diff --git a/CUDA/PVM_single.cu b/CUDA/PVM_single.cu
new file mode 100644
index 0000000000000000000000000000000000000000..7d00bcb8e9eb88ef25380228977cc0379d36fe88
--- /dev/null
+++ b/CUDA/PVM_single.cu
@@ -0,0 +1,451 @@
+#include "diffmodels_utils.h"
+#include "levenberg_marquardt.cu"
+#include "options.h"
+
+//#include <fstream>
+
+/////////////////////////////////////
+/////////////////////////////////////
+/// 	    PVM_single		  /// 
+/////////////////////////////////////
+/////////////////////////////////////
+
+__device__ 
+inline double isoterm_PVM_single(const int pt,const double _d,const double *bvals){
+  	return exp(double(-bvals[pt]*_d));
+}
+
+__device__ 
+inline double isoterm_d_PVM_single(const int pt,const double _d,const double *bvals){
+  	return (-bvals[pt]*exp(double(-bvals[pt]*_d)));
+}
+
+__device__ 
+inline double anisoterm_PVM_single(const int pt,const double _d,const double3 x, const double *bvecs, const double *bvals){
+	double dp = bvecs[pt]*x.x+bvecs[NDIRECTIONS+pt]*x.y+bvecs[(2*NDIRECTIONS)+pt]*x.z;
+	return exp(double(-bvals[pt]*_d*dp*dp));
+}
+
+__device__ 
+inline double anisoterm_d_PVM_single(const int pt,const double _d,const double3 x,const double *bvecs, const double *bvals){
+	double dp = bvecs[pt]*x.x+bvecs[NDIRECTIONS+pt]*x.y+bvecs[(2*NDIRECTIONS)+pt]*x.z;
+  	return(-bvals[pt]*dp*dp*exp(double(-bvals[pt]*_d*dp*dp)));
+}
+
+__device__ 
+inline double anisoterm_th_PVM_single(const int pt,const double _d,const double3 x, const double _th,const double _ph,const double *bvecs, const double *bvals){
+
+	double dp = bvecs[pt]*x.x+bvecs[NDIRECTIONS+pt]*x.y+bvecs[(2*NDIRECTIONS)+pt]*x.z;
+	double dp1 = (cos(double(_th))*(bvecs[pt]*cos(double(_ph))+bvecs[NDIRECTIONS+pt]*sin(double(_ph)))-bvecs[(2*NDIRECTIONS)+pt]*sin(double(_th)));
+  	return(-2*bvals[pt]*_d*dp*dp1*exp(double(-bvals[pt]*_d*dp*dp)));
+}
+
+__device__ 
+inline double anisoterm_ph_PVM_single(const int pt,const double _d,const double3 x, const double _th,const double _ph,const double *bvecs, const double *bvals){
+  	double dp = bvecs[pt]*x.x+bvecs[NDIRECTIONS+pt]*x.y+bvecs[(2*NDIRECTIONS)+pt]*x.z;
+	double dp1 = sin(double(_th))*(-bvecs[pt]*sin(double(_ph))+bvecs[NDIRECTIONS+pt]*cos(double(_ph)));
+  	return(-2*bvals[pt]*_d*dp*dp1*exp(double(-bvals[pt]*_d*dp*dp)));
+}
+
+
+//in diffmodel.cc
+__device__ void fix_fsum_PVM_single(	//INPUT 
+					bool m_include_f0, 
+					int nfib,
+					int nparams,
+					//INPUT - OUTPUT){
+					double *params)
+{
+  	double sum=0;
+  	if (m_include_f0) 
+    		sum=params[nparams-1];
+  	for(int i=0;i<nfib;i++){
+    		sum += params[2+(i*3)];
+    		if(sum>=1){
+			for(int j=i;j<nfib;j++)
+				params[2+(j*3)]=FSMALL_gpu; 
+			break;
+		}
+  	}
+}
+
+
+
+//in diffmodel.cc
+__device__  void sort_PVM_single(int nfib,int nparams,double* params)
+{
+	double temp_f, temp_th, temp_ph;
+	// Order vector descending using f parameters as index
+  	for(int i=1; i<(nfib); i++){ 
+    		for(int j=0; j<(nfib-i); j++){ 
+      			if (params[2+j*3] < params[2+i*3]){ 
+        			temp_f = params[2+j*3];
+				temp_th = params[2+j*3+1];
+				temp_ph = params[2+j*3+2];
+        			params[2+j*3] = params[2+i*3]; 
+				params[2+j*3+1] = params[2+i*3+1]; 
+				params[2+j*3+2] = params[2+i*3+2]; 
+        			params[2+i*3] = temp_f; 
+				params[2+i*3+1] = temp_th; 
+				params[2+i*3+2] = temp_ph; 
+      			} 
+    		} 
+  	} 
+}
+
+
+//in diffmodels.cc -- for calculate residuals
+__device__ void  forwardModel_PVM_single(	//INPUT
+						const double* 		p,
+						const double*		bvecs, 
+						const double*		bvals,
+						const int		nfib,
+						const int 		nparams,
+						const bool 		m_include_f0,
+						//OUTPUT
+						double*		 	predicted_signal)
+{
+  	for(int i=0;i<NDIRECTIONS;i++){
+		predicted_signal[i]=0;		//pred = 0;
+	}
+  	double val;
+  	double _d = abs(p[1]);
+  	////////////////////////////////////
+  	double fs[NFIBRES];
+  	double x[NFIBRES*3];	
+  	double sumf=0;
+	double3 x2;
+  	for(int k=0;k<nfib;k++){
+    		int kk = 2+3*k;
+	    	fs[k] = x2f_gpu(p[kk]);
+	    	sumf += fs[k];
+		x[k*3] = sin(p[kk+1])*cos(p[kk+2]);
+    		x[k*3+1] = sin(p[kk+1])*sin(p[kk+2]);
+    		x[k*3+2] = cos(p[kk+1]);
+  	}
+  	////////////////////////////////////
+  	for(int i=0;i<NDIRECTIONS;i++){
+    		val = 0.0;
+    		for(int k=0;k<nfib;k++){
+			x2.x=x[k*3];
+			x2.y=x[k*3+1];
+			x2.z=x[k*3+2];	 
+      			val += fs[k]*anisoterm_PVM_single(i,_d,x2,bvecs,bvals);
+    		}	
+    		if (m_include_f0){
+      			double temp_f0=x2f_gpu(p[nparams-1]);
+      			predicted_signal[i] = p[0]*(temp_f0+(1-sumf-temp_f0)*isoterm_PVM_single(i,_d,bvals)+val);
+    		} 
+    		else
+      			predicted_signal[i] = p[0]*((1-sumf)*isoterm_PVM_single(i,_d,bvals)+val); 
+  	}
+}
+
+
+//in diffmodels.cc -- for calculate residuals
+__device__ void get_prediction_PVM_single(	//INPUT
+						const double*	params,
+						const double*	bvecs, 
+						const double*	bvals,
+						const int 	nfib,
+						const int 	nparams,
+						const bool 	m_include_f0,
+						//OUTPUT
+						double* 	predicted_signal)
+{
+	//m_s0-myparams[0] 	m_d-myparams[1] 	m_d_std-myparams[2]		m_f-m_th-m_ph-myparams[3,4,5,6 etc..]   	m_f0-myparams[nparams-1]
+  	double p[NPARAMS];
+  	p[0] = params[0];
+  	p[1] = params[1];		
+  	for(int k=0;k<nfib;k++){
+    		int kk = 2+3*k;
+    		p[kk]   = f2x_gpu(params[kk]);
+    		p[kk+1] = params[kk+1];
+    		p[kk+2] = params[kk+2];
+  	}
+  	if (m_include_f0)
+    		p[nparams-1]=f2x_gpu(params[nparams-1]);
+  	forwardModel_PVM_single(p,bvecs,bvals,nfib,nparams,m_include_f0,predicted_signal);
+}
+
+
+//cost function PVM_single
+__device__ double cf_PVM_single(	//INPUT
+					const double*		params,
+					const double*		mdata,
+					const double*		bvecs, 
+					const double*		bvals,
+					const int 		nparams,
+					const bool 		m_include_f0)
+{
+	double cfv = 0.0;
+  	double err;
+	double _d = abs(params[1]);
+	double fs[NFIBRES];    
+	double x[NFIBRES*3];	
+	double sumf=0;
+	double3 x2;
+
+	for(int k=0;k<NFIBRES;k++){
+    		int kk = 2+3*(k);
+    		fs[k] = x2f_gpu(params[kk]);
+    		sumf += fs[k];
+    		
+    		x[k*3] = sin(params[kk+1])*cos(params[kk+2]);
+    		x[k*3+1] = sin(params[kk+1])*sin(params[kk+2]);
+    		x[k*3+2] = cos(params[kk+1]);
+  	}
+	
+	for(int i=0;i<NDIRECTIONS;i++){
+		err = 0.0;
+    		for(int k=0;k<NFIBRES;k++){
+			x2.x=x[k*3];
+			x2.y=x[k*3+1];
+			x2.z=x[k*3+2];	
+			err += fs[k]*anisoterm_PVM_single(i,_d,x2,bvecs,bvals); 
+    		}
+		if(m_include_f0){
+			double temp_f0=x2f_gpu(params[nparams-1]);
+			err= (params[0]*((temp_f0+(1-sumf-temp_f0)*isoterm_PVM_single(i,_d,bvals))+err))-mdata[i];
+		}else{
+			err =  (params[0]*((1-sumf)*isoterm_PVM_single(i,_d,bvals)+err))-mdata[i];
+		}
+		cfv += err*err;  
+  	}  
+	return(cfv);
+}
+
+//gradient function PVM_single
+__device__ void grad_PVM_single(	//INPUT
+					const double*		params,
+					const double*		mdata,
+					const double*		bvecs, 
+					const double*		bvals,
+					const int 		nparams,
+					const bool 		m_include_f0,
+					//OUTPUT
+					double*			grad)
+{
+  	double _d = abs(params[1]);
+  	double fs[NFIBRES];
+  	double x[NFIBRES*3];	
+  	double3 xx;		
+  	double sumf=0;
+
+  	for(int k=0;k<NFIBRES;k++){
+    		int kk = 2+3*(k);
+    		fs[k] = x2f_gpu(params[kk]);
+    		sumf += fs[k];
+    		x[k*3] = sin(params[kk+1])*cos(params[kk+2]);
+    		x[k*3+1] = sin(params[kk+1])*sin(params[kk+2]);
+    		x[k*3+2] = cos(params[kk+1]);
+  	}
+ 
+  	double J[NPARAMS];
+  	double diff;
+  	double sig;
+
+	for (int p=0;p<nparams;p++) grad[p]=0;
+
+  	for(int i=0;i<NDIRECTIONS;i++){
+    		sig = 0;
+    		for(int a=0;a<nparams;a++) J[a]=0;
+    		for(int k=0;k<NFIBRES;k++){
+      			int kk = 2+3*(k);
+      			xx.x=x[k*3];
+      			xx.y=x[k*3+1];
+      			xx.z=x[k*3+2];			
+			sig +=  fs[k]*anisoterm_PVM_single(i,_d,xx,bvecs,bvals);
+			J[1] +=  (params[1]>0?1.0:-1.0)*params[0]*fs[k]*anisoterm_d_PVM_single(i,_d,xx,bvecs,bvals);
+      			J[kk] = params[0]*(anisoterm_PVM_single(i,_d,xx,bvecs,bvals)-isoterm_PVM_single(i,_d,bvals)) * two_pi_gpu*sign_gpu(params[kk])*1/(1+params[kk]*params[kk]);
+      			J[kk+1] = params[0]*fs[k]*anisoterm_th_PVM_single(i,_d,xx,params[kk+1],params[kk+2],bvecs,bvals);
+      			J[kk+2] = params[0]*fs[k]*anisoterm_ph_PVM_single(i,_d,xx,params[kk+1],params[kk+2],bvecs,bvals);
+    		}
+
+    		if(m_include_f0){
+			double temp_f0=x2f_gpu(params[nparams-1]);
+			J[nparams-1]= params[0]*(1-isoterm_PVM_single(i,_d,bvals))* two_pi_gpu*sign_gpu(params[nparams-1])*1/(1+params[nparams-1]*params[nparams-1]);
+			sig= params[0]*((temp_f0+(1-sumf-temp_f0)*isoterm_PVM_single(i,_d,bvals))+sig);
+    			J[1] += (params[1]>0?1.0:-1.0)*params[0]*(1-sumf-temp_f0)*isoterm_d_PVM_single(i,_d,bvals);
+    		}else{
+			sig = params[0]*((1-sumf)*isoterm_PVM_single(i,_d,bvals)+sig);
+			J[1] += (params[1]>0?1.0:-1.0)*params[0]*(1-sumf)*isoterm_d_PVM_single(i,_d,bvals);
+    		}
+    		diff = sig - mdata[i];
+    		J[0] = sig/params[0];
+
+		for (int p=0;p<nparams;p++) grad[p] += 2*J[p]*diff; 
+  	}
+}
+
+//hessian function PVM_single
+__device__ void hess_PVM_single(	//INPUT
+					const double*		params,
+					const double*		bvecs, 
+					const double*		bvals,
+					const int 		nparams,
+					const bool 		m_include_f0,
+					double*			hess)
+{
+  	double _d = abs(params[1]);
+  	double fs[NFIBRES];
+  	double x[NFIBRES*3];	
+  	double3 xx;
+  	double sumf=0;
+
+  	for(int k=0;k<NFIBRES;k++){
+    		int kk = 2+3*(k);
+    		fs[k] = x2f_gpu(params[kk]);
+    		sumf += fs[k];
+    		x[k*3] = sin(params[kk+1])*cos(params[kk+2]);
+    		x[k*3+1] = sin(params[kk+1])*sin(params[kk+2]);
+    		x[k*3+2] = cos(params[kk+1]);
+  	}
+ 
+  	double J[NPARAMS];
+  	double sig;
+
+	for (int p=0;p<nparams;p++){
+		for (int p2=0;p2<nparams;p2++){ 
+			hess[p*nparams+p2] = 0;
+		}
+	}
+
+  	for(int i=0;i<NDIRECTIONS;i++){
+    		sig = 0;
+    		for(int a=0;a<nparams;a++) J[a]=0;
+    		for(int k=0;k<NFIBRES;k++){
+      			int kk = 2+3*(k);
+      			xx.x=x[k*3];
+      			xx.y=x[k*3+1];
+      			xx.z=x[k*3+2];		
+			sig += fs[k]*anisoterm_PVM_single(i,_d,xx,bvecs,bvals);
+      			J[1] += (params[1]>0?1.0:-1.0)*params[0]*fs[k]*anisoterm_d_PVM_single(i,_d,xx,bvecs,bvals);
+      			J[kk] = params[0]*(anisoterm_PVM_single(i,_d,xx,bvecs,bvals)-isoterm_PVM_single(i,_d,bvals)) * two_pi_gpu*sign_gpu(params[kk])*1/(1+params[kk]*params[kk]);
+		      	J[kk+1] = params[0]*fs[k]*anisoterm_th_PVM_single(i,_d,xx,params[kk+1],params[kk+2],bvecs,bvals);
+		      	J[kk+2] = params[0]*fs[k]*anisoterm_ph_PVM_single(i,_d,xx,params[kk+1],params[kk+2],bvecs,bvals);
+    		}
+
+    		if(m_include_f0){
+			double temp_f0=x2f_gpu(params[nparams-1]);
+			J[nparams-1]= params[0]*(1-isoterm_PVM_single(i,_d,bvals))* two_pi_gpu*sign_gpu(params[nparams-1])*1/(1+params[nparams-1]*params[nparams-1]);
+			sig=params[0]*((temp_f0+(1-sumf-temp_f0)*isoterm_PVM_single(i,_d,bvals))+sig);
+    			J[1] += (params[1]>0?1.0:-1.0)*params[0]*(1-sumf-temp_f0)*isoterm_d_PVM_single(i,_d,bvals);	
+    		}else{
+			sig = params[0]*((1-sumf)*isoterm_PVM_single(i,_d,bvals)+sig);
+	    		J[1] +=  (params[1]>0?1.0:-1.0)*params[0]*(1-sumf)*isoterm_d_PVM_single(i,_d,bvals);
+    		}   
+    		J[0] = sig/params[0];
+
+		for (int p=0;p<nparams;p++){
+			for (int p2=p;p2<nparams;p2++){ 
+				hess[p*nparams+p2] += 2*(J[p]*J[p2]);
+			}
+		}
+  	}
+
+  	for (int j=0; j<nparams; j++) {
+    		for (int i=j+1; i<nparams; i++) {
+     			hess[i*nparams+j]=hess[j*nparams+i];	
+    		}
+  	}
+}
+
+//in diffmodel.cc
+extern "C" __global__ void fit_PVM_single_kernel(	//INPUT
+							const double* 		data, 
+							const double* 		bvecs,
+							const double* 		bvals, 
+							const int 		nvox, 
+							const int 		nfib, 
+							const bool 		m_include_f0, 
+							//INPUT-OUTPUT
+							double* 		params)
+{
+	int id = blockIdx.x * blockDim.x + threadIdx.x;	
+   	if (id >=nvox) { return; }	
+
+	int nparams;
+	if (m_include_f0)
+      		nparams = nfib*3 + 3; 
+    	else
+      		nparams = nfib*3 + 2;
+
+	double myparams[NPARAMS];
+   	double mydata[NDIRECTIONS];
+
+	for(int i=0;i<nparams;i++){
+		myparams[i]=params[(id*nparams)+i];
+   	}
+	
+   	for(int i=0;i<NDIRECTIONS;i++){
+		mydata[i]=data[(id*NDIRECTIONS)+i];
+   	}
+
+	// do the fit
+	levenberg_marquardt_PVM_single_gpu(mydata, &bvecs[id*3*NDIRECTIONS], &bvals[id*NDIRECTIONS], nparams, m_include_f0,  myparams);
+	
+  	// finalise parameters
+	//m_s0 in myparams[0] 	m_d in myparams[1] 	m_f-m_th-m_ph in myparams[2,3,4,5, etc..]   	m_f0 in myparams[nparams-1]
+  			
+  	myparams[1] = abs(myparams[1]); 
+  	for(int k=1;k<=nfib;k++){
+    		int kk = 2 + 3*(k-1);
+    		myparams[kk]  = x2f_gpu(myparams[kk]);
+  	}
+  	if (m_include_f0)
+    		myparams[nparams-1]=x2f_gpu(myparams[nparams-1]);
+
+  	sort_PVM_single(nfib,nparams,myparams);
+  	fix_fsum_PVM_single(m_include_f0,nfib,nparams,myparams);
+
+	for(int i=0;i<nparams;i++){
+		params[id*nparams+i]=myparams[i];	
+		//printf("PARAM[%i]: %.20f\n",i,myparams[i]);
+	}
+}
+
+//in diffmodel.cc
+extern "C" __global__ void get_residuals_PVM_single_kernel(	//INPUT
+								const double* 		data, 
+								const double* 		params,
+								const double* 		bvecs, 
+								const double* 		bvals, 
+								const int 		nvox, 
+								const int 		nfib, 
+								const bool 		m_include_f0,
+								const bool* 		includes_f0,
+								//OUTPUT
+								double*			residuals)
+{
+	int id = blockIdx.x * blockDim.x + threadIdx.x;	
+   	if (id >=nvox) { return; }	
+
+	int nparams;
+	if (m_include_f0)
+      		nparams = nfib*3 + 3; 
+    	else
+      		nparams = nfib*3 + 2;
+
+	bool my_include_f0 = includes_f0[id];
+
+	double myparams[NPARAMS];
+   	double mydata[NDIRECTIONS];
+
+	for(int i=0;i<nparams;i++){
+		myparams[i]=params[(id*nparams)+i];
+   	}
+	
+   	for(int i=0;i<NDIRECTIONS;i++){
+		mydata[i]=data[(id*NDIRECTIONS)+i];
+   	}
+
+	double predicted_signal[NDIRECTIONS];
+
+	get_prediction_PVM_single(myparams, &bvecs[id*3*NDIRECTIONS], &bvals[id*NDIRECTIONS], nfib, nparams, my_include_f0, predicted_signal);
+
+	for(int i=0;i<NDIRECTIONS;i++){		//residuals=m_data-predicted_signal;
+		residuals[id*NDIRECTIONS+i]= mydata[i] - predicted_signal[i];
+	}
+}
+