diff --git a/bip/data/FileTree.tree b/bip/data/FileTree.tree index d87f4a55662ba2a788c317b89da71b2121fbce8f..a5a7a2b9fe5bd04b2ff59c2b150aa096d3c56a60 100644 --- a/bip/data/FileTree.tree +++ b/bip/data/FileTree.tree @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:6f9005fcde92e75653faa54de4e45f5bb29367989e01dadd2344bf52a67bd74e -size 23447 +oid sha256:cf920e3841a20ff78bef4a5b4193a1bbad29e8da5fe066b8190801726b54e621 +size 23422 diff --git a/bip/pipelines/dMRI_diff/__init__.py b/bip/pipelines/dMRI_diff/__init__.py index 6db1aff73354bf1150d4d723185d2bc9034053f2..9d9ce68cce31b2dbdd4e65fa9062b0c4dcdd54b8 100755 --- a/bip/pipelines/dMRI_diff/__init__.py +++ b/bip/pipelines/dMRI_diff/__init__.py @@ -52,5 +52,5 @@ def add_to_pipeline(ctx, pipe, tree): submit=cuda_bedpostx_dict, kwargs={'ctx' : ctx}) pipe(diff_autoptx.run, - submit=dict(jobtime=200, name=job_name(diff_bedpostx.run, subj)), + submit=dict(jobtime=200, name=job_name(diff_autoptx.run, subj)), kwargs={'ctx' : ctx}) diff --git a/bip/pipelines/struct_T1/T1_brain_extract.py b/bip/pipelines/struct_T1/T1_brain_extract.py index a8088c1847e8826a43d293b79632db433b77b96b..45178d3cce9fbe1925e13a44f2e3592551dfbb76 100755 --- a/bip/pipelines/struct_T1/T1_brain_extract.py +++ b/bip/pipelines/struct_T1/T1_brain_extract.py @@ -34,7 +34,6 @@ def run(ctx, logs_dir: Ref, T1: Ref, tmp_dir: Ref, - tmp_T1_prefix: Ref, T1_orig_to_MNI_warp: Out, T1_orig_ud_to_std_mat: Out, T1_to_MNI_warp_coef: Out, @@ -48,17 +47,20 @@ def run(ctx, T1_tmp_1_brain = op.join(tmp_dir, 'T1_tmp_1_brain.nii.gz') T1_tmp_orig_ud_to_std_mat = op.join(tmp_dir, 'T1_tmp_to_std.mat') T1_tmp = op.join(tmp_dir, 'T1.nii.gz') + T1_tmp_prefix = op.join(tmp_dir, 'T1') - #Calculate where does the brain start in the z dimension and extract the roi - head_top=int(round(float(wrappers.robustfov(T1_orig_ud).stdout[0].split()[7]))) - wrappers.fslmaths(T1_orig_ud).roi(0,-1,0,-1,head_top,170,0,1,).run(T1_tmp_1) + #Calculate where does the brain start in the z dimension and extract roi + head_top=int(round(float(wrappers.robustfov(T1_orig_ud).stdout[0].\ + split()[7]))) + wrappers.fslmaths(T1_orig_ud).roi(0,-1,0,-1,head_top,170,0,1,).\ + run(T1_tmp_1) #Run a (Recursive) brain extraction on the roi wrappers.bet(T1_tmp_1, T1_tmp_1_brain, robust=True) #Reduce the FOV of T1_orig_ud by calculating a registration #from T1_tmp_brain to ssref and apply it to T1_orig_ud - wrappers.standard_space_roi(T1_tmp_1_brain, tmp_T1_prefix, maskNONE=True, + wrappers.standard_space_roi(T1_tmp_1_brain, T1_tmp_prefix,maskNONE=True, ssref = ctx.MNI + '_brain', altinput=T1_orig_ud, d=True) copyfile(src=T1_tmp, dst=T1) @@ -72,7 +74,7 @@ def run(ctx, wrappers.concatxfm(atob=T1_to_T1_orig_ud_mat,btoc=T1_orig_ud_to_std_mat, atoc=T1_to_MNI_linear_mat) - #Non-linear registration to MNI using the previously calculated alignment + #Nonlinear registration to MNI using the previously calculated alignment wrappers.fnirt(src = T1, ref = ctx.MNI, aff = T1_to_MNI_linear_mat, config = ctx.get_data('fnirt/bb_fnirt.cnf'), refmask = ctx.get_data('MNI/MNI152_T1_1mm_brain_mask_dil_GD7.nii.gz'), @@ -81,10 +83,11 @@ def run(ctx, jout = T1_to_MNI_warp_jac, iout = T1_tmp_2, interp = 'spline') - #Combine all transforms (Gradient Distortion Unwarp and T1 to ctx.MNI) into one + #Combine all transforms (Gradient Distortion Unwarp and T1 to ctx.MNI) if ctx.gdc != '' : wrappers.convertwarp(ref=ctx.MNI, warp1=T1_orig_ud_warp, - midmat=T1_orig_ud_to_T1_mat, warp2=T1_to_MNI_warp, + midmat=T1_orig_ud_to_T1_mat, + warp2=T1_to_MNI_warp, out=T1_orig_to_MNI_warp) else: wrappers.convertwarp(ref=ctx.MNI, premat=T1_orig_ud_to_T1_mat, @@ -102,4 +105,5 @@ def run(ctx, w=T1_to_MNI_warp_coef_inv, out=T1_brain_mask, rel=True, interp='trilinear') wrappers.fslmaths(T1).mul(T1_brain_mask).run(T1_brain) - wrappers.fslmaths(T1_brain_to_MNI).mul(ctx.get_data(MNI_var_name)).run(T1_brain_to_MNI) + wrappers.fslmaths(T1_brain_to_MNI).mul(ctx.get_data(MNI_var_name)).\ + run(T1_brain_to_MNI)