From c57df158bc8b40b2a18678ebac6300ea791d96a8 Mon Sep 17 00:00:00 2001
From: Stamatios Sotiropoulos <stam@fmrib.ox.ac.uk>
Date: Fri, 21 Jun 2013 12:09:35 +0000
Subject: [PATCH] Added gradient nonlinearity correction options

---
 rubix.cc       | 93 +++++++++++++++++++++++++++++++++++++-------------
 rubix.h        |  8 ++---
 rubixoptions.h | 11 ++++++
 rubixvox.cc    |  8 ++---
 rubixvox.h     | 12 +++----
 5 files changed, 95 insertions(+), 37 deletions(-)

diff --git a/rubix.cc b/rubix.cc
index 33b92f8..14d22a7 100644
--- a/rubix.cc
+++ b/rubix.cc
@@ -394,32 +394,22 @@ void LRVoxelManager::initialise(){
   for (int n=0; n<m_HRvoxnumber.Nrows(); n++){
     if (opts.modelnum.value()==1){ //Model 1
 
-      PVM_single_c pvm(m_dataHR[n],m_bvecsHR,m_bvalsHR,opts.nfibres.value());
+      PVM_single_c pvm(m_dataHR[n],m_bvecsHR[n],m_bvalsHR[n],opts.nfibres.value());
       pvm.fit(); // this will give th,ph,f in the correct order
       
       pvmf  = pvm.get_f();  pvmth = pvm.get_th(); pvmph = pvm.get_ph();
       pvmS0 = fabs(pvm.get_s0()); pvmd  = pvm.get_d();  predicted_signal=pvm.get_prediction();
       if(pvmd<0 || pvmd>0.01) pvmd=2e-3;
-
-       // DTI dti1(m_dataHR[n],m_bvecsHR,m_bvalsHR);
-      //dti1.linfit();
-      //pvmS0=fabs(dti1.get_s0());
-
       m_LRv.set_HRparams(n,pvmd,pvmS0,pvmth,pvmph,pvmf);
     }
     else{  //Model 2
-      PVM_multi pvm(m_dataHR[n],m_bvecsHR,m_bvalsHR,opts.nfibres.value());
+      PVM_multi pvm(m_dataHR[n],m_bvecsHR[n],m_bvalsHR[n],opts.nfibres.value());
       pvm.fit();
       
       pvmf  = pvm.get_f();  pvmth = pvm.get_th(); pvmph = pvm.get_ph(); pvmd_std=pvm.get_d_std();
       pvmS0 =fabs(pvm.get_s0()); pvmd  = pvm.get_d();  predicted_signal=pvm.get_prediction();
       if(pvmd<0 || pvmd>0.01) pvmd=2e-3;
       if(pvmd_std<0 || pvmd_std>0.01) pvmd_std=pvmd/10;
-
-      //   DTI dti1(m_dataHR[n],m_bvecsHR,m_bvalsHR);
-      //dti1.linfit();
-      //pvmS0=fabs(dti1.get_s0());
-
       m_LRv.set_HRparams(n,pvmd,pvmd_std,pvmS0,pvmth,pvmph,pvmf); 
     } 
    
@@ -558,6 +548,30 @@ volume<float> createHR_mask(const volume<float>& maskLR, const volume4D<float>&
 }
 
 
+//Correct bvals/bvecs accounting for Gradient Nonlinearities
+//ColumnVector grad_nonlin has 9 entries, corresponding to the 3 components of each of the x,y and z gradient deviation
+void correct_bvals_bvecs(const Matrix& bvals,const Matrix& bvecs, const ColumnVector& grad_nonlin, Matrix& bvals_c, Matrix& bvecs_c){
+  bvals_c=bvals; bvecs_c=bvecs;
+  Matrix L(3,3);  //gradient coil tensor
+  float mag;
+  L(1,1)=grad_nonlin(1);  L(1,2)=grad_nonlin(4);  L(1,3)=grad_nonlin(7);
+  L(2,1)=grad_nonlin(2);  L(2,2)=grad_nonlin(5);  L(2,3)=grad_nonlin(8);
+  L(3,1)=grad_nonlin(3);  L(3,2)=grad_nonlin(6);  L(3,3)=grad_nonlin(9);
+
+  IdentityMatrix Id(3); 
+  
+  //Correct each gradient
+  for (int l=1; l<=bvals.Ncols(); l++){
+    if (bvals(1,l)>0){ //do not correct b0s
+      bvecs_c.Column(l)=(Id+L)*bvecs.Column(l);
+      mag=sqrt(bvecs_c(1,l)*bvecs_c(1,l)+bvecs_c(2,l)*bvecs_c(2,l)+bvecs_c(3,l)*bvecs_c(3,l));
+      if (mag!=0)
+	bvecs_c.Column(l)=bvecs_c.Column(l)/mag;
+      bvals_c(1,l)=mag*mag*bvals(1,l); //mag^2 as b propto |G|^2
+    }
+  }
+}
+
 
 ////////////////////////////////////////////
 //       MAIN
@@ -624,32 +638,65 @@ int main(int argc, char *argv[])
     HRSamples HRsampl(datamHR.Ncols(), opts.njumps.value(), opts.sampleevery.value(), opts.nfibres.value(), opts.rician.value(), opts.modelnum.value());
     LRSamples LRsampl(datamLR.Ncols(), opts.njumps.value(), opts.sampleevery.value(), opts.nmodes.value(), opts.rician.value(),opts.fsumPrior.value(),opts.dPrior.value());
 
+    //Read Gradient Non_linearity Maps if provided
+    volume4D<float> LRgrad, HRgrad; Matrix LRgradm, HRgradm;
+    if (opts.LRgrad_file.set()){
+      read_volume4D(LRgrad,opts.LRgrad_file.value());
+      LRgradm=LRgrad.matrix(maskLR);
+      if (opts.HRgrad_file.set()){
+	read_volume4D(HRgrad,opts.HRgrad_file.value());
+	HRgradm=HRgrad.matrix(maskHR);
+      }
+      else{
+	cerr<<"HR grad_dev file should be provided as well!"<<endl;
+	return 1;
+      }
+    }
+    else{
+      if (opts.HRgrad_file.set()){
+	cerr<<"LR grad_dev file should be provided as well!"<<endl;
+	return 1;
+      }
+    }
+
     //dHR.push_back(datamHR.Column(1)); dHR.push_back(datamHR.Column(2));
     //dHR.push_back(datamHR.Column(3)); dHR.push_back(datamHR.Column(4));
     //HRvoxnum<<1<<2<<3<<4; HRweights<<0.25<<0.25<<0.25<<0.25;
     
     for(int vox=1;vox<=datamLR.Ncols();vox++){  //For each LR voxel
-      //  if (vox==19){  //vox==6
       ColumnVector dLR; Matrix HRindices;
-      dLR=datamLR.Column(vox);                  //Find the corresponding HR ones
+      dLR=datamLR.Column(vox);                  
+      if (opts.LRgrad_file.set()){ //Correct the respective bvals/bvecs
+	  Matrix bvals_c, bvecs_c;
+	  correct_bvals_bvecs(bvalsLR,bvecsLR, LRgradm.Column(vox),bvals_c,bvecs_c); //correct for gradient nonlinearities
+	  bvalsLR=bvals_c; bvecsLR=bvecs_c;
+      }
+      
+      //Find the corresponding HR ones
       HRindices=get_HRindices((int)matrix2volkeyLR(vox,1),(int)matrix2volkeyLR(vox,2),(int)matrix2volkeyLR(vox,3),(int)xratio,(int)yratio,(int)zratio);
-      //cout<<endl<<"S0LR: "<<dLR(1)<<endl<<endl; //Debugging code
-     
       ColumnVector HRvoxnum(HRindices.Nrows()), HRweights(HRindices.Nrows()); 
-      vector<ColumnVector> dHR;
+      vector<ColumnVector> dHR; vector<Matrix> vbvalsHR; vector<Matrix> vbvecsHR;
       
-     for (int n=1; n<=HRindices.Nrows(); n++){
+      for (int n=1; n<=HRindices.Nrows(); n++){ //For each HR voxel
 	HRweights(n)=1.0/HRindices.Nrows();
 	HRvoxnum(n)=vol2matrixkeyHR((int)HRindices(n,1),(int)HRindices(n,2),(int)HRindices(n,3));
 	ColumnVector tmp_vec=datamHR.Column((int)HRvoxnum(n));
- 	//cout<<(int)HRindices(n,1)<<" "<<(int)HRindices(n,2)<<" "<<(int)HRindices(n,3)<<"  S0HR:"<<tmp_vec(1)<<endl;
-	dHR.push_back(datamHR.Column((int)HRvoxnum(n)));
-      }
+ 	dHR.push_back(datamHR.Column((int)HRvoxnum(n)));
+	if (!opts.HRgrad_file.set()){
+	  vbvalsHR.push_back(bvalsHR);
+	  vbvecsHR.push_back(bvecsHR);
+	}
+	else{ //Correct for each voxel the respective bvals/bvecs
+	  Matrix bvals_c, bvecs_c;
+	  correct_bvals_bvecs(bvalsHR,bvecsHR, HRgradm.Column((int)HRvoxnum(n)),bvals_c,bvecs_c); //correct for gradient nonlinearities
+	  vbvalsHR.push_back(bvals_c);
+	  vbvecsHR.push_back(bvecs_c);
+	}
+     }
       cout <<vox<<"/"<<datamLR.Ncols()<<endl;
-      LRVoxelManager  vm(HRsampl,LRsampl,vox,HRvoxnum, dLR,dHR, bvecsLR, bvalsLR, bvecsHR, bvalsHR, HRweights);
+      LRVoxelManager  vm(HRsampl,LRsampl,vox,HRvoxnum, dLR,dHR, bvecsLR, bvalsLR, vbvecsHR, vbvalsHR, HRweights);
       vm.initialise();
       vm.runmcmc();
-      //      } 
     }
     HRsampl.save(maskHR);
     LRsampl.save(maskLR);
diff --git a/rubix.h b/rubix.h
index 28f378f..2c6c115 100644
--- a/rubix.h
+++ b/rubix.h
@@ -197,17 +197,17 @@ namespace RUBIX{
     ColumnVector m_HRvoxnumber;
     LRvoxel m_LRv;
     const ColumnVector& m_dataLR;    //Low-Res Data for the specific LR voxel 
-    const vector<ColumnVector>& m_dataHR; //High-Res Data for all contained HR voxels
+    const vector<ColumnVector>& m_dataHR; //High-Res Data for all HRvoxels within a LRvoxel 
     const Matrix& m_bvecsLR;         //bvecs at Low-Res    (3 x LR_NumPoints)
     const Matrix& m_bvalsLR;         //bvalues at Low-Res  (1 x HR_NumPoints)
-    const Matrix& m_bvecsHR;         //bvecs at High-Res   (3 x HR_NumPoints)
-    const Matrix& m_bvalsHR;         //bvalues at High-Res (1 x HR_NumPoints)
+    const vector<Matrix>& m_bvecsHR; //bvecs at High-Res   (HRvoxels within a LRvoxel x 3 x HR_NumPoints)
+    const vector<Matrix>& m_bvalsHR; //bvalues at High-Res (HRvoxels within a LRvoxel x 1 x HR_NumPoints)
     const ColumnVector& m_HRweights; //Holds the volume fraction each HR voxel occupies out of the LR one
   public:
     //Constructor
   LRVoxelManager(HRSamples& Hsamples, LRSamples& Lsamples, int LRvoxnum, ColumnVector& HRvoxnum, 
 		   const ColumnVector& dataLR,const vector<ColumnVector>& dataHR, 
-		 const Matrix& bvecsLR, const Matrix& bvalsLR, const Matrix& bvecsHR, const Matrix& bvalsHR, const ColumnVector& HRweights):
+		 const Matrix& bvecsLR, const Matrix& bvalsLR, const vector<Matrix>& bvecsHR, const vector<Matrix>& bvalsHR, const ColumnVector& HRweights):
     opts(rubixOptions::getInstance()), m_HRsamples(Hsamples), m_LRsamples(Lsamples), m_LRvoxnumber(LRvoxnum),m_HRvoxnumber(HRvoxnum), 
       m_LRv(bvecsHR, bvalsHR, bvecsLR, bvalsLR, dataLR, dataHR, opts.nfibres.value(), opts.nmodes.value(), HRweights, opts.modelnum.value(), opts.fudge.value(),opts.all_ard.value(), opts.no_ard.value(),opts.kappa_ard.value(), opts.fsumPrior.value(), opts.dPrior.value(), opts.rician.value()),
       m_dataLR(dataLR), m_dataHR(dataHR),m_bvecsLR(bvecsLR), m_bvalsLR(bvalsLR), m_bvecsHR(bvecsHR), m_bvalsHR(bvalsHR), m_HRweights(HRweights) { } 
diff --git a/rubixoptions.h b/rubixoptions.h
index cb8654c..77fe0d5 100644
--- a/rubixoptions.h
+++ b/rubixoptions.h
@@ -54,6 +54,9 @@ namespace RUBIX{
     Option<bool> fsumPrior;
     Option<bool> dPrior;
     Option<bool> rician;
+    FmribOption<string> LRgrad_file;
+    FmribOption<string> HRgrad_file;
+
     void parse_command_line(int argc, char** argv,  Log& logger);
   
   private:
@@ -145,6 +148,12 @@ namespace RUBIX{
     	   false,no_argument),
    rician(string("--rician"),false,string("Use Rician Noise model (default is Gaussian)"),
     	   false,no_argument),
+   LRgrad_file(string("--gLR, --gradnonlinLR"), string("grad_devLR"),
+	     string("LR Gradient Nonlinearity Tensor"),
+	     false, requires_argument),  
+   HRgrad_file(string("--gHR, --gradnonlinHR"), string("grad_devHR"),
+	     string("HR Gradient Nonlinearity Tensor"),
+	     false, requires_argument),  
    options("RubiX v1.0", "rubix --help (for list of options)\n")
      {
        try {
@@ -175,6 +184,8 @@ namespace RUBIX{
        options.add(fsumPrior);
        options.add(dPrior);
        options.add(rician);
+       options.add(LRgrad_file);
+       options.add(HRgrad_file);
      }
      catch(X_OptionError& e) {
        options.usage();
diff --git a/rubixvox.cc b/rubixvox.cc
index fb07762..804ca3b 100644
--- a/rubixvox.cc
+++ b/rubixvox.cc
@@ -1030,7 +1030,7 @@ void LRvoxel::compute_prior(){
 void LRvoxel::compute_likelihood(){
   ColumnVector SLRpred, SHRpred, Diff;
   SLRpred.ReSize(m_bvecsLR.Ncols()); 
-  SHRpred.ReSize(m_bvecsHR.Ncols()); SHRpred=0;
+  SHRpred.ReSize(m_bvecsHR[0].Ncols()); SHRpred=0;
   float likLR, likHR;
 
   m_old_likelihood_en=m_likelihood_en;
@@ -1051,7 +1051,7 @@ void LRvoxel::compute_likelihood(){
       SHRpred=m_dataHR[m]-SHRpred;
       likHR+=log(0.5*SHRpred.SumSquare());
     }
-    likHR*=0.5*m_bvecsHR.Ncols();      
+    likHR*=0.5*m_bvecsHR[0].Ncols();      
 
     m_likelihood_en=likLR+likHR;
   }
@@ -1070,8 +1070,8 @@ void LRvoxel::compute_likelihood(){
     for (unsigned int m=0; m<m_dataHR.size(); m++){    
       float m_tauHR=m_HRvoxels[m].get_tau();
       SHRpred=m_HRvoxels[m].getSignalHR();
-      likHR+=m_bvecsHR.Ncols()*log(m_tauHR);
-      for (int k=1; k<=m_bvecsHR.Ncols(); k++)
+      likHR+=m_bvecsHR[0].Ncols()*log(m_tauHR);
+      for (int k=1; k<=m_bvecsHR[0].Ncols(); k++)
 	likHR+=m_logdataHR[m](k)-0.5*m_tauHR*(m_dataHR[m](k)*m_dataHR[m](k)+SHRpred(k)*SHRpred(k))+logIo(m_tauHR*m_dataHR[m](k)*SHRpred(k));
     }
     m_likelihood_en=likLR-likHR;
diff --git a/rubixvox.h b/rubixvox.h
index 572104a..9cbd5af 100644
--- a/rubixvox.h
+++ b/rubixvox.h
@@ -545,9 +545,9 @@ namespace RUBIX{
     vector<ColumnVector> m_logdataHR; //Log of High-Res Data for all contained HR voxels (use it in Rician Energy)
 
     const ColumnVector& m_dataLR;   //Low-Res Data for the specific LR voxel 
-    const vector<ColumnVector>& m_dataHR; //High-Res Data for all contained HR voxels
-    const Matrix& m_bvecsHR;        //bvecs at High-Res   (3 x HR_NumPoints)
-    const Matrix& m_bvalsHR;        //bvalues at High-Res (1 x HR_NumPoints)
+    const vector<ColumnVector>& m_dataHR; //High-Res Data for all HRvoxels within a LRvoxel
+    const vector<Matrix>& m_bvecsHR; //bvecs at High-Res   (HRvoxels within a LRvoxel x 3 x HR_NumPoints)
+    const vector<Matrix>& m_bvalsHR; //bvalues at High-Res (HRvoxels within a LRvoxel x 3 x HR_NumPoints)
     const Matrix& m_bvecsLR;        //bvecs at Low-Res    (3 x LR_NumPoints)
     const Matrix& m_bvalsLR;        //bvalues at Low-Res  (1 x HR_NumPoints)
     const int m_modelnum;           //1 for single-shell, 2 for multi-shell model
@@ -564,7 +564,7 @@ namespace RUBIX{
  
   public:
     //Constructor
-    LRvoxel(const Matrix& bvecsHR, const Matrix& bHR, 
+    LRvoxel(const vector<Matrix>& bvecsHR, const vector<Matrix>& bHR, 
 	    const Matrix& bvecsLR, const Matrix& bLR, 
 	    const ColumnVector& dataLR, const vector<ColumnVector>& dataHR, const int N, const int Nmodes, const ColumnVector& HRweights, const int modelnum=1, const float ardfudge=1, const bool allard=false, const bool Noard=false, const bool kappa_ard=false, const bool fsumPrior_ON=false, const bool dPrior_ON=false, const bool rician=false):
       m_dataLR(dataLR), m_dataHR(dataHR),m_bvecsHR(bvecsHR), m_bvalsHR(bHR), m_bvecsLR(bvecsLR), m_bvalsLR(bLR),
@@ -589,8 +589,8 @@ namespace RUBIX{
       }
       m_Orient_hyp_prior.ReSize(m_Nmodes,5);
 
-      for (unsigned int m=1; m<=m_dataHR.size(); m++){ //Add HRvoxel Objects
-      	HRvoxel HRv(m_bvecsHR, m_bvalsHR, m_bvecsLR, m_bvalsLR, m_Orient_hyp_prior, m_mean_d, m_stdev_d, m_mean_fsum, m_stdev_fsum, m_numfibres, m_modelnum, m_ardfudge, m_fsumPrior_ON, m_dPrior_ON, m_rician);
+      for (unsigned int n=0; n<m_dataHR.size(); n++){ //Add HRvoxel Objects
+      	HRvoxel HRv(m_bvecsHR[n], m_bvalsHR[n], m_bvecsLR, m_bvalsLR, m_Orient_hyp_prior, m_mean_d, m_stdev_d, m_mean_fsum, m_stdev_fsum, m_numfibres, m_modelnum, m_ardfudge, m_fsumPrior_ON, m_dPrior_ON, m_rician);
       	
 	m_HRvoxels.push_back(HRv);
       }
-- 
GitLab