From baacbce6914b4c70c2da4f9489edf2988b74c63e Mon Sep 17 00:00:00 2001
From: Tim Behrens <behrens@fmrib.ox.ac.uk>
Date: Thu, 9 Jun 2005 08:17:56 +0000
Subject: [PATCH] *** empty log message ***

---
 Makefile |   6 +
 fibre.h  | 632 +++++++++++++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 638 insertions(+)
 create mode 100644 fibre.h

diff --git a/Makefile b/Makefile
index 2251bd3..fcc8a28 100644
--- a/Makefile
+++ b/Makefile
@@ -17,9 +17,11 @@ MED=medianfilter
 ROM=reord_OM
 SAUS=sausages
 DIFF_PVM=diff_pvm
+XFIBRES=xfibres
 RV=replacevols
 MDV=make_dyadic_vectors
 
+
 DTIFITOBJS=dtifit.o dtifitOptions.o
 PTOBJS=probtrack.o probtrackOptions.o pt_alltracts.o pt_matrix.o pt_seeds_to_targets.o pt_simple.o pt_twomasks.o pt_matrix_mesh.o
 FTBOBJS=find_the_biggest.o
@@ -28,6 +30,7 @@ MEDOBJS=medianfilter.o
 ROMOBJS=reord_OM.o
 SAUSOBJS=sausages.o
 DIFF_PVMOBJS=diff_pvm.o diff_pvmoptions.o
+XFIBOBJS=xfibres.o
 RVOBJS=replacevols.o
 MDVOBJS=make_dyadic_vectors.o
 
@@ -66,6 +69,9 @@ ${SAUS}:    	${SAUSOBJS}
 ${DIFF_PVM}:    	${DIFF_PVMOBJS}
 		   ${CXX} ${CXXFLAGS} ${LDFLAGS} -o $@ ${DIFF_PVMOBJS} ${DLIBS}
 
+${XFIBRES}:    	${XFIBOBJS}
+		   ${CXX} ${CXXFLAGS} ${LDFLAGS} -o $@ ${XFIBOBJS} ${DLIBS}
+
 ${RV}:    	${RVOBJS}
 		   ${CXX} ${CXXFLAGS} ${LDFLAGS} -o $@ ${RVOBJS} ${DLIBS}
 
diff --git a/fibre.h b/fibre.h
new file mode 100644
index 0000000..949b56f
--- /dev/null
+++ b/fibre.h
@@ -0,0 +1,632 @@
+/*  Copyright (C) 2005 University of Oxford  */
+
+/*  CCOPYRIGHT  */
+
+#ifndef __FIBRE_H_
+#define __FIBRE_H_
+
+
+#include <iostream>
+#include "stdlib.h"
+#include "libprob.h"
+#include <cmath>
+#include "miscmaths/miscprob.h"
+
+using namespace std; 
+using namespace NEWMAT;
+using namespace MISCMATHS;
+
+namespace FIBRE{
+  
+  class Fibre{
+    float m_th;
+    float m_ph;
+    float m_f;
+    float m_lam;
+    float m_th_prop;
+    float m_ph_prop;
+    float m_f_prop;
+    float m_lam_prop;
+    float m_th_old;
+    float m_ph_old;
+    float m_f_old;
+    float m_lam_old;
+    float m_th_prior;
+    float m_ph_prior;
+    float m_f_prior;
+    float m_lam_prior;
+    float m_th_old_prior;
+    float m_ph_old_prior;
+    float m_f_old_prior;
+    float m_lam_old_prior;
+    float m_prior_en;
+    float m_old_prior_en;
+    int m_th_acc; 
+    int m_th_rej;
+    int m_ph_acc;
+    int m_ph_rej; 
+    int m_f_acc;
+    int m_f_rej;
+    int m_lam_acc; 
+    int m_lam_rej;
+    ColumnVector m_Signal; 
+    ColumnVector m_Signal_old; 
+    const float& m_d;
+    const ColumnVector& m_alpha;
+    const ColumnVector& m_beta;
+    const Matrix& m_bvals;
+  public:
+    //constructors::
+    Fibre(const float& d, const ColumnVector& alpha, 
+	  const ColumnVector& beta, const Matrix& bvals):
+      m_d(d), m_alpha(alpha), m_beta(beta), m_bvals(bvals){
+
+      m_th=0;
+      m_th_old=m_th;
+      m_ph=0;
+      m_ph_old=m_ph;
+      m_f=0;
+      m_f_old=m_f;
+      m_lam=1;
+      m_lam_old=m_lam;
+      m_th_prop=0.2;
+      m_ph_prop=0.2;
+      m_f_prop=0.2;
+      m_lam_prop=1;
+
+      m_th_prior=0;
+      compute_th_prior();
+
+      m_ph_prior=0;
+      compute_ph_prior();
+      
+      m_f_prior=0;
+      compute_f_prior();
+      
+      m_lam_prior=0;
+      compute_lam_prior();
+      
+      m_th_acc=0; m_th_rej=0;
+      m_ph_acc=0; m_ph_rej=0;
+      m_f_acc=0; m_f_rej=0;
+      m_lam_acc=0; m_lam_rej=0;
+      m_Signal.ReSize(alpha.Nrows());
+      m_Signal=0;
+      m_Signal_old=m_Signal;
+    }
+    Fibre(const float& d, const ColumnVector& alpha, 
+	  const ColumnVector& beta, const Matrix& bvals, 
+	  const float& th, const float& ph, const float& f, 
+	  const float& lam, const int Npts) : 
+      m_th(th), m_ph(ph), m_f(f), m_lam(lam), m_d(d), 
+      m_alpha(alpha), m_beta(beta), m_bvals(bvals)
+     {
+
+      m_th_old=m_th;
+      m_ph_old=m_ph;
+      m_f_old=m_f;
+      m_lam_old=m_lam;
+      m_th_prop=0.2;
+      m_ph_prop=0.2;
+      m_f_prop=0.2;
+      m_lam_prop=1;
+
+      m_th_prior=0;
+      compute_th_prior();
+
+      m_ph_prior=0;
+      compute_ph_prior();
+      
+      m_f_prior=0;
+      compute_f_prior();
+      
+      m_lam_prior=0;
+      compute_lam_prior();
+      
+      m_th_acc=0; m_th_rej=0;
+      m_ph_acc=0; m_ph_rej=0;
+      m_f_acc=0; m_f_rej=0;
+      m_lam_acc=0; m_lam_rej=0;
+      m_Signal.ReSize(alpha.Nrows());
+      m_Signal=0;
+      m_Signal_old=m_Signal;
+    }
+    ~Fibre(){}
+    
+    inline float get_th() const{ return m_th;}
+    inline void set_th(const float th){ m_th=th; }
+    
+    inline float get_ph() const{ return m_ph;}
+    inline void set_ph(const float ph){ m_ph=ph; }
+    
+    inline float get_f() const{ return m_f;}
+    inline void set_f(const float f){ m_f=f; }
+    
+    inline ColumnVector getSignal() const{  //flitney had "inline ColumnVector&" here
+      return m_Signal;                      // What is the difference?
+    }
+    
+    inline void restoreSignal() {
+      m_Signal=m_Signal_old;
+    }
+    inline void setSignal(const ColumnVector& Signal){
+      m_Signal=Signal;
+    }
+    
+    inline void setSignal(const int i, const float val){
+      m_Signal(i)=val;
+    }
+
+    inline float get_prior() const{ return m_prior_en;}
+    
+
+    inline void update_proposals(){
+      m_th_prop*=sqrt(float(m_th_acc+1)/float(m_th_rej+1));
+      m_ph_prop*=sqrt(float(m_ph_acc+1)/float(m_ph_rej+1));
+      m_f_prop*=sqrt(float(m_f_acc+1)/float(m_f_rej+1));
+      m_lam_prop*=sqrt(float(m_lam_acc+1)/float(m_lam_rej+1));
+      m_th_acc=0; 
+      m_th_rej=0;
+      m_ph_acc=0; 
+      m_ph_rej=0;
+      m_f_acc=0; 
+      m_f_rej=0;
+      m_lam_acc=0; 
+      m_lam_rej=0;
+    }
+    
+    
+    inline bool compute_th_prior(){
+      m_th_old_prior=m_th_prior;
+      m_th_prior=-log(fabs(sin(m_th)/2));
+      return false; //instant rejection flag
+    }
+    inline bool compute_ph_prior(){
+      m_ph_old_prior=m_ph_prior;
+      m_ph_prior=0;
+      return false;
+    }
+    inline bool compute_f_prior(){
+      //note(gamma(lam+1)/(gamma(1)*gamma(lam)) = lam
+      // the following is a beta distribution with alpha=0
+      m_f_old_prior=m_f_prior;
+      if (m_f<0 | m_f>=1 )
+	return true;
+      else{
+	m_f_prior=-(log(m_lam) + (m_lam-1)*log(1-m_f));
+	return false;
+      }
+    }
+    
+    inline bool compute_lam_prior(){
+      m_lam_old_prior=m_lam_prior;
+      if(m_lam <0 | m_lam > 1e16)
+	return true;
+      else{
+	m_lam_prior=0;
+	return false;
+      }
+    }
+    
+    inline void compute_prior(){
+      m_old_prior_en=m_prior_en;
+      m_prior_en=m_th_prior+m_ph_prior+m_f_prior+m_lam_prior;
+    }
+
+     void compute_signal(){
+       m_Signal_old=m_Signal;
+       for (int i = 1; i <= m_alpha.Nrows(); i++){
+ 	float angtmp=cos(m_ph-m_beta(i))*sin(m_alpha(i))*sin(m_th) + cos(m_alpha(i))*cos(m_th);
+ 	angtmp=angtmp*angtmp;
+ 	m_Signal(i)=exp(-m_d*m_bvals(1,i)*angtmp);
+       }
+     }
+
+
+    inline bool propose_th(){
+      m_th_old=m_th;
+      m_th+=normrnd().AsScalar()*m_th_prop;
+      bool rejflag=compute_th_prior();//inside this it stores the old prior
+      compute_prior();
+      compute_signal();
+      return rejflag;
+    };
+    
+    inline void accept_th(){
+      m_th_acc++;      
+    }
+    
+    inline void reject_th(){
+      m_th=m_th_old;
+      m_th_prior=m_th_old_prior;
+      m_prior_en=m_old_prior_en;
+      m_Signal=m_Signal_old;//Is there a better way of doing this??
+      m_th_rej++;
+    }
+    
+    inline bool propose_ph(){
+      m_ph_old=m_ph;
+      m_ph+=normrnd().AsScalar()*m_ph_prop;
+       bool rejflag=compute_ph_prior();//inside this it stores the old prior
+      compute_prior();
+      compute_signal();
+      return rejflag;
+    };
+    
+    inline void accept_ph(){
+      m_ph_acc++;
+    }
+    
+    inline void reject_ph(){
+      m_ph=m_ph_old;
+      m_ph_prior=m_ph_old_prior;
+      m_prior_en=m_old_prior_en;
+      m_Signal=m_Signal_old;//Is there a better way of doing this??
+      m_ph_rej++;
+    }
+    
+    inline bool propose_f(){
+      m_f_old=m_f;
+      m_f+=normrnd().AsScalar()*m_f_prop;
+      bool rejflag=compute_f_prior();
+      compute_prior();
+      return rejflag;
+    };
+    
+    inline void accept_f(){
+      m_f_acc++;
+    }
+    
+    inline void reject_f(){
+      m_f=m_f_old;
+      m_f_prior=m_f_old_prior;
+      m_prior_en=m_old_prior_en;
+      m_f_rej++;
+    }
+    
+    inline bool propose_lam(){
+      m_lam_old=m_lam;
+      m_lam+=normrnd().AsScalar()*m_lam_prop;
+      bool rejflag=compute_lam_prior();
+      compute_f_prior();
+      compute_prior();
+      return rejflag;
+    };
+    
+    inline void accept_lam(){
+      m_lam_acc++;
+    }
+    
+    inline void reject_lam(){
+      m_lam=m_lam_old;
+      m_lam_prior=m_lam_old_prior;
+      m_prior_en=m_old_prior_en;
+      m_lam_rej++;
+    }
+    
+    
+    
+
+    friend  ostream& operator<<(ostream& ostr,const Fibre& p);
+
+  };
+//overload <<
+  inline ostream& operator<<(ostream& ostr,const Fibre& p){
+    ostr<<p.m_th<<" "<<p.m_ph<<" "<<p.m_f<<endl;
+    return ostr;
+  }
+
+
+  class Multifibre{
+    vector<Fibre> m_fibres;
+    float m_d;
+    float m_d_old;
+    float m_d_prop;
+    float m_d_prior; 
+    float m_d_old_prior;
+    float m_d_acc;
+    float m_d_rej;
+    float m_S0;
+    float m_S0_old;
+    float m_S0_prop;
+    float m_S0_prior;
+    float m_S0_old_prior;
+    float m_S0_acc;
+    float m_S0_rej;
+    float m_prior_en;
+    float m_old_prior_en;
+    float m_likelihood_en;
+    float m_old_likelihood_en;
+    float m_energy;
+    float m_old_energy;
+    
+    const ColumnVector& m_data;
+    const ColumnVector& m_alpha;
+    const ColumnVector& m_beta;
+    const Matrix& m_bvals;
+    
+  public:
+    Multifibre(const ColumnVector& data,const ColumnVector& alpha, 
+	       const ColumnVector& beta, const Matrix& b, const Matrix& Amat, int N ):
+    m_data(data), m_alpha(alpha), m_beta(beta), m_bvals(b){
+      
+      //      initialise(Amat,N);
+    }
+    
+    ~Multifibre(){}
+    
+    /*
+     void initialise(const Matrix& Amat, int N){
+      //initialising 
+      ColumnVector logS(m_data.Nrows()),tmp(m_data.Nrows()),Dvec(7),dir(3);
+      SymmetricMatrix tens;   //Basser's Diffusion Tensor;
+      DiagonalMatrix Dd;   //eigenvalues
+      Matrix Vd;   //eigenvectors
+      float mDd,fsquared;
+      float th,ph,f,D,S0;
+    
+      for ( int i = 1; i <= logS.Nrows(); i++)
+	{
+	  if(m_data(i)>0){
+	    logS(i)=log(m_data(i));
+	  }
+	  else{
+	    logS(i)=0;
+	  }
+	}
+      Dvec = -pinv(Amat)*logS;
+      if(  Dvec(7) >  -23  ){ //23=maxlogfloat
+	S0=exp(-Dvec(7));
+      }
+      else{
+	S0=m_data.MaximumAbsoluteValue();
+      }
+
+      for ( int i = 1; i <= logS.Nrows(); i++)
+	{
+	  if(S0<m_data.Sum()/m_data.Nrows()){ S0=m_data.MaximumAbsoluteValue();  }
+	  logS(i)=(m_data(i)/S0)>0.01 ? log((i)):log(0.01*S0);
+	}
+      Dvec = -pinv(Amat)*logS;
+      S0=exp(-Dvec(7));
+      if(S0<m_data.Sum()/S.Nrows()){ S0=m_data.Sum()/m_data.Nrows();  }
+      tens = vec2tens(Dvec);
+      EigenValues(tens,Dd,Vd);
+      mDd = Dd.Sum()/Dd.Nrows();
+      int maxind = Dd(1) > Dd(2) ? 1:2;   //finding maximum eigenvalue
+      maxind = Dd(maxind) > Dd(3) ? maxind:3;
+      dir << Vd(1,maxind) << Vd(2,maxind) << Vd(3,maxind);
+      cart2sph(dir,th,ph);
+      th= mod(th,M_PI);
+      ph= mod(ph,2*M_PI);
+      D = Dd(maxind);
+      
+      float numer=1.5(*(Dd(1)-mDd)*(Dd(1)-mDd)+(Dd(2)-mDd)*(Dd(2)-mDd)+(Dd(3)-mDd)*(Dd(3)-mDd));
+      float denom=(Dd(1)*Dd(1)+Dd(2)*Dd(2)+Dd(3)*Dd(3));
+      if(denom>0) fsquared=numer/denom;
+      else fsquared=0;
+      if(fsquared>0){f=sqrt(fsquared);}
+      else{f=0;}
+      if(f>=0.95) f=0.95;
+      if(f<=0.001) f=0.001;
+      
+      
+      m_d=D; m_d_old=m_d;
+      m_S0=S0; m_S0_old=m_S0;
+      
+      
+      
+	       
+      
+    }
+    
+    */
+
+    inline bool compute_d_prior(){
+      m_d_old_prior=m_d_prior;
+      if(m_d<0)
+	return true;
+      else{
+	m_d_prior=0;
+	return false;
+      }
+    }
+    
+    inline bool compute_S0_prior(){
+      m_S0_old_prior=m_S0_prior;
+      if(m_S0<0) return true;
+      else
+	{    
+	  m_S0_prior=0;
+	  return false;
+	}
+    }
+
+    inline void compute_prior(){
+      m_old_prior_en=m_prior_en;
+      m_prior_en=m_d_prior+m_S0_prior;
+      for(unsigned int f=0;f<m_fibres.size(); f++){
+	m_prior_en=m_prior_en+m_fibres[f].get_prior();
+      } 
+    }
+    
+    void compute_likelihood(){
+      m_old_likelihood_en=m_likelihood_en;
+      ColumnVector pred(m_alpha.Nrows());
+      pred=0;
+      float fsum=0;
+      for(unsigned int f=0;f<m_fibres.size();f++){
+	pred=pred+m_fibres[f].get_f()*m_fibres[f].getSignal();
+	fsum+=m_fibres[f].get_f();
+      }
+      for(int i=1;i<=pred.Nrows();i++){
+	pred(i)=pred(i)+(1-fsum)*exp(-m_d*m_bvals(1,i));
+      }
+      pred=pred*m_S0;
+      float sumsquares=(m_data-pred).SumSquare();
+      m_likelihood_en=(m_data.Nrows()/2)*log(sumsquares/2);
+    }
+    
+  
+    inline  void  compute_energy(){
+      m_old_energy=m_energy;
+      m_energy=m_prior_en+m_likelihood_en;
+    }
+    
+    bool test_energy(){
+      float tmp=exp(m_old_energy-m_energy);
+      return (tmp>unifrnd().AsScalar());
+    }
+    
+    inline void restore_energy(){
+      m_energy=m_old_energy;
+    }
+    
+
+    inline bool propose_d(){
+      m_d_old=m_d;
+      m_d+=normrnd().AsScalar()*m_d_prop;
+      bool rejflag=compute_d_prior();//inside this it stores the old prior
+      for(unsigned int f=0;f<m_fibres.size();f++)
+	m_fibres[f].compute_signal();
+      return rejflag;
+    };
+    
+    inline void accept_d(){
+      m_d_acc++;      
+    }
+    
+    inline void reject_d(){
+      m_d=m_d_old;
+      m_d_prior=m_d_old_prior;
+      m_prior_en=m_old_prior_en;
+      for(unsigned int f=0;f<m_fibres.size();f++)
+	m_fibres[f].restoreSignal();
+      m_d_rej++;
+    }
+    
+    inline bool propose_S0(){
+      m_S0_old=m_S0;
+      m_S0+=normrnd().AsScalar()*m_S0_prop;
+      bool rejflag=compute_S0_prior();//inside this it stores the old prior
+      return rejflag;
+    };
+    
+    inline void accept_S0(){
+      m_S0_acc++;      
+    }
+    
+    inline void reject_S0(){
+      m_S0=m_S0_old;
+      m_S0_prior=m_S0_old_prior;
+      m_prior_en=m_old_prior_en;
+      m_S0_rej++;
+    }
+    
+    inline void update_proposals(){
+      m_d_prop*=sqrt(float(m_d_acc+1)/float(m_d_rej+1));
+      m_S0_prop*=sqrt(float(m_S0_acc+1)/float(m_S0_rej+1));
+      m_d_acc=0; 
+      m_d_rej=0;
+      m_S0_acc=0; 
+      m_S0_rej=0;
+    }
+
+    
+    
+    
+
+    void jump(){
+      
+      if(!propose_d()){
+	compute_prior();
+	compute_likelihood();
+	compute_energy();
+	if(test_energy())
+	  accept_d();
+	else
+	  reject_d();
+      }
+      else{ 
+	reject_d();
+      }
+      
+      if(!propose_S0()){
+	compute_prior();
+	compute_likelihood();
+	compute_energy();
+	if(test_energy())
+	  accept_S0();
+	else
+	  reject_S0();
+      }
+      else{
+	reject_S0();
+      }
+      
+      for(unsigned int f=0;f<m_fibres.size();f++){
+	if(!m_fibres[f].propose_th()){
+	  compute_prior();
+	  compute_likelihood();
+	  compute_energy();
+	  if(test_energy())
+	    m_fibres[f].accept_th();
+	  else
+	    m_fibres[f].reject_th();
+	}
+	else {
+	  m_fibres[f].reject_th();
+	}
+	
+	if(!m_fibres[f].propose_ph()){
+	compute_prior();
+	compute_likelihood();
+	compute_energy();
+	if(test_energy())
+	  m_fibres[f].accept_ph();
+	else
+	  m_fibres[f].reject_ph();
+	}
+	else{
+	  m_fibres[f].reject_ph();
+	}
+	
+	if(!m_fibres[f].propose_f()){
+	  compute_prior();
+	  compute_likelihood();
+	  compute_energy();
+	  if(test_energy())
+	    m_fibres[f].accept_f();
+	  else
+	    m_fibres[f].reject_f();
+	}
+	else{
+	  m_fibres[f].reject_f();
+	}
+	
+
+	if(!m_fibres[f].propose_lam()){
+	compute_prior();
+	//	compute_likelihood(); //lam does not affect the likelihood.
+	compute_energy();
+	if(test_energy())
+	  m_fibres[f].accept_lam();
+	else
+	  m_fibres[f].reject_lam();
+	}
+	else{
+	  m_fibres[f].reject_lam();
+	}
+      }
+
+
+    }
+    
+
+
+};
+  
+  
+}
+
+#endif
-- 
GitLab