diff --git a/Makefile b/Makefile
index 51902fe811bc8029711b9bf6df6c36640e203da1..e2533bc352fcf50ea147e41a5739a3a90ccbbf2d 100644
--- a/Makefile
+++ b/Makefile
@@ -15,8 +15,8 @@ OBJS =  ContrastMgrOptions.o ContrastMgr.o BandPassOptions.o gaussComparer.o Aut
 
 all:	${XFILES}
 
-film_ols:${OBJS} film_ols.o
-	${CXX}  ${CXXFLAGS} ${LDFLAGS} -o $@ ${OBJS} film_ols.o ${LIBS}
+#film_ols:${OBJS} film_ols.o
+#	${CXX}  ${CXXFLAGS} ${LDFLAGS} -o $@ ${OBJS} film_ols.o ${LIBS}
 
 contrast_mgr:${OBJS} contrast_mgr.o
 	${CXX}  ${CXXFLAGS} ${LDFLAGS} -o $@ ${OBJS} contrast_mgr.o ${LIBS}
diff --git a/film_gls.cc b/film_gls.cc
index 9a9a2ff04be36795f45715a21aee5a6ea355f335..1430ef6117a1bf3410656dbcd672628f7a879e7a 100644
--- a/film_gls.cc
+++ b/film_gls.cc
@@ -104,7 +104,7 @@ int main(int argc, char *argv[])
 	for(int i = 1; i <= numTS; i++)
 	  {						    
 	    glimGls.setData(x.getSeries(i), parad.getDesignMatrix(), i);
-	    residuals.getSeries(i) = glimGls.getResiduals();
+	    residuals.setSeries(glimGls.getResiduals(),i);
 	  }
 	cout << "Completed" << endl; 
 	
@@ -175,7 +175,7 @@ int main(int argc, char *argv[])
 		co++;
 	      }
 	    
-	    x.getSeries(i) = xw;
+	    x.setSeries(xw,i);
 	    
 	    glimGls.setData(x.getSeries(i), designmattw, i);
 	  }
@@ -189,7 +189,7 @@ int main(int argc, char *argv[])
 	      }
 	    
 	    glimGls.setData(x.getSeries(i), parad.getDesignMatrix(), i);
-	    residuals.getSeries(i) = glimGls.getResiduals();
+	    residuals.setSeries(glimGls.getResiduals(),i);
 	  }
       }
 
diff --git a/film_gls.ccbak b/film_gls.ccbak
deleted file mode 100755
index 7cb5e6d56b45b1b860887e7a846bbb9ed0dfa3b0..0000000000000000000000000000000000000000
--- a/film_gls.ccbak
+++ /dev/null
@@ -1,216 +0,0 @@
-/*  film_gls.cc
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include <iostream>
-#include <fstream>
-#include <strstream>
-#define WANT_STREAM
-#define WANT_MATH
-
-#include "newmatap.h"
-#include "newmatio.h"
-#include "VolumeSeries.h"
-#include "Volume.h"
-#include "glim.h"
-#include "sigproc.h"
-#include "miscmaths.h"
-#include "gaussComparer.h"
-#include "Log.h"
-#include "AutoCorrEstimator.h"
-#include "paradigm.h"
-#include "FilmGlsOptions.h"
-#include "glimGls.h"
-
-#include <string>
-
-#ifndef NO_NAMESPACE
-using namespace NEWMAT;
-using namespace SIGPROC;
-using namespace TACO;
-using namespace UTILS;
-#endif
-
-int main(int argc, char *argv[])
-{
-  try{
-    rand();
-    // parse command line to find out directory name for logging:
-    ofstream out2;
-    FilmGlsOptions& globalopts = FilmGlsOptions::getInstance();
-    globalopts.parse_command_line(argc, argv, out2);
-
-    // Setup logging:
-    Log& logger = Log::getInstance();
-    logger.setLogFile("glslogfile");
-    logger.establishDir(globalopts.datadir);
-
-    // parse command line again to output arguments to logfile
-    globalopts.parse_command_line(argc, argv, logger.str());
-
-    // load non-temporally filtered data
-    VolumeSeries x;
-    x.read(globalopts.inputfname);
-
-    // if needed output the 12th volume for use later
-    Volume epivol;
-    if(globalopts.smoothACEst)
-      {
-	epivol = x.getVolume(12).AsColumn();
-	epivol.setDims(x.getDims());
-	
-	epivol.writeAsInt(logger.getDir() + "/" + globalopts.epifname);
-      }
-
-    // This also removes the mean from each of the time series:
-    x.thresholdSeries(globalopts.thresh, true);
-
-    // if needed later also threshold the epi volume
-    if(globalopts.smoothACEst)
-      {
-	epivol.setPreThresholdPositions(x.getPreThresholdPositions());
-	epivol.threshold();
-      }
-
-    int sizeTS = x.getNumVolumes();
-    int numTS = x.getNumSeries();
-    
-    // Load paradigm: 
-    Paradigm parad;
-    parad.load(globalopts.paradigmfname, "", false, sizeTS);
-
-    // Sort out detrending:
-    if(globalopts.detrend)
-      {
-	SIGPROC::Detrend(x, false);
-      }
-
-    if(globalopts.verbose)
-      {
-	logger.out("Gc", parad.getDesignMatrix());
-      }
-
-    // Set up OLS GLM for non-whitened data 
-    Glim glim(x, parad.getDesignMatrix());
-	    
-    cerr << "Computing residuals for non-whitened data... ";
-    VolumeSeries& rnotw = glim.ComputeResids();
-    cerr << "Completed" << endl;
-    
-    // Estimate Autocorrelations:
-    AutoCorrEstimator acEst(rnotw);
-
-    if(globalopts.fitAutoRegressiveModel)
-      {
-	acEst.fitAutoRegressiveModel();
-	if(globalopts.verbose)
-	  {
-	    AutoCorrEstimator acEstForLogging(rnotw);
-	    acEstForLogging.calcRaw();
-	    logger.out("rawac", acEstForLogging.getEstimates());
-	    logger.out("autoregac", acEst.getEstimates());
-	  }
-      }
-    else
-      {
-	acEst.calcRaw();
-	    
-	if(globalopts.verbose)
-	  {
-	    //logger.out("rawac", acEst.getEstimates());
-	  }
-	    
-	// Smooth raw estimates:
-	if(globalopts.smoothACEst)
-	  { 
-	    acEst.spatiallySmooth(logger.getDir() + "/" + globalopts.epifname, epivol, globalopts.ms, globalopts.epifname, globalopts.susanpath, globalopts.epith);
-	    
-	  }
-	
-	// Apply constraints to estimate autocorr:
-	acEst.pava();
-	    
-      }
-    
-    ColumnVector I(sizeTS);
-    I = 0;
-    I(1) = 1;
-    
-    // Setup OLS GLM for temporally filtered data:
-    int numParams = parad.getDesignMatrix().Ncols();
-    GlimGls glimGls(numTS, sizeTS, numParams);
-    
-    ColumnVector xw(sizeTS);
-    ColumnVector xprew(sizeTS);
-
-    acEst.setDesignMatrix(parad.getDesignMatrix());
-    int co = 1;
-    
-    // Loop through voxels:
-    cerr << "Calculating params..." << endl;
-
-    for(int i = 1; i <= numTS; i++)
-      {	
-	// Use autocorr estimate to prewhiten data:
-	xprew = x.getSeries(i);
-	    
-	Matrix designmattw;
-
-	acEst.preWhiten(xprew, xw, i, designmattw);
-
-	if(co > 1000 || i == 5618 || i == 5582)
-	  {
-	    co = 1;
-	    cerr << (float)i/(float)numTS << ",";
-	  }
-	else
-	  co++;
-	    
-	glimGls.setData(xw, designmattw, i);   
-      }
-    cerr << "Completed" << endl;
-    
-
-    if(globalopts.verbose)
-      {	
-	// Save E
-	VolumeSeries& E = acEst.getE();
-	ColumnVector& countLargeE = acEst.getCountLargeE();
-	
-	logger.out("countLargeE", countLargeE);
-	VolumeSeries::Dims dims = x.getDims();
-	dims.v = acEst.getZeroPad();
-
-	E.setDims(dims);
-	E.setPreThresholdPositions(x.getPreThresholdPositions());
-	E.unthresholdSeries();	
-	E.writeAsFloat(logger.getDir() + "/E");
-  
-	VolumeSeries& threshac = acEst.getEstimates();
-	threshac.unthresholdSeries(x.getDims(),x.getPreThresholdPositions());
-	threshac.writeAsFloat(logger.getDir() + "/threshac");
-	  
-	rnotw.unthresholdSeries(x.getDims(),x.getPreThresholdPositions());
-	rnotw.writeAsFloat(logger.getDir() + "/rnotw");
-      }
-
-    // Write out necessary data:
-    cerr << "Saving results... ";
-    glimGls.Save(x.getDims(), x.getPreThresholdPositions());
-    cerr << "Completed" << endl;
-  }  
-  catch(Exception p_excp) 
-    {
-      cerr << p_excp.what() << endl;
-    }
-  catch(...) 
-    {
-      cerr << "Image error" << endl;
-    } 
-  return 0;
-}
-
diff --git a/film_gls_res.cc b/film_gls_res.cc
index 02dbcf87ca5a342bb5524b6c2cf0ac8fbd764a76..1d89f90999e02a55c47c826f1f943d0f5e4f4b81 100644
--- a/film_gls_res.cc
+++ b/film_gls_res.cc
@@ -1,4 +1,4 @@
-/*  film_gls.cc
+/*  film_gls_res.cc
 
     Mark Woolrich, FMRIB Image Analysis Group
 
@@ -118,7 +118,7 @@ int main(int argc, char *argv[])
 	    for(int i = 1; i <= numTS; i++)
 	      {						    
 		glimGls.setData(x.getSeries(i), dms[i-1], i);
-		residuals.getSeries(i) = glimGls.getResiduals();
+		residuals.setSeries(glimGls.getResiduals());
 	      }
 	    cerr << "Completed" << endl; 
 
@@ -199,7 +199,7 @@ int main(int argc, char *argv[])
 		else
 		  co++;
 	   
-		x.getSeries(i) = xw;
+		x.setSeries(xw,i);
 		dms[i-1] = designmattw;
 	      }  
       	
@@ -249,7 +249,7 @@ int main(int argc, char *argv[])
 	
 	if(globalopts.verbose)
 	  {
-	    residuals.getSeries(i) = glimGls.getResiduals();
+	    residuals.setSeries(glimGls.getResiduals(),i);
 	  }
       }
     cerr << "Completed" << endl;
@@ -274,7 +274,7 @@ int main(int argc, char *argv[])
 	
 	    for(int i = 1; i <= numTS; i++)
 	      {
-		dmsmat.getSeries(i) = dms[i-1].Column(j);
+		dmsmat.setSeries(dms[i-1].Column(j),i);
 	      }
 	    dmsmat.setInfo(vinfo);
 	    dmsmat.setPreThresholdPositions(x.getPreThresholdPositions());
diff --git a/glim.baccc b/glim.baccc
deleted file mode 100755
index e8e87d201cfbceb91faadce83169956f053177c5..0000000000000000000000000000000000000000
--- a/glim.baccc
+++ /dev/null
@@ -1,210 +0,0 @@
-/*  glim.cc
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include <strstream>
-
-#include "glim.h"
-#include "miscmaths.h"
-#include "Log.h"
-#include "Volume.h"
-
-#ifndef NO_NAMESPACE
-using namespace MISCMATHS;
-using namespace UTILS;
-using namespace TACO;
-namespace SIGPROC {
-#endif
-
-  Glim::Glim(const VolumeSeries& p_y, const Matrix& p_x):
-    y(p_y),
-    x(p_x),
-    numTS(p_y.Ncols()),
-    sizeTS(p_y.Nrows()),
-    numParams(p_x.Ncols()),
-    r(sizeTS, numTS, p_y.getDims(), p_y.getPreThresholdPositions()),
-    pinv_x(p_x.Ncols(), sizeTS),
-    V(sizeTS,sizeTS),
-    RV(sizeTS,sizeTS),
-    RMat(sizeTS,sizeTS),
-    batch_size(BATCHSIZE),
-    corrections(numTS, numParams*numParams),
-    b(numTS, numParams),
-    sigmaSquareds(numTS),
-    dofs(numTS),
-    traceRVs(numTS)
-    { 
-    }
-
-  void Glim::Save()
-    {
-      // Need to save b, sigmaSquareds, corrections and dof 
-      Log& logger = Log::getInstance();
-     
-      // b:
-      Volume peVol;
-      for(int i = 1; i <= numParams; i++)
-	{
-	  peVol = b.Row(i).AsColumn();
-	  peVol.setDims(y.getDims());
-	  peVol.setPreThresholdPositions(y.getPreThresholdPositions());
-	  peVol.unthreshold();	
-	  
-	  // Add param number to "pe" to create filename:
-	  char strc[4];
-	  ostrstream osc(strc,4);
-	  osc << i << '\0';
-	  
-	  peVol.writeAsFloat(logger.getDir() + "/pe" + strc);
-	}
-
-      // sigmaSquareds:
-      sigmaSquareds.setDims(y.getDims());
-      sigmaSquareds.setPreThresholdPositions(y.getPreThresholdPositions());
-      sigmaSquareds.unthreshold();	
-      sigmaSquareds.writeAsFloat(logger.getDir() + "/sigmasquareds");
-
-      // dof:
-      dofs.setDims(y.getDims());
-      dofs.setPreThresholdPositions(y.getPreThresholdPositions());
-      dofs.unthreshold();	
-      dofs.writeAsFloat(logger.getDir() + "/dofs");
-
-      // traceRVs:
-      traceRVs.setDims(y.getDims());
-      traceRVs.setPreThresholdPositions(y.getPreThresholdPositions());
-      traceRVs.unthreshold();	
-      traceRVs.writeAsFloat(logger.getDir() + "/traceRVs");
-
-      // corrections:
-      logger.out("corrections", corrections);
-    }
-
-  // Called on entire data set:
-  const VolumeSeries& Glim::ComputeResids()
-    {
-      Tracer ts("ComputeResids");
-
-      int batch_pos = 1;
-
-      // pinv(x) = inv(x'x)x'
-      pinv_x = (x.t()*x).i()*x.t();
-
-      // R = I - x*pinv(x)
-      Matrix I(sizeTS, sizeTS);
-      Identity(I);
-
-      RMat = I - x*pinv_x;
-      
-      while(batch_pos <= numTS)
-	{
-	  if(batch_pos+batch_size - 1 > numTS)
-	    r.Columns(batch_pos, numTS) = RMat*y.Columns(batch_pos, numTS);
-	  else
-	    r.Columns(batch_pos, batch_pos+batch_size-1) = RMat*y.Columns(batch_pos, batch_pos+batch_size-1);
-	
-	  batch_pos += batch_size;
-	}
-      
-      return r;
-    }
-
-  // Called on entire data set:
-  void Glim::ComputePes()
-    { 
-      Tracer ts("ComputePe");
-      
-      b = pinv_x*y;
-    }
-
-  void Glim::ConstructV(const ColumnVector& p_vrow)
-    {
-      Tracer ts("ConstructV");
-      V = 0;
-
-      for (int i = 1; i <= sizeTS; i++)
-	{
-	  V.SubMatrix(i,i,i,sizeTS) = p_vrow.Rows(1,sizeTS-i+1).t();
-	  V.SubMatrix(i,i,1,i) = p_vrow.Rows(1,i).Reverse().t();
-	}
-    }
-
-  void Glim::SetVrow(const ColumnVector& p_vrow, const int ind)
-    {
-      Tracer ts("SetVrow");
-      
-      ConstructV(p_vrow);
-
-      // var/e = inv(x'x)x'*V*x*inv(x'x)
-      Matrix corr = pinv_x*V*pinv_x.t();
-      SetCorrection(corr, ind);
-      RV = RMat*V;
-      traceRVs(ind) = Trace(RV);
-
-      dofs(ind) = traceRVs(ind)*traceRVs(ind)/Trace(RV*RV);
-    }
-
-  void Glim::SetGlobalVrow(const ColumnVector& p_vrow)
-    {
-      Tracer ts("Glim::SetGlobalVrow");
-
-      ConstructV(p_vrow);
-      RV = RMat*V;
-
-      traceRVs = Trace(RV);
- 
-      dofs = Trace(RV)*Trace(RV)/Trace(RV*RV);
-    }
-
-
-  void Glim::UseGlobalVrow()
-    {
-      Tracer ts("Glim::UseGlobalVrow");
-
-      // var/e = inv(x'x)x'*V*x*inv(x'x)
-      Matrix corr = pinv_x*V*x*(x.t()*x).i();
-
-      for(int i = 1; i <= numTS; i++)
-	{
-	  SetCorrection(corr, i);
-	}
-    }
-
-  void Glim::ComputeSigmaSquared(const int ind)
-    {
-      Tracer ts("Glim::ComputeSigmaSquared");
-
-      sigmaSquareds(ind) = (r.Column(ind).t()*r.Column(ind)/traceRVs(ind)).AsScalar();
-    }
-
-  void Glim::SetCorrection(const Matrix& corr, const int ind)
-    {
-      Tracer ts("SetCorrection");
-
-      // puts Matrix corr which is p*p into Matrix correction
-      // as a p*p length row:
-      int p = corr.Nrows();
-      
-      for (int i = 1; i <= p; i++)
-	{
-	  for (int j = 1; j <= p; j++)
-	    {
-	      corrections(ind, (i-1)*p + j) = corr(i,j); 
-	    }
-	}
-    }
-
-#ifndef NO_NAMESPACE
-}
-#endif
-
-
-
-
-
-
-
diff --git a/glim.bach b/glim.bach
deleted file mode 100755
index 41cfe361a7002a73964743d2380c7347204518fc..0000000000000000000000000000000000000000
--- a/glim.bach
+++ /dev/null
@@ -1,89 +0,0 @@
-/*  glim.h
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include <iostream>
-#include <fstream>
-#define WANT_STREAM
-#define WANT_MATH
-
-#include "newmatap.h"
-#include "newmatio.h"
-#include "VolumeSeries.h"
-#include "Volume.h"
-
-#ifndef NO_NAMESPACE
-using namespace NEWMAT;
-using namespace TACO;
-namespace SIGPROC{
-#endif
-
-#if !defined(__glim_h)
-#define __glim_h
- 
-#define FALSE 0
-#define TRUE 1
-
-#define BATCHSIZE 50
-
-  class Glim
-    {
-    public:
-      Glim(const VolumeSeries& p_y, const Matrix& p_x); 
-
-      void Save();
-
-      const VolumeSeries& ComputeResids();      
-      void ComputePes();
-      void SetVrow(const ColumnVector& p_vrow, const int ind);
-      void SetGlobalVrow(const ColumnVector& p_vrow);
-      void ComputeSigmaSquared(const int ind);
-      void UseGlobalVrow();
-
-    private:
-      Glim();
-      Glim(const Glim&);
-      Glim& operator=(const Glim& p_glim);
-      
-      void SetCorrection(const Matrix& corr, const int ind);
-      void ConstructV(const ColumnVector& p_vrow);
-
-      // y = bx + r
-      const VolumeSeries& y;
-      const Matrix& x;
-
-      int numTS;
-      int sizeTS;
-      int numParams;
-
-      VolumeSeries r;
-      Matrix pinv_x;
-      Matrix V;
-      Matrix RV;
-      Matrix RMat;
-
-      int batch_size;
-
-      // Data to be saved:
-      Matrix corrections;
-      Matrix b;
-      Volume sigmaSquareds;
-      Volume dofs;
-      Volume traceRVs;
-
-    };
-
-
-#ifndef NO_NAMESPACE
-       }
-#endif
-
-#endif
-
-
-
-
diff --git a/glmrand.cc b/glmrand.cc
deleted file mode 100644
index 96e535b058ec8d30ae7c02b188ccf27cd50abe08..0000000000000000000000000000000000000000
--- a/glmrand.cc
+++ /dev/null
@@ -1,213 +0,0 @@
-/*  glmrand.cc
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include "glmrand.h"
-#include "miscmaths/miscmaths.h"
-#include "utils/log.h"
-#include "histogram.h"
-#include "miscmaths/t2z.h"
-#define __STL_NO_DRAND48
-
-#include <vector.h>
-#include <algo.h>
-
-#ifndef NO_NAMESPACE
-using namespace MISCMATHS;
-using namespace FILM;
-using namespace Utilities;
-namespace FILM {
-#endif
-
-  void GlmRand::addData(ColumnVector& p_y, Matrix& p_x)
-    {
-      Tracer ts("GlmRand::addData");
-
-      yorig = p_y;
-      x = &p_x;
-      sizeTS = p_y.Nrows();
-      randomise();
-    }
-
-  void GlmRand::randomise()
-  {
-    Tracer ts("GlmRand::randomise");
-
-    y.ReSize(sizeTS, numrand+1);
-    vector<float> yorigvec;
-    
-    // put in origy:
-    y.getSeries(1) = yorig.AsColumn();
- 
-    //// void columnVector2Vector(const ColumnVector& cvec, vector<float>& vec)
-    ColumnVector cvec = yorig;
-    vector<float>& vec = yorigvec;
-    for(int j=1; j<=sizeTS; j++)
-      {
-	vec.push_back(cvec(j));	
-      }
-    ////////
-   
-    // put in num randomised versions of yorig:
-    for(int i=1; i<=numrand; i++)
-      {
-	random_shuffle(yorigvec.begin(), yorigvec.end());
-	
-	//// void vector2ColumnVector(const vector<float>& vec, ColumnVector& cvec)
-	vec = yorigvec;
-	for(int j=1; j<=sizeTS; j++)
-	{
-	  cvec(j) = vec[j-1];
-	}		  
-	////////
-	y.getSeries(i+1) = cvec.AsColumn();
-      }
-   
-    ComputeResids();
-    Computecb();
-    ComputeVar();
-    ComputeTStats();
-  }
-
-  void GlmRand::ComputeTStats()
-  {
-    Tracer ts("GlmRand::ComputeTStats");
-
-    datats(datatscount) = cb(1)/sqrt(var(1));
-
-    for(int i=1; i<=numrand; i++)
-      {
-	randts(((datatscount-1)*numrand)+i) = cb(i+1)/sqrt(var(i+1));
-      } 
-
-    datatscount++;
-  }
-
-  const Volume& GlmRand::ComputeZStats()
-  {
-    Tracer ts("GlmRand::ComputeZStats");
-
-    Log::getInstance().out("randts",randts);
-    Log::getInstance().out("datats",datats);
-
-    Histogram hist(randts, randts.getVolumeSize());
-    hist.generate();
-
-    Volume logprob(numTS);
-    float logtotal = log((float)hist.integrateAll());
-    cerr << logtotal << endl;
-
-    T2z& t2z = T2z::getInstance();
-    for(int i=1; i<=numTS; i++)
-      {
-	float numtoinf = (float)hist.integrateToInf(datats(i));
-
-	if(!(numtoinf>0))
-	  numtoinf = 1;
-	
-	logprob(i) = log(numtoinf)-logtotal; 
-	datazs(i) = t2z.convertlogp2z(logprob(i));
-      }
-    
-    Log::getInstance().out("logprob",logprob);
-    Log::getInstance().out("datazs",datazs);
-
-    return datazs;
-  }
-
-  void GlmRand::ComputeResids()
-    {
-      Tracer ts("GlmRand::ComputeResids");
-
-      int batch_pos = 1;
-      Matrix& d = *x;
-
-      pinv_x = (d.t()*d).i()*d.t();
-
-      // R = I - x*pinv(x)
-      Matrix I(sizeTS, sizeTS);
-      Identity(I);
-
-      RMat = I-d*pinv_x;
-
-      r.ReSize(sizeTS, numrand+1);
-      while(batch_pos <= numrand+1)
-	{
-	  if(batch_pos+batch_size - 1 >  numrand+1)
-	    r.Columns(batch_pos, numrand+1) = RMat*y.Columns(batch_pos,  numrand+1);
-	  else
-	    r.Columns(batch_pos, batch_pos+batch_size-1) = RMat*y.Columns(batch_pos, batch_pos+batch_size-1);
-	
-	  batch_pos += batch_size;
-	}
-    }
-
-  void GlmRand::Computecb()
-    { 
-      Tracer ts("Computecb");
-      
-      int batch_pos = 1;
-      cb.ReSize(numrand+1);
-      while(batch_pos <= numrand+1)
-	{
-	  if(batch_pos+batch_size - 1 > numrand+1)
-	    cb.Rows(batch_pos, numrand+1) = (c.t()*pinv_x*y.Columns(batch_pos, numrand+1)).t();
-	  else
-	    cb.Rows(batch_pos, batch_pos+batch_size-1) = (c.t()*pinv_x*y.Columns(batch_pos, batch_pos+batch_size-1)).t();
-	  batch_pos += batch_size;
-	}
-    }
-
-  void GlmRand::ComputeVar()
-    { 
-      Tracer ts("ComputeVar");
-
-      int batch_pos = 1;
-      var.ReSize(numrand+1);
-      Matrix varmatfull(batch_size, batch_size);
-      ColumnVector vartempfull(batch_size);
-
-      Matrix& d = *x;
-      
-      // inv_xx = inv(x'x)
-      float var_on_e = (c.t()*((d.t()*d).i())*c).AsScalar();
-
-      while(batch_pos <= numrand+1)
-	{
-	  if(batch_pos+batch_size - 1 > numrand+1)
-	    {
-	      // var = e*var_on_e
-	      // e is the estimate of the variance of the timeseries, sigma^2
-	      Matrix varmat = (r.Columns(batch_pos, numrand+1).t()*r.Columns(batch_pos, numrand+1))*var_on_e/sizeTS;
-	      ColumnVector vartemp;
-	      //getdiag(vartemp, varmat);  // obsolete fn
-	      vartemp = diag(varmat);  // MJ NOTE: new fn
-	      var.Rows(batch_pos, numrand+1) = vartemp;
-	    }      
-	  else
-	    {
-	      varmatfull = (r.Columns(batch_pos, batch_pos+batch_size-1).t()*r.Columns(batch_pos, batch_pos+batch_size-1))*var_on_e/sizeTS;
-	      //getdiag(vartempfull, varmatfull);  // obsolete fn
-	      vartempfull = diag(varmatfull);  // MJ NOTE: new fn
-	      var.Rows(batch_pos, batch_pos+batch_size-1) = vartempfull;
-	    }
-	  batch_pos += batch_size;
-	}
-    }
-
-#ifndef NO_NAMESPACE
-}
-#endif
-
-
-
-
-
-
-
-
-
diff --git a/glmrand.h b/glmrand.h
deleted file mode 100644
index 32677e1bf882d923d7496ae8948390c056c702ce..0000000000000000000000000000000000000000
--- a/glmrand.h
+++ /dev/null
@@ -1,99 +0,0 @@
-/*  glmrand.h
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#if !defined(__glmRand_h)
-#define __glmRand_h
-
-#include <iostream>
-#include <fstream>
-#define WANT_STREAM
-#define WANT_MATH
-
-#include "newmatap.h"
-#include "newmatio.h"
-#include "miscmaths/volume.h"
-#include "miscmaths/volumeseries.h"
-
-using namespace NEWMAT;
-
-namespace FILM{
-
-#define BATCHSIZE 50
-
-  class GlmRand
-    {
-    public:
-     
-      GlmRand(const int pnumrand, const int pnumts, Matrix& pcontrasts, const int contrastnum) : 
-	yorig(),
-	x(),
-	contrasts(&pcontrasts),
-	numTS(pnumts),
-	numrand(pnumrand),
-	randts(pnumrand*pnumts),
-	datats(pnumts),
-	datazs(pnumts),
-	datatscount(1),
-	batch_size(BATCHSIZE) {SetContrast(contrastnum);} 
-
-      void addData(ColumnVector& p_y, Matrix& p_x);
-
-      void SetContrast(const int p_num) {c = contrasts->Row(p_num).t();}
-      const Volume& ComputeZStats();
-
-    private:
-      GlmRand(const GlmRand&);
-      GlmRand& operator=(const GlmRand& p_glmRand);
-
-      void randomise();
-      void ComputeResids();
-      void ComputeVar();
-      void Computecb();
-      void ComputeTStats();
-      
-      // y = bx + r
-       
-      // Original time series:
-      ColumnVector yorig;
-
-      VolumeSeries y;
-      Matrix* x;
-   
-      // Contrast
-      Matrix* contrasts;
-      ColumnVector c;
-
-      int numTS;
-      int sizeTS;
-      int numrand;
-
-      VolumeSeries r;
-
-      Matrix pinv_x;
-
-      Volume cb;
-      Volume var;
-
-      Volume randts;
-      Volume datats;
-      Volume datazs;
-
-      Matrix RMat;
-
-      int datatscount;
-
-      // batch stuff
-      int batch_size;
-    };
-
-}
-
-#endif
-
-
-
diff --git a/ols.ccbak b/ols.ccbak
deleted file mode 100755
index 0cfe9730faba4812d91eac5dd217c3dd6a3cf463..0000000000000000000000000000000000000000
--- a/ols.ccbak
+++ /dev/null
@@ -1,238 +0,0 @@
-/*  ols.cc
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include "ols.h"
-#include "miscmaths.h"
-#include "Log.h"
-
-#ifndef NO_NAMESPACE
-using namespace MISCMATHS;
-namespace FILM {
-#endif
-
-  Ols::Ols(const Matrix& p_y, const Matrix& p_x, const Matrix& p_contrasts):
-    y(p_y),
-    x(p_x),
-    contrasts(p_contrasts),
-    numTS(p_y.Ncols()),
-    sizeTS(p_y.Nrows()),
-    r(sizeTS,numTS),
-    pinv_x(p_x.Ncols(), sizeTS),
-    var_on_e(0.0),
-    cb(numTS),
-    b(p_x.Ncols()),
-    var(numTS),
-    dof(sizeTS - p_x.Ncols()),
-    V(sizeTS,sizeTS),
-    RV(sizeTS,sizeTS),
-    RMat(sizeTS,sizeTS),
-    batch_size(BATCHSIZE)
-    {
-      SetContrast(1);
-    }
-  
-//    void Ols::ConstructV(const ColumnVector& p_vrow)
-//      {
-//        Tracer ts("ConstructV");
-//        V = 0;
-
-//        for (int i = 1; i <= sizeTS; i++)
-//         {
-//  	 V.SubMatrix(i,i,i,sizeTS) = p_vrow.Rows(1,sizeTS-i+1).t();
-//  	 V.SubMatrix(i,i,1,i) = p_vrow.Rows(1,i).Reverse().t();
-//         }
-//      }
-
-//    float Ols::SetupWithV(const ColumnVector& p_vrow, bool p_justvarone)
-//      {
-//        Tracer ts("SetupWithV");
-      
-//        ConstructV(p_vrow);
-
-//        // var/e = c'inv(x'x)x'*V*x*inv(x'x)*c
-//        var_on_e = (c.t()*pinv_x*V*x*(x.t()*x).i()*c).AsScalar();
-
-//        if(!p_justvarone)
-//  	{
-//  	  // dof = 2*trace(RV)^2/trace(R*V*R*V);
-//  	  RV = RMat*V;
-//  	  dof = Trace(RV)*Trace(RV)/Trace(RV*RV);
-//  	}
-
-//        return dof;
-//      }
-
-//    float Ols::SetupWithV(const ColumnVector& p_vrow, const ColumnVector& p_kfft, ColumnVector& vrow, bool p_justvarone, const int zeropad)
-//      {
-//        Tracer ts("SetupWithV");
-
-//        // make sure p_vrow is cyclic (even function)
-//        //ColumnVector vrow(zeropad);
-//        vrow.ReSize(zeropad);
-
-//        vrow = 0;
-//        vrow.Rows(1,sizeTS/2) = p_vrow.Rows(1,sizeTS/2);
-//        vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = p_vrow.Rows(2, sizeTS/2).Reverse();
-
-//        // fft vrow
-//        ColumnVector fft_real;
-//        ColumnVector fft_im;
-//        ColumnVector dummy(zeropad);
-//        dummy = 0;
-      
-//        ColumnVector realifft(zeropad);
-
-//        FFT(vrow, dummy, fft_real, fft_im);
-
-//        FFTI(SP(fft_real, p_kfft), dummy, realifft, dummy);
-      
-//        vrow = realifft.Rows(1,sizeTS);
-
-//        // Normalise vrow:
-//        vrow = vrow/vrow(1);
-
-//        ConstructV(vrow);     
-
-//        // var/e = c'inv(x'x)x'*V*x*inv(x'x)*c
-//        var_on_e = (c.t()*pinv_x*V*x*(x.t()*x).i()*c).AsScalar();
-      
-//        if(!p_justvarone)
-//  	{
-//  	  // dof = 2*trace(RV)^2/trace(R*V*R*V);
-//  	  RV = RMat*V;
-//  	  dof = Trace(RV)*Trace(RV)/Trace(RV*RV);
-//  	}
-
-//        return dof;
-//      }
-
-  const Matrix& Ols::ComputeResids()
-    {
-      Tracer ts("ComputeResids");
-
-      int batch_pos = 1;
-
-      // pinv(x) = inv(x'x)x'
-      pinv_x = (x.t()*x).i()*x.t();
-
-      // R = I - x*pinv(x)
-      Matrix I(sizeTS, sizeTS);
-      Identity(I);
-
-      RMat = I - x*pinv_x;
-      
-      while(batch_pos <= numTS)
-	{
-	  if(batch_pos+batch_size - 1 > numTS)
-	    r.Columns(batch_pos, numTS) = RMat*y.Columns(batch_pos, numTS);
-	  else
-	    r.Columns(batch_pos, batch_pos+batch_size-1) = RMat*y.Columns(batch_pos, batch_pos+batch_size-1);
-	
-	  batch_pos += batch_size;
-	}
-      
-      return r;
-    }
-
-//    const ColumnVector& Ols::Computecb()
-//      { 
-//        Tracer ts("Computecb");
-      
-//        //     cerr << "Computing cbs";
-//        int batch_pos = 1;
-      
-//        while(batch_pos <= numTS)
-//  	{
-//  	  if(batch_pos+batch_size - 1 > numTS)
-//  	    cb.Rows(batch_pos, numTS) = (c.t()*pinv_x*y.Columns(batch_pos, numTS)).t();
-//  	  else
-//  	    cb.Rows(batch_pos, batch_pos+batch_size-1) = (c.t()*pinv_x*y.Columns(batch_pos, batch_pos+batch_size-1)).t();
-//  	  batch_pos += batch_size;
-//  	  //	  cerr << ".";
-//  	}
-//        //cerr << endl;
-//        return cb;
-//      }
-
-//    const float Ols::Computecb(const int ind)
-//      { 
-//        Tracer ts("Computecb");
-
-//        cb(ind) = ((c.t()*pinv_x*y.Column(ind)).t()).AsScalar();
-//        return cb(ind);
-//      }
-
-//    const ColumnVector& Ols::Computeb(const int ind)
-//      { 
-//        Tracer ts("Computeb");
-      
-//        b = pinv_x*y.Column(ind);
-//        return b;
-//      }
-
-//    const ColumnVector& Ols::ComputeVar()
-//      { 
-//        Tracer ts("ComputeVar");
-
-//        //      cerr << "Computing Vars";
-//        int batch_pos = 1;
-
-//        Matrix varmatfull(batch_size, batch_size);
-//        ColumnVector vartempfull(batch_size);
-
-//        while(batch_pos <= numTS)
-//  	{
-//  	  if(batch_pos+batch_size - 1 > numTS)
-//  	    {
-//  	      // var = e*var_on_e
-//  	      // e is the estimate of the variance of the timeseries, sigma^2
-//  	      Matrix varmat = (r.Columns(batch_pos, numTS).t()*r.Columns(batch_pos, numTS)/Trace(RV))*var_on_e;
-//  	      ColumnVector vartemp;
-//  	      //getdiag(vartemp, varmat);  // obsolete fn
-//  	      vartemp = diag(varmat);  // MJ NOTE: new fn
-//  	      var.Rows(batch_pos, numTS) = vartemp;
-//  	    }      
-//  	  else
-//  	    {
-//  	      varmatfull = (r.Columns(batch_pos, batch_pos+batch_size-1).t()*r.Columns(batch_pos, batch_pos+batch_size-1)/Trace(RV))*var_on_e;
-//  	      //getdiag(vartempfull, varmatfull);  // obsolete fn
-//  	      vartempfull = diag(varmatfull);  // MJ NOTE: new fn
-//  	      var.Rows(batch_pos, batch_pos+batch_size-1) = vartempfull;
-//  	    }
-//  	  batch_pos += batch_size;
-//  	  //  cerr << ".";
-//  	}
-      
-//        // cerr << endl;
-//        return var;
-//      }
-
-//    const float Ols::ComputeVar(const int ind)
-//      { 
-//        Tracer ts("ComputeVar");
-   
-//        // var = e*var_on_e
-//        // e is the estimate of the variance of the timeseries, sigma^2
-//        var(ind) = ((r.Column(ind).t()*r.Column(ind)/Trace(RV))*var_on_e).AsScalar();
-//        // var(ind) = (r.Column(ind).t()*r.Column(ind)*var_on_e).AsScalar();
-
-//        return var(ind);
-//      }
-
-#ifndef NO_NAMESPACE
-}
-#endif
-
-
-
-
-
-
-
-
-
diff --git a/ols.hbak b/ols.hbak
deleted file mode 100755
index 6755f729ec3dc2e706323e143c6756696c1cf881..0000000000000000000000000000000000000000
--- a/ols.hbak
+++ /dev/null
@@ -1,96 +0,0 @@
-/*  ols.h
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#if !defined(__ols_h)
-#define __ols_h
-
-#include <iostream>
-#include <fstream>
-#define WANT_STREAM
-#define WANT_MATH
-
-#include "newmatap.h"
-#include "newmatio.h"
-
-using namespace NEWMAT;
-namespace FILM {
- 
-#define BATCHSIZE 50
-
-  class Ols
-    {
-    public:
-     
-      Ols(const Matrix& p_y, const Matrix& p_x, const Matrix& p_contrasts); 
-
-      const Matrix& ComputeResids();
-      const ColumnVector& ComputeVar();
-      const ColumnVector& Computecb();
-      const float ComputeVar(const int ind);
-      const float Computecb(const int ind);
-      const ColumnVector& Computeb(const int ind);
-
-      float SetupWithV(const ColumnVector& p_vrow, bool p_justvarone = false);
-      float SetupWithV(const ColumnVector& p_vrow, const ColumnVector& p_krowspec, ColumnVector& p_res, bool p_justvarone = false, const int zeropad = 512);
-
-      const Matrix& Getr() const {return r;}
-     
-      const ColumnVector& Getvar() const {return var;}
-      const ColumnVector& Getcb() const {return cb;}
-      float Getdof() const {return dof;}
-      float Getvarone() const {return var_on_e;}
-
-      void SetContrast(const int p_num) {c = contrasts.Row(p_num).t();}
-      void Setvarone(const float p_varone) {var_on_e = p_varone;}
-      
-    private:
-      Ols();
-      Ols(const Ols&);
-      Ols& operator=(const Ols& p_ols);
-       
-      void ConstructV(const ColumnVector& p_vrow);
-
-      // y = bx + r
-      const Matrix& y;
-      const Matrix& x;
-   
-      // Contrast
-      const Matrix& contrasts;
-      ColumnVector c;
-
-      int numTS;
-      int sizeTS;
-
-      Matrix r;
-
-      Matrix pinv_x;
-      float var_on_e;
-
-      ColumnVector cb;
-      
-      ColumnVector b;
-
-      ColumnVector var;
-      float dof;
-
-      // Covariance matrix is sigma^2*V:
-      Matrix V;
-      Matrix RV;
-
-      Matrix RMat;
-      
-      // batch stuff
-      int batch_size;
-    };
-
-}
-
-#endif
-
-
-
diff --git a/sigprocbak.ccbak b/sigprocbak.ccbak
deleted file mode 100755
index fed675c4ee315dd83dedb1bf874e2a17f25a0fa0..0000000000000000000000000000000000000000
--- a/sigprocbak.ccbak
+++ /dev/null
@@ -1,302 +0,0 @@
-/*  sigproc.cc
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include "ols.h"
-#include "sigproc.h"
-#include "miscmaths.h"
-#include "glm.h"
-
-#ifndef NO_NAMESPACE
-namespace SIGPROC {
-  using namespace MISCMATHS;
-#endif
-
-  void Out(string p_fname, const Matrix& p_mat)
-    {
-      ofstream out;
-      out.open(p_fname.c_str(), ios::out);
-      out << "/Matrix" << endl;
-      out << p_mat;
-      out.close();
-    }
-
-  void Out(string p_fname, const ColumnVector& p_mat)
-    {
-      ofstream out;
-      out.open(p_fname.c_str(), ios::out);
-      out << p_mat;
-      out.close();
-    }
-
-  void Out(string p_fname, const RowVector& p_mat)
-    {
-      ofstream out;
-      out.open(p_fname.c_str(), ios::out);
-      out << p_mat;
-      out.close();
-    }
-
-  void In(string p_fname, ColumnVector& p_mat)
-    {
-      int size = p_mat.Nrows();
-
-      ifstream in;
-      in.open(p_fname.c_str(), ios::in);
-      
-      if(!in)
-	{
-	  string err("Unable to open ");
-	  err =  err +  p_fname;
-	  throw Exception(err.c_str());
-	}
-
-      for(int i = 1; i <= size; i++)
-	{
-	  in >> p_mat(i);
-	}
-
-      in.close();
-    }
-
-  void In(string p_fname, Matrix& p_mat)
-    {
-      ifstream in;
-      in.open(p_fname.c_str(), ios::in);
-      
-      if(!in)
-	{
-	  cerr << "Unable to open " << p_fname << endl;
-	  throw;
-	}
-
-      int numWaves = 0;
-      int numPoints = 0;
-       
-      string str;
-
-      while(true)
-	{
-	  in >> str;
-	  if(str == "/Matrix")
-	    break;
-	  else if(str == "/NumWaves")
-	    {
-	      in >> numWaves;
-	    }
-	  else if(str == "/NumPoints" || str == "/NumContrasts")
-	    {
-	      in >> numPoints;
-	    }
-	}
-
-      if(numWaves != 0)
-	{
-	  p_mat.ReSize(numPoints, numWaves);
-	}
-      else
-	{
-	  numWaves = p_mat.Ncols();
-	  numPoints = p_mat.Nrows();
-	}
-      
-      for(int i = 1; i <= numPoints; i++)
-	{
-	  for(int j = 1; j <= numWaves; j++)    
-	    {
-	      in >> p_mat(i,j);
-	    }
-	  }
-
-      in.close();
-    }
-
-  int EstablishZeroPadding(int sizeTS) {
-    
-    Tracer tr("EstablishZeroPadding");
-    
-    return (int)pow(2,ceil(log(sizeTS)/log(2)));
-  }
-
-  void BandPass(Matrix& p_ts, int lowcut, int highcut)
-  {
-    Tracer tr("BandPass");
-
-      int sizeTS = p_ts.Nrows();
-      int numTS = p_ts.Ncols();
-      
-      int zeropad = EstablishZeroPadding(sizeTS);
-      ColumnVector x(zeropad);
-      x = 0;
-      ColumnVector fft_real;
-      ColumnVector fft_im;
-      ColumnVector dummy(zeropad);
-      ColumnVector dummy2;
-      dummy = 0;
-      ColumnVector realifft(zeropad);
-
-      // convert cutofs to zeropad cutoffs:
-      lowcut = (int)(lowcut*zeropad/(float)sizeTS);
-      highcut = (int)(highcut*zeropad/(float)sizeTS);
-
-      for(int i = 1; i <= numTS; i++)
-	{
-	  x.Rows(1,sizeTS) = p_ts.Column(i);
-
-	  FFT(x, dummy, fft_real, fft_im);
-
-	  // Perform cutoff here:
-	  // everything greater than highcut and lower than lowcut is removed
-	  if(lowcut > 0 && lowcut < sizeTS){
-	    fft_real.Rows(1, lowcut) = 0;
-	    fft_im.Rows(1, lowcut) = 0;
-	    fft_real.Rows(zeropad - lowcut, zeropad) = 0;
-	    fft_im.Rows(zeropad - lowcut, zeropad) = 0;
-	  }
-	  if(highcut < sizeTS && highcut > 0){
-	    fft_real.Rows(highcut, zeropad - highcut) = 0;
-	    fft_im.Rows(highcut, zeropad - highcut) = 0;
-	  }
-	  //////////////////////
-
-	  FFTI(fft_real, fft_im, realifft, dummy2);
-	  p_ts.Column(i) = realifft.Rows(1,sizeTS);
-	} 
-  }
-
-  void AutoCorr(const Matrix& p_ts, Matrix& p_ret, Matrix& fts, int p_zeropad)
-    {
-      Tracer tr("AutoCorr");
-
-      int sizeTS = p_ts.Nrows();
-      int numTS = p_ts.Ncols();
-
-      ColumnVector x(p_zeropad);
-      x = 0;
-      ColumnVector fft_real;
-      ColumnVector fft_im;
-      ColumnVector dummy(p_zeropad);
-      ColumnVector dummy2;
-      dummy = 0;
-      ColumnVector realifft(p_zeropad);
-      p_ret.ReSize(sizeTS,numTS);
-      fts.ReSize(p_zeropad,numTS);
-
-      for(int i = 1; i <= numTS; i++)
-	{
-	  x.Rows(1,sizeTS) = p_ts.Column(i);
-	  FFT(x, dummy, fft_real, fft_im);
-
-	  for(int j = 1; j <= p_zeropad; j++)
-	    {
-	      // (x+iy)(x-iy) = x^2 + y^2
-	      fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
-	      fft_im(j) = 0;
-	      fts(j,i) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);      
-	    }
-
-	  // normalise fts:
-	  fts.Column(i) = fts.Column(i)/fts.Column(i).Sum();
-	  
-	  FFTI(fft_real, fft_im, realifft, dummy2);
-
-	  float varx = var(ColumnVector(x.Rows(1,sizeTS)));
-	  p_ret.Column(i) = realifft.Rows(1,sizeTS);
- 
-	  for(int j = 1; j <= sizeTS-1; j++)
-	    {
-	       // Correction to make autocorr unbiased and normalised
-	       p_ret(j,i) = p_ret(j,i)/((sizeTS-j)*varx);
-	    }  
-	}
-
-    }
-
-  int Pacf(const ColumnVector& x, int minorder, int maxorder, ColumnVector& betas)
-    { 
-      Tracer ts("pacf");
-      int order = -1;
-      int sizeTS = x.Nrows();
-
-      // Set c
-      Matrix c(1,1);
-      c(1,1) = 1;
-      
-      Glm glm;
-
-      for(int i = minorder+1; i <= maxorder+1; i++)
-	{
-	  ColumnVector y = x.Rows(i+1,sizeTS);
-
-	  // Setup design matrix
-	  Matrix X(sizeTS-i, i);
-	  X = 0;
-	  
-	  for(int j = 1; j <= i; j++)
-	    {
-	      X.Column(j) = x.Rows(i+1-j,sizeTS-j).AsColumn();	    
-	    }
-	  
-	  glm.setData(y, X, c);
-	  
-	  glm.ComputeResids();
-	  betas = glm.Getb();
-	  
-	  if((abs(betas(i)) < (1/sizeTS) + (2/pow(sizeTS,0.5)) && order == -1) 
-	     || i == maxorder+1)
-          {      
-	    order = i-1;
-	    break;
-	  }
-	}
-      return order; 
-    }
-
-  void Detrend(Matrix& p_ts, bool p_justremovemean)
-    {
-      Tracer trace("SIGPROC::Detrend");
-
-      cerr << "Detrending...";
-      int sizeTS = p_ts.Nrows();
-     
-      // Set c
-      Matrix c(1,1);
-      c(1,1) = 1;
-
-      // p_ts = b*a + p_ret OLS regression
-      Matrix a(sizeTS, 3);
-
-      if(p_justremovemean) a.ReSize(sizeTS,1);
-
-      // Create a
-      for(int i = 1; i <= sizeTS; i++)
-	{
-	  a(i,1) = 1;
-	  if(!p_justremovemean)
-	    {
-	      a(i,2) = (float)i/sizeTS;
-	      a(i,3) = pow((float)i/sizeTS,2);
-	    }
-	}
-          
-      // Do OLS for all TS:
-      Ols ols(p_ts, a, c);
-
-      p_ts = ols.ComputeResids();
-      
-      cerr << " Completed" << endl;
-    }
-
-#ifndef NO_NAMESPACE
-}
-#endif
-
-
-
-
-
-
diff --git a/sigprocbak.hbak b/sigprocbak.hbak
deleted file mode 100755
index 68a13540c7c9bb5e4e5386c931ed85c4740392f7..0000000000000000000000000000000000000000
--- a/sigprocbak.hbak
+++ /dev/null
@@ -1,38 +0,0 @@
-/*  sigproc.h
-
-    Mark Woolrich, FMRIB Image Analysis Group
-
-    Copyright (C) 1999-2000 University of Oxford  */
-
-/*  CCOPYRIGHT  */
-
-#include <iostream>
-#include <fstream>
-#define WANT_STREAM
-#define WANT_MATH
-#include <string>
-
-#include "newmatap.h"
-#include "newmatio.h"
-  
-#if !defined(__sigproc_h)
-#define __sigproc_h
-  
-using namespace NEWMAT;
-namespace SIGPROC{
-
-  int EstablishZeroPadding(int num);
-  void BandPass(Matrix& p_ts, int lowcut, int highcut);
-  void AutoCorr(const Matrix& p_ts, Matrix& p_ret, Matrix& fts, int p_zeropad);
-  void Detrend(Matrix& p_ts, bool p_justremovemean = false);
-  int Pacf(const ColumnVector& x, int minorder, int maxorder, ColumnVector& betas);
-  void Out(string p_fname, const Matrix& out);
-  void Out(string p_fname, const ColumnVector& out);
-  void Out(string p_fname, const RowVector& out);
-  void In(string p_fname, ColumnVector& p_mat);
-  void In(string p_fname, Matrix& p_mat); 
-
-}
-#endif
-
-