diff --git a/diffmodels.h b/diffmodels.h index 0b79afa26f74c358fad881b1e26661c29e9fc388..5937e2f3cb56118ab3a246c5a1e4b38ec52cc37c 100644 --- a/diffmodels.h +++ b/diffmodels.h @@ -28,17 +28,36 @@ using namespace MISCMATHS; #define two_pi 0.636619772 +#define FSMALL 0.001 + #define f2x(x) (std::tan((x)/two_pi)) //fraction transformation used in the old model 1 #define x2f(x) (std::abs(two_pi*std::atan((x)))) #define f2beta(f) (std::asin(std::sqrt(f))) //fraction transformation used in the new model 1 #define beta2f(beta) (std::pow(std::sin(beta),2.0)) #define d2lambda(d) (std::sqrt(d)) //diffusivity transformation used in the new model 1 -#define lambda2d(lambda) (lambda*lambda) +#define lambda2d(lambda) (lambda*lambda) //d->lambda^2>=0 + +#define lowlim 4.0 //lowlim>0 +//#define k12l1(k1) (std::sqrt(k1-lowlim)) //transformation used in the fanning model for the Bingham principal eigenvalue k1 +//#define l12k1(l1) (l1*l1+lowlim) //k1->l1^2+lowlim>=lowlim>0 +#define UL 10000 //lowlim>0 +#define k12l1(k1) (std::asin(std::sqrt((k1-lowlim)/UL))) +#define l12k1(l1) (pow(sin(l1),2.0)*UL+lowlim) + +#define upperlim 100.0 //upperlim>1 +//#define Invupperlim 0.034482758620690 //1/(upperlim-1) +#define w2gam(w) (std::asin(std::sqrt((w-1)/(upperlim-1)))) //transformation used in the fanning model for the Bingham eigenvalue ratio k1/k2 +#define gam2w(gam) (1.0+std::pow(std::sin(gam),2.0)*(upperlim-1)) //w->1+(upperlim-1)*sin^2(gam), so that 1<=w<=upperlim + #define bigger(a,b) ((a)>(b)?(a):(b)) #define smaller(a,b) ((a)>(b)?(b):(a)) +#define nonzerosign(a) ((a)<0?-1:1) +#define tiny 1.0e-5 //Used for numerical diffenetiation +#define SQRTtiny (sqrt(tiny)) + //////////////////////////////////////////////// // DIFFUSION TENSOR MODEL @@ -96,7 +115,7 @@ public: return x; } ColumnVector get_v(const int& i)const{if(i==1)return m_v1;else if(i==2)return m_v2;else return m_v3;} - ColumnVector get_prediction()const; + ReturnMatrix get_prediction()const; SymmetricMatrix get_covar()const{return m_covar;} ColumnVector get_data()const{return Y;} Matrix get_Amat()const{return Amat;} @@ -232,19 +251,19 @@ protected: ColumnVector cosalpha; ColumnVector beta; - int npts; - int nfib; - + int npts; + int nfib; }; + /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -// Model 1 : mono-exponential (for single shell). Contrained optimization for the diffusivity, fractions and their sum<1 +// Model 1 : mono-exponential (for single shell). Constrained optimization for the diffusivity, fractions and their sum<1 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// class PVM_single_c : public PVM, public NonlinCF { public: PVM_single_c(const ColumnVector& iY, const Matrix& ibvecs, const Matrix& ibvals, - const int& nfibres, bool incl_f0=false):PVM(iY,ibvecs,ibvals,nfibres),m_include_f0(incl_f0){ + const int& nfibres, bool m_BIC=false, bool incl_f0=false, bool m_fan_angle=false):PVM(iY,ibvecs,ibvals,nfibres),m_include_f0(incl_f0),m_eval_BIC(m_BIC),m_return_fanning(m_fan_angle){ if (m_include_f0) nparams = nfib*3 + 3; @@ -254,6 +273,8 @@ public: m_f.ReSize(nfib); m_th.ReSize(nfib); m_ph.ReSize(nfib); + if (m_return_fanning) + m_fanning_angles.ReSize(nfib); } ~PVM_single_c(){} @@ -262,56 +283,17 @@ public: boost::shared_ptr<BFMatrix> hess(const NEWMAT::ColumnVector&p,boost::shared_ptr<BFMatrix> iptr)const; double cf(const NEWMAT::ColumnVector& p)const; NEWMAT::ReturnMatrix forwardModel(const NEWMAT::ColumnVector& p)const; + // other routines void fit(); - void sort(); - void fit_pvf(ColumnVector& x)const; + void sort(); //Sort compartments according to their volume fraction + void fit_pvf(ColumnVector& x)const; //Estimate the volume fractions given all the other parameters using Linear Least Squares. Used to better initialize the Nonlinear fitter void fix_fsum(ColumnVector& fs) const; - - void print()const{ - cout << "PVM (Single) FIT RESULTS " << endl; - cout << "S0 :" << m_s0 << endl; - cout << "D :" << m_d << endl; - for(int i=1;i<=nfib;i++){ - cout << "F" << i << " :" << m_f(i) << endl; - ColumnVector x(3); - x << sin(m_th(i))*cos(m_ph(i)) << sin(m_th(i))*sin(m_ph(i)) << cos(m_th(i)); - if(x(3)<0)x=-x; - float _th,_ph;cart2sph(x,_th,_ph); - cout << "TH" << i << " :" << _th*180.0/M_PI << " deg" << endl; - cout << "PH" << i << " :" << _ph*180.0/M_PI << " deg" << endl; - cout << "DIR" << i << " : " << x(1) << " " << x(2) << " " << x(3) << endl; - } - if (m_include_f0) - cout << "F0 :" << m_f0 << endl; - } - - //Print the estimates using a vector with the untransformed parameter values - void print(const ColumnVector& p)const{ - ColumnVector f(nfib); - - cout << "PARAMETER VALUES " << endl; - cout << "S0 :" << p(1) << endl; - cout << "D :" << p(2) << endl; - for(int i=3,ii=1;ii<=nfib;i+=3,ii++){ - f(ii) = beta2f(p(i))*partial_fsum(f,ii-1); - cout << "F" << ii << " :" << f(ii) << endl; - cout << "TH" << ii << " :" << p(i+1)*180.0/M_PI << " deg" << endl; - cout << "PH" << ii << " :" << p(i+2)*180.0/M_PI << " deg" << endl; - } - if (m_include_f0) - cout << "F0 :" << beta2f(p(nparams))*partial_fsum(f,nfib); - } - - //Returns 1-Sum(f_j), 1<=j<=ii. (ii<=nfib) - //Used for transforming beta to f and vice versa - float partial_fsum(ColumnVector& fs, int ii) const{ - float fsum=1.0; - for(int j=1;j<=ii;j++) - fsum-=fs(j); - return fsum; - } + float partial_fsum(ColumnVector& fs, int ii) const; //Returns 1-Sum(f_j), 1<=j<=ii. (ii<=nfib). Used for transforming beta to f and vice versa + void print()const; //Print the final estimates (after having them transformed) + void print(const ColumnVector& p)const; //Print the estimates using a vector with the untransformed parameter values + ReturnMatrix get_prediction()const; //Applies the forward model and gets the model predicted signal using the estimated parameter values (true,non-transformed space) float get_s0()const{return m_s0;} float get_f0()const{return m_f0;} @@ -322,7 +304,20 @@ public: float get_f(const int& i)const{return m_f(i);} float get_th(const int& i)const{return m_th(i);} float get_ph(const int& i)const{return m_ph(i);} - ReturnMatrix get_prediction()const; + float get_BIC() const{return m_BIC;} + ColumnVector get_fanning_angles() const{return m_fanning_angles;} + float get_fanning_angle(const int& i) const{return m_fanning_angles(i);} + vector<ColumnVector> get_invHes_e1() const{return m_invprHes_e1;} + ColumnVector get_invHes_e1(const int& i) const{return m_invprHes_e1[i-1];} + vector<Matrix> get_Hessian() const{return m_Hessian;} + Matrix get_Hessian(const int& i) const{return m_Hessian[i-1];} + + + //Functions used to obtain a prediction of the fanning angle (if any), associated with each fibre compartment + void eval_Hessian_at_peaks(); //For each fibre, compute a 3x3 Hessian of the cartesian (x,y,z) coordinates of the orientation + //evaluated at the estimated parameters + void Fanning_angles_from_Hessian(); //For each fibre, get the projection of the 2nd eigenvector of the Hessian to the fanning plane and get a fanning angle in [0,pi). + // useful functions for calculating signal and its derivatives // functions @@ -343,7 +338,14 @@ private: ColumnVector m_f; ColumnVector m_th; ColumnVector m_ph; - const bool m_include_f0; //Indicate whether f0 will be used in the model (an unattenuated signal compartment). That will be added as the last parameter + const bool m_include_f0; //Indicate whether f0 will be used in the model (an unattenuated signal compartment). That will be added as the last parameter + const bool m_eval_BIC; //Indicate whether the Bayesian Information Criterion for the fitted model is computed + const bool m_return_fanning; //Indicate whether fanning angles predictions are made. For each fitted fibre compartment i, use the second eigenvector of the inverse Hessian + //evaluated at this fibre orientation to predict fanning angle for i. + float m_BIC; //Bayesian Information Criterion for the fitted model + ColumnVector m_fanning_angles; //Use the second eigenvector of the inverse Hessian evaluated at each fibre orientation i to predict fanning angle for fibre compartment i. + vector<Matrix> m_Hessian; //Vector that keeps the Hessian matrix for each fibre orientation w.r.t. the Cartesian coordinates x,y,z, evaluated at the estimated orientation + vector<ColumnVector> m_invprHes_e1; //Vector that keeps the first eigenvector of the projected inverse Hessian for each fibre orientation w.r.t. the Cartesian coordinates x,y,z, evaluated at the estimated orientation }; @@ -461,11 +463,11 @@ class PVM_multi : public PVM, public NonlinCF { public: PVM_multi(const ColumnVector& iY, const Matrix& ibvecs, const Matrix& ibvals, - const int& nfibres, bool incl_f0=false):PVM(iY,ibvecs,ibvals,nfibres), m_include_f0(incl_f0){ + const int& nfibres, bool incl_f0=false):PVM(iY,ibvecs,ibvals,nfibres),m_include_f0(incl_f0){ - if (m_include_f0) + if (m_include_f0) nparams = nfib*3 + 4; - else + else nparams = nfib*3 + 3; m_f.ReSize(nfib); @@ -542,8 +544,8 @@ private: int nparams; float m_s0; float m_d; - float m_f0; float m_d_std; + float m_f0; ColumnVector m_f; ColumnVector m_th; ColumnVector m_ph; @@ -552,4 +554,208 @@ private: + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Ball & Binghams Fanning Model : Pseudo-Constrained optimization for the diffusivity, fractions and their sum<1, the eigenvalues +//of the Bingham Matrices. Use Levenberg-Marquardt to fit and get the gradient numerically +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +class PVM_Ball_Binghams : public PVM, public NonlinCF { +public: + PVM_Ball_Binghams(const ColumnVector& iY, + const Matrix& ibvecs, const Matrix& ibvals, + const int& nfibres, bool eval_BIC=false, bool incl_f0=false, bool grid_search=false):PVM(iY,ibvecs,ibvals,nfibres),m_eval_BIC(eval_BIC),m_include_f0(incl_f0), m_gridsearch(grid_search){ + + nparams_per_fibre=6; + + if (m_include_f0) + nparams = nfib*nparams_per_fibre + 3; + else + nparams = nfib*nparams_per_fibre + 2; + + Matrix temp; ColumnVector gvec(3); + //For each DW direction contains the dyadic product Matrix scaled by the b value: bvals(i)*bvecs(i)*bvecs(i)^T + for(int i=1;i<=npts;i++){ + gvec<< ibvecs(1,i) << ibvecs(2,i) << ibvecs(3,i); + temp<< gvec*gvec.t(); + temp=ibvals(1,i)*temp; + bvecs_dyadic.push_back(temp); + } + + m_f.ReSize(nfib); + m_th.ReSize(nfib); + m_ph.ReSize(nfib); + m_psi.ReSize(nfib); + m_k1.ReSize(nfib); + m_k2.ReSize(nfib); + m_BIC=1e15; + } + + ~PVM_Ball_Binghams(){} + + // routines from NonlinCF + NEWMAT::ReturnMatrix grad(const NEWMAT::ColumnVector& p) const; + boost::shared_ptr<BFMatrix> hess(const NEWMAT::ColumnVector&p,boost::shared_ptr<BFMatrix> iptr)const; + double cf(const NEWMAT::ColumnVector& p)const; + NEWMAT::ReturnMatrix forwardModel(const NEWMAT::ColumnVector& p)const; //Applies the forward model and gets a model predicted signal using the parameter values in p (transformed parameter space) + //Instead of returning the model predicted signal for each direction returns the individual signal contributions weighted by their fractions + //i.e. isotropic, anisotropic1, anisotropic2, etc. Summing those gives the signal + NEWMAT::ReturnMatrix forwardModel_compartments(const NEWMAT::ColumnVector& p)const; + + //Builds up the model predicted signal for each direction by using precomputed individual compartment signals, stored in Matrix Sig. + //Weights them with the fractions, scales with S0 and sums to get the signal. + NEWMAT::ReturnMatrix pred_from_compartments(const NEWMAT::ColumnVector& p, const NEWMAT::Matrix& Sig) const; + + //Builds up the model predicted signal for each direction by using precomputed individual compartment signals, stored in Matrix Sig. + //Weights them with the fractions, scales with S0 and sums to get the signal. + //The signal of the fibre compartment with index fib is recalculated. + NEWMAT::ReturnMatrix pred_from_compartments(const NEWMAT::ColumnVector& p, const NEWMAT::Matrix& Sig,const int& fib) const; + + + // other routines + void fit(); + void sort(); //Sort compartments according to their volume fraction + float partial_fsum(ColumnVector& fs, int ii) const; //Returns 1-Sum(f_j), 1<=j<=ii. (ii<=nfib). Used for transforming beta to f and vice versa + void print()const; //Print the final estimates (after having them untransformed) + void print(const ColumnVector& p)const; //Print the estimates using a vector with the transformed parameter values (i.e. need to untransform to get d,fs etc) + ReturnMatrix get_prediction()const; //Applies the forward model and gets the model predicted signal using the estimated parameter values (true,non-transformed space) + + float get_s0()const{return m_s0;} + float get_f0()const{return m_f0;} + float get_d()const{return m_d;} + ColumnVector get_f()const{return m_f;} + ColumnVector get_th()const{return m_th;} + ColumnVector get_ph()const{return m_ph;} + ColumnVector get_psi()const{return m_psi;} + ColumnVector get_k1()const{return m_k1;} + ColumnVector get_k2()const{return m_k2;} + float get_f(const int& i)const{return m_f(i);} + float get_th(const int& i)const{return m_th(i);} + float get_ph(const int& i)const{return m_ph(i);} + float get_psi(const int& i)const{return m_psi(i);} + ReturnMatrix get_fanning_vector(const int& i) const; //Returns a vector that indicates the fanning orientation + float get_k1(const int& i)const{return m_k1(i);} + float get_k2(const int& i)const{return m_k2(i);} + float get_BIC() const{return m_BIC;} + + + + // useful functions for calculating signal and its derivatives + float isoterm(const int& pt,const float& _d)const; + ReturnMatrix fractions_deriv(const int& nfib, const ColumnVector& fs, const ColumnVector& bs) const; + +private: + vector<Matrix> bvecs_dyadic; //For each DW direction contains the dyadic product Matrix scaled by the b value: bvals(i)*bvecs(i)*bvecs(i)^T + int nparams_per_fibre; + int nparams; + float m_s0; + float m_d; + float m_f0; + ColumnVector m_f; + ColumnVector m_th; + ColumnVector m_ph; + ColumnVector m_psi; + ColumnVector m_k1; + ColumnVector m_k2; + + float m_BIC; //Bayesian Information Criterion for the fitted model + + const bool m_eval_BIC; //Indicate whether the Bayesian Information Criterion for the fitted model is computed + const bool m_include_f0; //Indicate whether f0 will be used in the model (an unattenuated signal compartment). That will be added as the last parameter + const bool m_gridsearch; //Indicate whether a grid search will be used to initialize the fanning eigenvalues. This can take much longer to run. +}; + + + + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Ball & Watsons Fanning Model : Pseudo-Constrained optimization for the diffusivity, fractions and their sum<1, the spread of the +//Watson distribution. Use Levenberg-Marquardt to fit and get the gradient numerically +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +class PVM_Ball_Watsons : public PVM, public NonlinCF { +public: + PVM_Ball_Watsons(const ColumnVector& iY, + const Matrix& ibvecs, const Matrix& ibvals, + const int& nfibres, bool eval_BIC=false, bool incl_f0=false, bool grid_search=false):PVM(iY,ibvecs,ibvals,nfibres),m_eval_BIC(eval_BIC),m_include_f0(incl_f0), m_gridsearch(grid_search){ + + nparams_per_fibre=4; + + if (m_include_f0) + nparams = nfib*nparams_per_fibre + 3; + else + nparams = nfib*nparams_per_fibre + 2; + + m_f.ReSize(nfib); + m_th.ReSize(nfib); + m_ph.ReSize(nfib); + m_k.ReSize(nfib); + m_BIC=1e15; + } + + ~PVM_Ball_Watsons(){} + + // routines from NonlinCF + NEWMAT::ReturnMatrix grad(const NEWMAT::ColumnVector& p) const; + boost::shared_ptr<BFMatrix> hess(const NEWMAT::ColumnVector&p,boost::shared_ptr<BFMatrix> iptr)const; + double cf(const NEWMAT::ColumnVector& p)const; + NEWMAT::ReturnMatrix forwardModel(const NEWMAT::ColumnVector& p)const; //Applies the forward model and gets a model predicted signal using the parameter values in p (transformed parameter space) + //Instead of returning the model predicted signal for each direction returns the individual signal contributions weighted by their fractions + //i.e. isotropic, anisotropic1, anisotropic2, etc. Summing those gives the signal + NEWMAT::ReturnMatrix forwardModel_compartments(const NEWMAT::ColumnVector& p)const; + + //Builds up the model predicted signal for each direction by using precomputed individual compartment signals, stored in Matrix Sig. + //Weights them with the fractions, scales with S0 and sums to get the signal. + NEWMAT::ReturnMatrix pred_from_compartments(const NEWMAT::ColumnVector& p, const NEWMAT::Matrix& Sig) const; + + //Builds up the model predicted signal for each direction by using precomputed individual compartment signals, stored in Matrix Sig. + //Weights them with the fractions, scales with S0 and sums to get the signal. + //The signal of the fibre compartment with index fib is recalculated. + NEWMAT::ReturnMatrix pred_from_compartments(const NEWMAT::ColumnVector& p, const NEWMAT::Matrix& Sig,const int& fib) const; + + + // other routines + void fit(); + void sort(); //Sort compartments according to their volume fraction + float partial_fsum(ColumnVector& fs, int ii) const; //Returns 1-Sum(f_j), 1<=j<=ii. (ii<=nfib). Used for transforming beta to f and vice versa + void print()const; //Print the final estimates (after having them untransformed) + void print(const ColumnVector& p)const; //Print the estimates using a vector with the transformed parameter values (i.e. need to untransform to get d,fs etc) + ReturnMatrix get_prediction()const; //Applies the forward model and gets the model predicted signal using the estimated parameter values (true,non-transformed space) + + float get_s0()const{return m_s0;} + float get_f0()const{return m_f0;} + float get_d()const{return m_d;} + ColumnVector get_f()const{return m_f;} + ColumnVector get_th()const{return m_th;} + ColumnVector get_ph()const{return m_ph;} + ColumnVector get_k()const{return m_k;} + float get_f(const int& i)const{return m_f(i);} + float get_th(const int& i)const{return m_th(i);} + float get_ph(const int& i)const{return m_ph(i);} + float get_k(const int& i)const{return m_k(i);} + float get_BIC() const{return m_BIC;} + + // useful functions for calculating signal and its derivatives + float isoterm(const int& pt,const float& _d)const; + ReturnMatrix fractions_deriv(const int& nfib, const ColumnVector& fs, const ColumnVector& bs) const; + +private: + int nparams_per_fibre; + int nparams; + float m_s0; + float m_d; + float m_f0; + ColumnVector m_f; + ColumnVector m_th; + ColumnVector m_ph; + ColumnVector m_k; + + float m_BIC; //Bayesian Information Criterion for the fitted model + + const bool m_eval_BIC; //Indicate whether the Bayesian Information Criterion for the fitted model is computed + const bool m_include_f0; //Indicate whether f0 will be used in the model (an unattenuated signal compartment). That will be added as the last parameter + const bool m_gridsearch; //Indicate whether a grid search will be used to initialize the fanning eigenvalues. This can take much longer to run. + +}; + + + #endif