_brain.nii.gz (T1_brain)
-      T1_brain_mask.nii.gz (T1_brain_mask)
-      T1_orig_defaced.nii.gz (T1_orig_defaced)
-      T1_defacing_mask.nii.gz (T1_defacing_mask)
-      T1_unbiased.nii.gz (T1_unbiased)
-      T1_unbiased_brain.nii.gz (T1_unbiased_brain)
-      T1_unbiased_mask.nii.gz (T1_unbiased_mask)
-      T1_brain_to_MNI.nii.gz (T1_brain_to_MNI)
-      T1_QC_face_mask_inside_brain_mask.txt (T1_QC_face_mask_inside_brain_mask)
-      T1_tmp_1.nii.gz (T1_tmp_1)
-      T1_tmp_2.nii.gz (T1_tmp_2)
-      T1_tmp_3.nii.gz (T1_tmp_3)
-      T1_tmp_4.nii.gz (T1_tmp_4)
-      T1_tmp.mat (T1_tmp_mat)
-      T1_tmp_1_brain.nii.gz (T1_tmp_1_brain)
-      T1_tmp_to_std.mat (T1_tmp_to_std_mat)
-      T1_tmp_to_std.mat (T1_orig_ud_to_std_mat)
-      transforms (T1_transforms_dir)
-         T1_to_T1_orig_ud.mat (T1_to_T1_orig_ud_mat)
-         T1_orig_ud_to_T1.mat (T1_orig_ud_to_T1_mat)
-         T1_to_MNI_linear.mat (T1_to_MNI_linear_mat)
-         T1_to_MNI_warp_coef.nii.gz (T1_to_MNI_warp_coef)
-         T1_to_MNI_warp.nii.gz (T1_to_MNI_warp)
-         T1_to_MNI_warp_jac.nii.gz (T1_to_MNI_warp_jac)
-         T1_orig_to_MNI_warp.nii.gz (T1_orig_to_MNI_warp)
-         T1_to_MNI_warp_coef_inv.nii.gz (T1_to_MNI_warp_coef_inv)
-      T1_fast (T1_fast_dir)
-         T1_brain_pveseg.nii.gz (T1_fast_pveseg)
-         T1_brain_pve_0.nii.gz (T1_fast_pve_0)
-         T1_brain_pve_1.nii.gz (T1_fast_pve_1)
-         T1_brain_pve_2.nii.gz (T1_fast_pve_2)
-         T1_brain_CSF_mask.nii.gz (T1_fast_CSF_mask)
-         T1_brain_WM_mask.nii.gz (T1_fast_WM_mask)
-         T1_brain_GM_mask.nii.gz (T1_fast_GM_mask)
-         T1_brain_bias.nii.gz (T1_fast_brain_bias)
-      T1_first (T1_first_dir)
-         T1_unbiased_brain.nii.gz (T1_first_unbiased_brain)
-   T2_FLAIR (T2_FLAIR_dir)
-      T2_FLAIR_orig.nii.gz (T2_FLAIR_orig)
-   dMRI (dMRI_dir)
-      raw (dMRI_raw_dir)
-         AP.nii.gz (AP)
-         PA.nii.gz (PA)
-   rfMRI (rfMRI_dir)
-      rfMRI.nii.gz (rfMRI)
-      rfMRI_SBREF.nii.gz (rfMRI_SBREF)
-   tfMRI (tfMRI_dir)
-      tfMRI.nii.gz (tfMRI)
-      tfMRI_SBREF.nii.gz (tfMRI_SBREF)
-   SWI (SWI_dir)
-      SWI_TOTAL_MAG_TE1_orig.nii.gz (SWI_MAG_TE1_orig)
-      SWI_TOTAL_MAG_TE2_orig.nii.gz (SWI_MAG_TE2_orig)
-      SWI_TOTAL_PHA_TE1_orig.nii.gz (SWI_PHA_TE1_orig)
-      SWI_TOTAL_PHA_TE2_orig.nii.gz (SWI_PHA_TE2_orig)
-      MAG_TE1
-         SWI_3MM_UPDATED_V1.1_COILH9_ECHO1_{COIL}.nii.gz (SWI_MAG_TE1_COILS)
-      MAG_TE2
-         SWI_3MM_UPDATED_V1.1_COILH9_ECHO2_{COIL}.nii.gz (SWI_MAG_TE2_COILS)
-      PHA_TE1
-         SWI_3MM_UPDATED_V1.1_COILH10_ECHO1_{COIL}_PH.nii.gz (SWI_PHA_TE1_COILS)
-      PHA_TE2
-         SWI_3MM_UPDATED_V1.1_COILH10_ECHO2_{COIL}_PH.nii.gz (SWI_PHA_TE2_COILS)
-   ASL (ASL_dir)
-      raw (ASL_raw_dir)
-         ASL_M0.nii.gz (ASL_M0)
-         ASL_M0_NORM.nii.gz (ASL_M0_NORM)
-         ASL_PLD_0400_control.nii.gz (ASL_PLD_0400_control)
-         ASL_PLD_0400_label.nii.gz (ASL_PLD_0400_label)
-         ASL_PLD_0800_control.nii.gz (ASL_PLD_0800_control)
-         ASL_PLD_0800_label.nii.gz (ASL_PLD_0800_label)
-         ASL_PLD_1200_control.nii.gz (ASL_PLD_1200_control)
-         ASL_PLD_1200_label.nii.gz (ASL_PLD_1200_label)
-         ASL_PLD_1600_control.nii.gz (ASL_PLD_1600_control)
-         ASL_PLD_1600_label.nii.gz (ASL_PLD_1600_label)
-         ASL_PLD_2000_control.nii.gz (ASL_PLD_2000_control)
-         ASL_PLD_2000_label.nii.gz (ASL_PLD_2000_label)
-   DICOM (DICOM_dir)
-      T1.txt (T1_DICOM_HEADER)
-      T2_FLAIR.txt (T2_FLAIR_DICOM_HEADER)
-      dMRI.txt (dMRI_DICOM_HEADER)
-      rfMRI.txt (rfMRI_DICOM_HEADER)
-      tfMRI.txt (tfMRI_DICOM_HEADER)
-      SWI.txt (SWI_DICOM_HEADER)
-      ASL.txt (ASL_DICOM_HEADER)
-      T1_strings.txt (T1_DICOM_STRINGS)
-      T2_FLAIR_strings.txt (T2_FLAIR_DICOM_STRINGS)
-      dMRI_strings.txt (dMRI_DICOM_STRINGS)
-      rfMRI_strings.txt (rfMRI_DICOM_STRINGS)
-      tfMRI_strings.txt (tfMRI_DICOM_STRINGS)
-      SWI_strings.txt (SWI_DICOM_STRINGS)
-      ASL_strings.txt (ASL_DICOM_STRINGS)
-   raw (raw_dir)
-      T1_notNorm.nii.gz (T1_NOTNORM)
-      T2_FLAIR_notNorm.nii.gz (T2_FLAIR_NOTNORM)
-      AP_SBREF.nii.gz (AP_SBREF)
-      PA_SBREF.nii.gz (PA_SBREF)
-      SWI_TOTAL_MAG_notNorm_TE1.nii.gz (SWI_MAG_TE1_NOTNORM)
-      SWI_TOTAL_MAG_notNorm_TE2.nii.gz (SWI_MAG_TE2_NOTNORM)
diff --git a/data/MNI152_T1_1mm_BigFoV_facemask.nii.gz b/data/MNI152_T1_1mm_BigFoV_facemask.nii.gz
deleted file mode 100644
index bb9db35e6608ac03902587e2023ba29c391f3855..0000000000000000000000000000000000000000
Binary files a/data/MNI152_T1_1mm_BigFoV_facemask.nii.gz and /dev/null differ
diff --git a/data/MNI152_T1_1mm_brain_mask_dil_GD7.nii.gz b/data/MNI152_T1_1mm_brain_mask_dil_GD7.nii.gz
deleted file mode 100644
index 9d11bde2aa02bc90230b12a87d99850d33a61b67..0000000000000000000000000000000000000000
Binary files a/data/MNI152_T1_1mm_brain_mask_dil_GD7.nii.gz and /dev/null differ
diff --git a/data/MNI_to_MNI_BigFoV_facemask.mat b/data/MNI_to_MNI_BigFoV_facemask.mat
deleted file mode 100644
index 063ab124ad4e2bc38530327103b6ac1bc92b266f..0000000000000000000000000000000000000000
--- a/data/MNI_to_MNI_BigFoV_facemask.mat
+++ /dev/null
@@ -1,4 +0,0 @@
-1 0 0 50
-0 1 0 50
-0 0 1 100
-0 0 0 1
diff --git a/data/bb_fnirt.cnf b/data/bb_fnirt.cnf
deleted file mode 100644
index 940d9a199be7a40381def1720edf225230386c6e..0000000000000000000000000000000000000000
--- a/data/bb_fnirt.cnf
+++ /dev/null
@@ -1,46 +0,0 @@
-# 	name of reference image
-# --ref=/usr/local/fsl/data/standard/MNI152_T1_2mm.nii.gz
---ref=MNI152_T1_2mm
-#	name of file with mask in reference space
-# --refmask=/usr/local/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil.nii.gz
---refmask=MNI152_T1_2mm_brain_mask_dil
-#	If =1, use implicit masking based on value in --ref image. Default =1
---imprefm=1
-#	If =1, use implicit masking based on value in --in image, Default =1
---impinm=1
-#	Value to mask out in --ref image. Default =0.0
---imprefval=0
-#	Value to mask out in --in image. Default =0.0
---impinval=0
-#	sub-sampling scheme, default 4,2,1,1
---subsamp=4,4,2,2,1,1
-# 	Max # of non-linear iterations, default 5,5,5,5
---miter=5,5,5,5,5,10
-#	FWHM (in mm) of gaussian smoothing kernel for input volume, default 6,4,2,2
---infwhm=8,6,5,4.5,3,2
-#	FWHM (in mm) of gaussian smoothing kernel for ref volume, default 4,2,0,0
---reffwhm=8,6,5,4,2,0
-#	Weigth of membrane energy regularisation, default depending on --ssqlambda and --regmod switches. See user documetation.
---lambda=300,150,100,50,40,30
-#	Estimate intensity-mapping if set, deafult 1 (true)
---estint=1,1,1,1,1,0
-#       Apply the mask if set, default 1 (true)
---applyrefmask=1,1,1,1,1,1
-#       Apply the mask if set, default 1 (true)
---applyinmask=1
-#	(approximate) resolution (in mm) of warp basis in x-, y- and z-direction, default 10,10,10
---warpres=10,10,10
-#	If set (=1), lambda is weighted by current ssq, default 1
---ssqlambda=1
-#	Model for regularisation of warp-field [membrane_energy bending_energy], default bending_energy
---regmod=bending_energy
-#	Model for intensity-mapping [none global_linear global_non_linear local_linear global_non_linear_with_bias local_non_linear]
---intmod=global_non_linear_with_bias
-#	Order of poynomial for mapping intensities, default 5
---intorder=5
-#	Resolution (in mm) of bias-field modelling local intensities, default 50,50,50
---biasres=50,50,50
-#	Weight of regularisation for bias-field, default 10000
---biaslambda=10000
-#	If =1, ref image is used to calculate derivatives. Default =0
---refderiv=0
diff --git a/data/orig_FileTree.txt b/data/orig_FileTree.txt
deleted file mode 100644
index a1dcb6ec6232fcc02b4549797c23e00c3e0002fd..0000000000000000000000000000000000000000
--- a/data/orig_FileTree.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-{subject}
-  T1
-    T1.nii.gz (T1)
-    T1.json
-  T2_FLAIR
-    T2_FLAIR.nii.gz (T2)
-    T2_FLAIR.json
-  dMRI
-    raw
-      AP.nii.gz (AP)
-      AP.bval
-      AP.bvec
-      AP.json
-      PA.nii.gz (PA)
-      PA.bval
-      PA.bvec
-      PA.json
-  rfMRI
-    rfMRI.nii.gz (rfMRI)
-    rfMRI.json
-    rfMRI_SBREF.nii.gz (rfMRI_SBREF)
-    rfMRI_SBREF.json
-  tfMRI
-    tfMRI.nii.gz (tfMRI)
-    tfMRI.json
-    tfMRI_SBREF.nii.gz (tfMRI_SBREF)
-    tfMRI_SBREF.json
-  SWI
-    SWI_TOTAL_MAG_TE1.nii.gz (SWI_MAG_TE1)
-    SWI_TOTAL_MAG_TE1.json
-    SWI_TOTAL_MAG_TE2.nii.gz (SWI_MAG_TE2)
-    SWI_TOTAL_MAG_TE2.json
-    SWI_TOTAL_PHA_TE1.nii.gz (SWI_PHA_TE1)
-    SWI_TOTAL_PHA_TE1.json
-    SWI_TOTAL_PHA_TE2.nii.gz (SWI_PHA_TE2)
-    SWI_TOTAL_PHA_TE2.json
-    MAG_TE1
-      SWI_3MM_UPDATED_V1.1_COILH9_ECHO1_{COIL_MAG_TE1}.nii.gz (SWI_MAG_TE1_COILS)
-    MAG_TE2
-      SWI_3MM_UPDATED_V1.1_COILH9_ECHO2_{COIL_MAG_TE2}.nii.gz (SWI_MAG_TE2_COILS)
-    PHA_TE1
-      SWI_3MM_UPDATED_V1.1_COILH10_ECHO1_{COIL_PHA_TE1}_PH.nii.gz (SWI_PHA_TE1_COILS)
-    PHA_TE2
-      SWI_3MM_UPDATED_V1.1_COILH10_ECHO2_{COIL_PHA_TE2}_PH.nii.gz (SWI_PHA_TE2_COILS)
-  ASL
-     raw
-       ASL_M0.nii.gz (ASL_M0)
-       ASL_M0.json
-       ASL_M0_NORM.nii.gz (ASL_M0_NORM)
-       ASL_M0_NORM.json
-       ASL_PLD_0400_control.nii.gz (ASL_PLD_0400_control)
-       ASL_PLD_0400_control.json
-       ASL_PLD_0400_label.nii.gz (ASL_PLD_0400_label)
-       ASL_PLD_0400_label.json
-       ASL_PLD_0800_control.nii.gz (ASL_PLD_0800_control)
-       ASL_PLD_0800_control.json
-       ASL_PLD_0800_label.nii.gz (ASL_PLD_0800_label)
-       ASL_PLD_0800_label.json
-       ASL_PLD_1200_control.nii.gz (ASL_PLD_1200_control)
-       ASL_PLD_1200_control.json
-       ASL_PLD_1200_label.nii.gz (ASL_PLD_1200_label)
-       ASL_PLD_1200_label.json
-       ASL_PLD_1600_control.nii.gz (ASL_PLD_1600_control)
-       ASL_PLD_1600_control.json
-       ASL_PLD_1600_label.nii.gz (ASL_PLD_1600_label)
-       ASL_PLD_1600_label.json
-       ASL_PLD_2000_control.nii.gz (ASL_PLD_2000_control)
-       ASL_PLD_2000_control.json
-       ASL_PLD_2000_label.nii.gz (ASL_PLD_2000_label)
-       ASL_PLD_2000_label.json
-  DICOM
-      T1.txt (T1_DICOM_HEADER)
-      T2_FLAIR.txt (T2_FLAIR_DICOM_HEADER)
-      dMRI.txt (dMRI_DICOM_HEADER)
-      rfMRI.txt (rfMRI_DICOM_HEADER)
-      tfMRI.txt (tfMRI_DICOM_HEADER)
-      SWI.txt (SWI_DICOM_HEADER)
-      ASL.txt (ASL_DICOM_HEADER)
-      T1_strings.txt (T1_DICOM_STRINGS)
-      T2_strings.txt (T2_DICOM_STRINGS)
-      dMRI_strings.txt (dMRI_DICOM_STRINGS)
-      rfMRI_strings.txt (rfMRI_DICOM_STRINGS)
-      tfMRI_strings.txt (tfMRI_DICOM_STRINGS)
-      SWI_strings.txt (SWI_DICOM_STRINGS)
-      ASL_strings.txt (ASL_DICOM_STRINGS)
-  raw
-    T1_notNorm.nii.gz (T1_NOTNORM)
-    T1_notNorm.json
-    T2_FLAIR_notNorm.nii.gz (T2_FLAIR_NOTNORM)
-    T2_FLAIR_notNorm.json
-    AP_SBREF.nii.gz (AP_SBREF)
-    AP_SBREF.json
-    PA_SBREF.nii.gz (PA_SBREF)
-    PA_SBREF.json
-    SWI_TOTAL_MAG_notNorm_TE1.nii.gz (SWI_MAG_TE1_NOTNORM)
-    SWI_TOTAL_MAG_notNorm_TE1.json
-    SWI_TOTAL_MAG_notNorm_TE2.nii.gz (SWI_MAG_TE2_NOTNORM)
-    SWI_TOTAL_MAG_notNorm_TE2.json
diff --git a/init.sh b/init.sh
deleted file mode 100755
index 265fd031639454d66e51ec0905cc7c6d87a383c2..0000000000000000000000000000000000000000
--- a/init.sh
+++ /dev/null
@@ -1,6 +0,0 @@
-#!/bin/bash
-
-export FSLDIR="$HOME/fsl" # Change according to the user's FSL installation
-export BB_BIN_DIR="$HOME/BIP/" # Change according to the present folder
-export PATH="$BB_BIN_DIR:$BB_BIN_DIR/data:$BB_BIN_DIR/bb_pipeline:$PATH"
-export PYTHONPATH="$BB_BIN_DIR:$PYTHONPATH"
diff --git a/install_dir/.gitignore b/install_dir/.gitignore
deleted file mode 100644
index 9d7cbf04f28780547e37e9e1e0d6f74e5046f82a..0000000000000000000000000000000000000000
--- a/install_dir/.gitignore
+++ /dev/null
@@ -1,2 +0,0 @@
-.DS_Store
-list_*.txt
diff --git a/install_dir/gradunwarp_FMRIB.tar.gz b/install_dir/gradunwarp_FMRIB.tar.gz
deleted file mode 100644
index a0882a3647c74b892d73111de16a0349e4aeba0c..0000000000000000000000000000000000000000
Binary files a/install_dir/gradunwarp_FMRIB.tar.gz and /dev/null differ
diff --git a/install_dir/manual_install.txt b/install_dir/manual_install.txt
deleted file mode 100644
index 2dfb0308aa5d7fd8efd90ef96c4f26f52a05dde1..0000000000000000000000000000000000000000
--- a/install_dir/manual_install.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-
-# Installing FSL (with its own miniconda)
-curl https://fsl.fmrib.ox.ac.uk/fsldownloads/fslconda/releases/fslinstaller.py > fslinstaller.py
-python ./fslinstaller.py --no_env --dest $HOME/fsl/
-export FSLDIR="$HOME/fsl"
-export PATH="$FSLDIR/bin/:$PATH"
-pushd $FSLDIR
-git clone https://git.fmrib.ox.ac.uk/fsl/fslpy
-cd fslpy
-$FSLDIR/bin/pip install -e .
-popd
-rm -f ./fslinstaller.py
-
-# Creating a new python environment
-$FSLDIR/bin/conda create -n ukb python=3.10
-source $FSLDIR/bin/activate ukb
-pip install file-tree file-tree-fsl
-pip install git+https://git.fmrib.ox.ac.uk/ndcn0236/pipe-tree.git
-pip install -r $BB_BIN_DIR/install_dir/requirements.txt
-pip list &>  $BB_BIN_DIR/install_dir/list_`date +%Y_%m_%d`.txt
-
-# Install gradunwarp
-tar -zxvf gradunwarp_FMRIB.tar.gz
-cd gradunwarp_FMRIB
-python setup.py install
-cd ..
-rm -rf gradunwarp_FMRIB
diff --git a/install_dir/requirements.txt b/install_dir/requirements.txt
deleted file mode 100644
index 82aaba22bf9a4320ff1a3e462d6366dbf7756c27..0000000000000000000000000000000000000000
--- a/install_dir/requirements.txt
+++ /dev/null
@@ -1,28 +0,0 @@
-oxasl
-oxasl-deblur
-pickle-mixin
-Babel
-Jinja2
-MarkupSafe
-Pillow
-PyWavelets
-Sphinx
-Theano
-bottom
-deprecation
-jupyter-core
-niicat
-nose
-pygam
-retrying
-simplegeneric
-graphviz
-pickleshare
-ipython
-seaborn
-jsonschema
-python-utils
-zipp
-urllib3
-scikit-image
-scikit-learn
diff --git a/install_dir/setup.py b/install_dir/setup.py
deleted file mode 100644
index 9ff1a1247e6c5cd241653bf17f1290be023ed3c5..0000000000000000000000000000000000000000
--- a/install_dir/setup.py
+++ /dev/null
@@ -1,12 +0,0 @@
-from setuptools import setup,find_packages
-with open('requirements.txt', 'rt') as f:
-    install_requires = [l.strip() for l in f.readlines()]
-
-setup(name='BIP',
-	version='1.0.0',
-	description='Brain Imaging Pipeline',
-	author='Fidel Alfaro Almagro',
-	install_requires=install_requires,
-    scripts=['BIP/general/BIP'],
-	packages=find_packages(),
-	include_package_data=True)
diff --git a/my_wrappers/.gitignore b/my_wrappers/.gitignore
deleted file mode 100644
index e43b0f988953ae3a84b00331d0ccf5f7d51cb3cf..0000000000000000000000000000000000000000
--- a/my_wrappers/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-.DS_Store
diff --git a/my_wrappers/__init__.py b/my_wrappers/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/my_wrappers/standard_space_roi.py b/my_wrappers/standard_space_roi.py
deleted file mode 100644
index 76622b88598bc46928c2b160858c21e2e8e7c351..0000000000000000000000000000000000000000
--- a/my_wrappers/standard_space_roi.py
+++ /dev/null
@@ -1,49 +0,0 @@
-#!/usr/bin/env python
-#
-# standard_space_roi.py - Wrapper for the standard_space_roi command.
-#
-# Author: Fidel Alfaro Almagro
-#
-"""This module provides the :func:`standard_space_roi` function, a wrapper for
-the FSL `standard_space_roi`_ command.
-"""
-
-import fsl.utils.assertions as asrt
-from   fsl.wrappers import wrapperutils  as wutils
-
-@wutils.fileOrImage('input', 'maskMASK', 'roiMASK', 'ssref', 'altinput',outprefix='output')
-@wutils.fslwrapper
-def standard_space_roi(input, output, **kwargs):
-    """Wrapper for the ``standard_space_roi`` command.
-
-    :arg maskFOV:   Mask output using transformed standard space FOV (default)
-    :arg maskMASK:  Mask output using transformed standard space mask
-    :arg maskNONE:  Do not mask output
-
-    :arg roiFOV:    Cut down input FOV using bounding box of the transformed standard space FOV (default)
-    :arg roiMASK:   Cut down input FOV using nonbackground bounding box of the transformed standard space mask
-    :arg roiNONE:   Co not cut down input FOV
-
-    :arg ssref      Standard space reference image to use (default $FSLDIR/data/standard/MNI152_T1)
-    :arg altinput   Alternative input image to apply the ROI to (instead of the one used to register to the reference)
-    :arg d          Debug (don't delete intermediate files)
-    :arg b          Betpremask, equivalent to: -maskMASK $FSLDIR/data/standard/MNI152_T1_2mm_brain_mask_dil -roiNONE
-
-    Refer to the ``standard_space_roi`` command-line help for details on all arguments.
-    """
-    asrt.assertIsNifti(input)
-
-    valmap = {
-        'maskFOV' : wutils.SHOW_IF_TRUE,
-        'maskNONE' : wutils.SHOW_IF_TRUE,
-        'roiFOV' : wutils.SHOW_IF_TRUE,
-        'roiNONE' : wutils.SHOW_IF_TRUE,
-        'd' : wutils.SHOW_IF_TRUE,
-        'b' : wutils.SHOW_IF_TRUE,
-    }
-
-    cmd  = ['standard_space_roi', input, output]
-
-    cmd += wutils.applyArgStyle('-', valmap=valmap, **kwargs)
-
-    return cmd