From baacbce6914b4c70c2da4f9489edf2988b74c63e Mon Sep 17 00:00:00 2001 From: Tim Behrens <behrens@fmrib.ox.ac.uk> Date: Thu, 9 Jun 2005 08:17:56 +0000 Subject: [PATCH] *** empty log message *** --- Makefile | 6 + fibre.h | 632 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 638 insertions(+) create mode 100644 fibre.h diff --git a/Makefile b/Makefile index 2251bd3..fcc8a28 100644 --- a/Makefile +++ b/Makefile @@ -17,9 +17,11 @@ MED=medianfilter ROM=reord_OM SAUS=sausages DIFF_PVM=diff_pvm +XFIBRES=xfibres RV=replacevols MDV=make_dyadic_vectors + DTIFITOBJS=dtifit.o dtifitOptions.o PTOBJS=probtrack.o probtrackOptions.o pt_alltracts.o pt_matrix.o pt_seeds_to_targets.o pt_simple.o pt_twomasks.o pt_matrix_mesh.o FTBOBJS=find_the_biggest.o @@ -28,6 +30,7 @@ MEDOBJS=medianfilter.o ROMOBJS=reord_OM.o SAUSOBJS=sausages.o DIFF_PVMOBJS=diff_pvm.o diff_pvmoptions.o +XFIBOBJS=xfibres.o RVOBJS=replacevols.o MDVOBJS=make_dyadic_vectors.o @@ -66,6 +69,9 @@ ${SAUS}: ${SAUSOBJS} ${DIFF_PVM}: ${DIFF_PVMOBJS} ${CXX} ${CXXFLAGS} ${LDFLAGS} -o $@ ${DIFF_PVMOBJS} ${DLIBS} +${XFIBRES}: ${XFIBOBJS} + ${CXX} ${CXXFLAGS} ${LDFLAGS} -o $@ ${XFIBOBJS} ${DLIBS} + ${RV}: ${RVOBJS} ${CXX} ${CXXFLAGS} ${LDFLAGS} -o $@ ${RVOBJS} ${DLIBS} diff --git a/fibre.h b/fibre.h new file mode 100644 index 0000000..949b56f --- /dev/null +++ b/fibre.h @@ -0,0 +1,632 @@ +/* Copyright (C) 2005 University of Oxford */ + +/* CCOPYRIGHT */ + +#ifndef __FIBRE_H_ +#define __FIBRE_H_ + + +#include <iostream> +#include "stdlib.h" +#include "libprob.h" +#include <cmath> +#include "miscmaths/miscprob.h" + +using namespace std; +using namespace NEWMAT; +using namespace MISCMATHS; + +namespace FIBRE{ + + class Fibre{ + float m_th; + float m_ph; + float m_f; + float m_lam; + float m_th_prop; + float m_ph_prop; + float m_f_prop; + float m_lam_prop; + float m_th_old; + float m_ph_old; + float m_f_old; + float m_lam_old; + float m_th_prior; + float m_ph_prior; + float m_f_prior; + float m_lam_prior; + float m_th_old_prior; + float m_ph_old_prior; + float m_f_old_prior; + float m_lam_old_prior; + float m_prior_en; + float m_old_prior_en; + int m_th_acc; + int m_th_rej; + int m_ph_acc; + int m_ph_rej; + int m_f_acc; + int m_f_rej; + int m_lam_acc; + int m_lam_rej; + ColumnVector m_Signal; + ColumnVector m_Signal_old; + const float& m_d; + const ColumnVector& m_alpha; + const ColumnVector& m_beta; + const Matrix& m_bvals; + public: + //constructors:: + Fibre(const float& d, const ColumnVector& alpha, + const ColumnVector& beta, const Matrix& bvals): + m_d(d), m_alpha(alpha), m_beta(beta), m_bvals(bvals){ + + m_th=0; + m_th_old=m_th; + m_ph=0; + m_ph_old=m_ph; + m_f=0; + m_f_old=m_f; + m_lam=1; + m_lam_old=m_lam; + m_th_prop=0.2; + m_ph_prop=0.2; + m_f_prop=0.2; + m_lam_prop=1; + + m_th_prior=0; + compute_th_prior(); + + m_ph_prior=0; + compute_ph_prior(); + + m_f_prior=0; + compute_f_prior(); + + m_lam_prior=0; + compute_lam_prior(); + + m_th_acc=0; m_th_rej=0; + m_ph_acc=0; m_ph_rej=0; + m_f_acc=0; m_f_rej=0; + m_lam_acc=0; m_lam_rej=0; + m_Signal.ReSize(alpha.Nrows()); + m_Signal=0; + m_Signal_old=m_Signal; + } + Fibre(const float& d, const ColumnVector& alpha, + const ColumnVector& beta, const Matrix& bvals, + const float& th, const float& ph, const float& f, + const float& lam, const int Npts) : + m_th(th), m_ph(ph), m_f(f), m_lam(lam), m_d(d), + m_alpha(alpha), m_beta(beta), m_bvals(bvals) + { + + m_th_old=m_th; + m_ph_old=m_ph; + m_f_old=m_f; + m_lam_old=m_lam; + m_th_prop=0.2; + m_ph_prop=0.2; + m_f_prop=0.2; + m_lam_prop=1; + + m_th_prior=0; + compute_th_prior(); + + m_ph_prior=0; + compute_ph_prior(); + + m_f_prior=0; + compute_f_prior(); + + m_lam_prior=0; + compute_lam_prior(); + + m_th_acc=0; m_th_rej=0; + m_ph_acc=0; m_ph_rej=0; + m_f_acc=0; m_f_rej=0; + m_lam_acc=0; m_lam_rej=0; + m_Signal.ReSize(alpha.Nrows()); + m_Signal=0; + m_Signal_old=m_Signal; + } + ~Fibre(){} + + inline float get_th() const{ return m_th;} + inline void set_th(const float th){ m_th=th; } + + inline float get_ph() const{ return m_ph;} + inline void set_ph(const float ph){ m_ph=ph; } + + inline float get_f() const{ return m_f;} + inline void set_f(const float f){ m_f=f; } + + inline ColumnVector getSignal() const{ //flitney had "inline ColumnVector&" here + return m_Signal; // What is the difference? + } + + inline void restoreSignal() { + m_Signal=m_Signal_old; + } + inline void setSignal(const ColumnVector& Signal){ + m_Signal=Signal; + } + + inline void setSignal(const int i, const float val){ + m_Signal(i)=val; + } + + inline float get_prior() const{ return m_prior_en;} + + + inline void update_proposals(){ + m_th_prop*=sqrt(float(m_th_acc+1)/float(m_th_rej+1)); + m_ph_prop*=sqrt(float(m_ph_acc+1)/float(m_ph_rej+1)); + m_f_prop*=sqrt(float(m_f_acc+1)/float(m_f_rej+1)); + m_lam_prop*=sqrt(float(m_lam_acc+1)/float(m_lam_rej+1)); + m_th_acc=0; + m_th_rej=0; + m_ph_acc=0; + m_ph_rej=0; + m_f_acc=0; + m_f_rej=0; + m_lam_acc=0; + m_lam_rej=0; + } + + + inline bool compute_th_prior(){ + m_th_old_prior=m_th_prior; + m_th_prior=-log(fabs(sin(m_th)/2)); + return false; //instant rejection flag + } + inline bool compute_ph_prior(){ + m_ph_old_prior=m_ph_prior; + m_ph_prior=0; + return false; + } + inline bool compute_f_prior(){ + //note(gamma(lam+1)/(gamma(1)*gamma(lam)) = lam + // the following is a beta distribution with alpha=0 + m_f_old_prior=m_f_prior; + if (m_f<0 | m_f>=1 ) + return true; + else{ + m_f_prior=-(log(m_lam) + (m_lam-1)*log(1-m_f)); + return false; + } + } + + inline bool compute_lam_prior(){ + m_lam_old_prior=m_lam_prior; + if(m_lam <0 | m_lam > 1e16) + return true; + else{ + m_lam_prior=0; + return false; + } + } + + inline void compute_prior(){ + m_old_prior_en=m_prior_en; + m_prior_en=m_th_prior+m_ph_prior+m_f_prior+m_lam_prior; + } + + void compute_signal(){ + m_Signal_old=m_Signal; + for (int i = 1; i <= m_alpha.Nrows(); i++){ + float angtmp=cos(m_ph-m_beta(i))*sin(m_alpha(i))*sin(m_th) + cos(m_alpha(i))*cos(m_th); + angtmp=angtmp*angtmp; + m_Signal(i)=exp(-m_d*m_bvals(1,i)*angtmp); + } + } + + + inline bool propose_th(){ + m_th_old=m_th; + m_th+=normrnd().AsScalar()*m_th_prop; + bool rejflag=compute_th_prior();//inside this it stores the old prior + compute_prior(); + compute_signal(); + return rejflag; + }; + + inline void accept_th(){ + m_th_acc++; + } + + inline void reject_th(){ + m_th=m_th_old; + m_th_prior=m_th_old_prior; + m_prior_en=m_old_prior_en; + m_Signal=m_Signal_old;//Is there a better way of doing this?? + m_th_rej++; + } + + inline bool propose_ph(){ + m_ph_old=m_ph; + m_ph+=normrnd().AsScalar()*m_ph_prop; + bool rejflag=compute_ph_prior();//inside this it stores the old prior + compute_prior(); + compute_signal(); + return rejflag; + }; + + inline void accept_ph(){ + m_ph_acc++; + } + + inline void reject_ph(){ + m_ph=m_ph_old; + m_ph_prior=m_ph_old_prior; + m_prior_en=m_old_prior_en; + m_Signal=m_Signal_old;//Is there a better way of doing this?? + m_ph_rej++; + } + + inline bool propose_f(){ + m_f_old=m_f; + m_f+=normrnd().AsScalar()*m_f_prop; + bool rejflag=compute_f_prior(); + compute_prior(); + return rejflag; + }; + + inline void accept_f(){ + m_f_acc++; + } + + inline void reject_f(){ + m_f=m_f_old; + m_f_prior=m_f_old_prior; + m_prior_en=m_old_prior_en; + m_f_rej++; + } + + inline bool propose_lam(){ + m_lam_old=m_lam; + m_lam+=normrnd().AsScalar()*m_lam_prop; + bool rejflag=compute_lam_prior(); + compute_f_prior(); + compute_prior(); + return rejflag; + }; + + inline void accept_lam(){ + m_lam_acc++; + } + + inline void reject_lam(){ + m_lam=m_lam_old; + m_lam_prior=m_lam_old_prior; + m_prior_en=m_old_prior_en; + m_lam_rej++; + } + + + + + friend ostream& operator<<(ostream& ostr,const Fibre& p); + + }; +//overload << + inline ostream& operator<<(ostream& ostr,const Fibre& p){ + ostr<<p.m_th<<" "<<p.m_ph<<" "<<p.m_f<<endl; + return ostr; + } + + + class Multifibre{ + vector<Fibre> m_fibres; + float m_d; + float m_d_old; + float m_d_prop; + float m_d_prior; + float m_d_old_prior; + float m_d_acc; + float m_d_rej; + float m_S0; + float m_S0_old; + float m_S0_prop; + float m_S0_prior; + float m_S0_old_prior; + float m_S0_acc; + float m_S0_rej; + float m_prior_en; + float m_old_prior_en; + float m_likelihood_en; + float m_old_likelihood_en; + float m_energy; + float m_old_energy; + + const ColumnVector& m_data; + const ColumnVector& m_alpha; + const ColumnVector& m_beta; + const Matrix& m_bvals; + + public: + Multifibre(const ColumnVector& data,const ColumnVector& alpha, + const ColumnVector& beta, const Matrix& b, const Matrix& Amat, int N ): + m_data(data), m_alpha(alpha), m_beta(beta), m_bvals(b){ + + // initialise(Amat,N); + } + + ~Multifibre(){} + + /* + void initialise(const Matrix& Amat, int N){ + //initialising + ColumnVector logS(m_data.Nrows()),tmp(m_data.Nrows()),Dvec(7),dir(3); + SymmetricMatrix tens; //Basser's Diffusion Tensor; + DiagonalMatrix Dd; //eigenvalues + Matrix Vd; //eigenvectors + float mDd,fsquared; + float th,ph,f,D,S0; + + for ( int i = 1; i <= logS.Nrows(); i++) + { + if(m_data(i)>0){ + logS(i)=log(m_data(i)); + } + else{ + logS(i)=0; + } + } + Dvec = -pinv(Amat)*logS; + if( Dvec(7) > -23 ){ //23=maxlogfloat + S0=exp(-Dvec(7)); + } + else{ + S0=m_data.MaximumAbsoluteValue(); + } + + for ( int i = 1; i <= logS.Nrows(); i++) + { + if(S0<m_data.Sum()/m_data.Nrows()){ S0=m_data.MaximumAbsoluteValue(); } + logS(i)=(m_data(i)/S0)>0.01 ? log((i)):log(0.01*S0); + } + Dvec = -pinv(Amat)*logS; + S0=exp(-Dvec(7)); + if(S0<m_data.Sum()/S.Nrows()){ S0=m_data.Sum()/m_data.Nrows(); } + tens = vec2tens(Dvec); + EigenValues(tens,Dd,Vd); + mDd = Dd.Sum()/Dd.Nrows(); + int maxind = Dd(1) > Dd(2) ? 1:2; //finding maximum eigenvalue + maxind = Dd(maxind) > Dd(3) ? maxind:3; + dir << Vd(1,maxind) << Vd(2,maxind) << Vd(3,maxind); + cart2sph(dir,th,ph); + th= mod(th,M_PI); + ph= mod(ph,2*M_PI); + D = Dd(maxind); + + float numer=1.5(*(Dd(1)-mDd)*(Dd(1)-mDd)+(Dd(2)-mDd)*(Dd(2)-mDd)+(Dd(3)-mDd)*(Dd(3)-mDd)); + float denom=(Dd(1)*Dd(1)+Dd(2)*Dd(2)+Dd(3)*Dd(3)); + if(denom>0) fsquared=numer/denom; + else fsquared=0; + if(fsquared>0){f=sqrt(fsquared);} + else{f=0;} + if(f>=0.95) f=0.95; + if(f<=0.001) f=0.001; + + + m_d=D; m_d_old=m_d; + m_S0=S0; m_S0_old=m_S0; + + + + + + } + + */ + + inline bool compute_d_prior(){ + m_d_old_prior=m_d_prior; + if(m_d<0) + return true; + else{ + m_d_prior=0; + return false; + } + } + + inline bool compute_S0_prior(){ + m_S0_old_prior=m_S0_prior; + if(m_S0<0) return true; + else + { + m_S0_prior=0; + return false; + } + } + + inline void compute_prior(){ + m_old_prior_en=m_prior_en; + m_prior_en=m_d_prior+m_S0_prior; + for(unsigned int f=0;f<m_fibres.size(); f++){ + m_prior_en=m_prior_en+m_fibres[f].get_prior(); + } + } + + void compute_likelihood(){ + m_old_likelihood_en=m_likelihood_en; + ColumnVector pred(m_alpha.Nrows()); + pred=0; + float fsum=0; + for(unsigned int f=0;f<m_fibres.size();f++){ + pred=pred+m_fibres[f].get_f()*m_fibres[f].getSignal(); + fsum+=m_fibres[f].get_f(); + } + for(int i=1;i<=pred.Nrows();i++){ + pred(i)=pred(i)+(1-fsum)*exp(-m_d*m_bvals(1,i)); + } + pred=pred*m_S0; + float sumsquares=(m_data-pred).SumSquare(); + m_likelihood_en=(m_data.Nrows()/2)*log(sumsquares/2); + } + + + inline void compute_energy(){ + m_old_energy=m_energy; + m_energy=m_prior_en+m_likelihood_en; + } + + bool test_energy(){ + float tmp=exp(m_old_energy-m_energy); + return (tmp>unifrnd().AsScalar()); + } + + inline void restore_energy(){ + m_energy=m_old_energy; + } + + + inline bool propose_d(){ + m_d_old=m_d; + m_d+=normrnd().AsScalar()*m_d_prop; + bool rejflag=compute_d_prior();//inside this it stores the old prior + for(unsigned int f=0;f<m_fibres.size();f++) + m_fibres[f].compute_signal(); + return rejflag; + }; + + inline void accept_d(){ + m_d_acc++; + } + + inline void reject_d(){ + m_d=m_d_old; + m_d_prior=m_d_old_prior; + m_prior_en=m_old_prior_en; + for(unsigned int f=0;f<m_fibres.size();f++) + m_fibres[f].restoreSignal(); + m_d_rej++; + } + + inline bool propose_S0(){ + m_S0_old=m_S0; + m_S0+=normrnd().AsScalar()*m_S0_prop; + bool rejflag=compute_S0_prior();//inside this it stores the old prior + return rejflag; + }; + + inline void accept_S0(){ + m_S0_acc++; + } + + inline void reject_S0(){ + m_S0=m_S0_old; + m_S0_prior=m_S0_old_prior; + m_prior_en=m_old_prior_en; + m_S0_rej++; + } + + inline void update_proposals(){ + m_d_prop*=sqrt(float(m_d_acc+1)/float(m_d_rej+1)); + m_S0_prop*=sqrt(float(m_S0_acc+1)/float(m_S0_rej+1)); + m_d_acc=0; + m_d_rej=0; + m_S0_acc=0; + m_S0_rej=0; + } + + + + + + void jump(){ + + if(!propose_d()){ + compute_prior(); + compute_likelihood(); + compute_energy(); + if(test_energy()) + accept_d(); + else + reject_d(); + } + else{ + reject_d(); + } + + if(!propose_S0()){ + compute_prior(); + compute_likelihood(); + compute_energy(); + if(test_energy()) + accept_S0(); + else + reject_S0(); + } + else{ + reject_S0(); + } + + for(unsigned int f=0;f<m_fibres.size();f++){ + if(!m_fibres[f].propose_th()){ + compute_prior(); + compute_likelihood(); + compute_energy(); + if(test_energy()) + m_fibres[f].accept_th(); + else + m_fibres[f].reject_th(); + } + else { + m_fibres[f].reject_th(); + } + + if(!m_fibres[f].propose_ph()){ + compute_prior(); + compute_likelihood(); + compute_energy(); + if(test_energy()) + m_fibres[f].accept_ph(); + else + m_fibres[f].reject_ph(); + } + else{ + m_fibres[f].reject_ph(); + } + + if(!m_fibres[f].propose_f()){ + compute_prior(); + compute_likelihood(); + compute_energy(); + if(test_energy()) + m_fibres[f].accept_f(); + else + m_fibres[f].reject_f(); + } + else{ + m_fibres[f].reject_f(); + } + + + if(!m_fibres[f].propose_lam()){ + compute_prior(); + // compute_likelihood(); //lam does not affect the likelihood. + compute_energy(); + if(test_energy()) + m_fibres[f].accept_lam(); + else + m_fibres[f].reject_lam(); + } + else{ + m_fibres[f].reject_lam(); + } + } + + + } + + + +}; + + +} + +#endif -- GitLab