diff --git a/fsl/data/imagewrapper.py b/fsl/data/imagewrapper.py index c55912d4508f707bffe2bf187fc74d6730602275..b50f32e220da8cd49c6271b992247a0b3df66a8d 100644 --- a/fsl/data/imagewrapper.py +++ b/fsl/data/imagewrapper.py @@ -49,7 +49,7 @@ class ImageWrapper(notifier.Notifier): sliceObjToSliceTuple sliceTupleToSliceObj sliceCovered - calcSliceExpansion + calcExpansion adjustCoverage """ @@ -111,8 +111,7 @@ class ImageWrapper(notifier.Notifier): # row/column for a slice, or row/column/depth # for a volume). # - # All of these indices are stored in a big numpy - # array: + # All of these indices are stored in a numpy array: # - first dimension: low/high index # - second dimension: image dimension # - third dimension: slice/volume index @@ -148,7 +147,14 @@ class ImageWrapper(notifier.Notifier): def __getData(self, sliceobj, isTuple=False): - """ + """Retrieves and the image data at the location specified by + ``sliceobj``. + + :arg sliceobj: Something which can be used to slice an array, or + a sequence of (low, high) index pairs. + + :arg isTuple: Set to ``True`` if ``sliceobj`` is a sequence of + (low, high) index pairs. """ if isTuple: @@ -176,10 +182,11 @@ class ImageWrapper(notifier.Notifier): the image specified by ``slices``), and updates the known data range of the image. - :arg slices: A sequence of ``(low, high)`` index pairs, one for each - dimension in the image. Tuples are used instead of - ``slice`` objects, because this method is memoized (and - ``slice`` objects are unhashable). + :arg slices: A tuple of of tuples, each tuple being a ``(low, high)`` + index pair, one for each dimension in the image. Tuples + must be used instead of lists or ``slice`` objects, + because this method is memoized (and ``slice``/``list`` + objects are unhashable). :arg data: The image data at the given ``slices`` (as a ``numpy`` array). @@ -194,10 +201,7 @@ class ImageWrapper(notifier.Notifier): self.__range[1], self.__coverage)) - volumes, expansions = calcSliceExpansion(slices, - self.__coverage, - self.__numRealDims, - self.__numPadDims) + volumes, expansions = calcExpansion(slices, self.__coverage) newmin = oldmin newmax = oldmax @@ -255,11 +259,7 @@ class ImageWrapper(notifier.Notifier): slices = sliceObjToSliceTuple(sliceobj, self.__image.shape) - if not sliceCovered(slices, - self.__coverage, - self.__image.shape, - self.__numRealDims): - + if not sliceCovered(slices, self.__coverage, self.__image.shape): self.__updateDataRangeOnRead(slices, data) return data @@ -277,9 +277,12 @@ def sliceObjToSliceTuple(sliceobj, shape): indices = [] + # The sliceobj could be a single sliceobj + # or integer, instead of a tuple if not isinstance(sliceobj, collections.Sequence): sliceobj = [sliceobj] + # Turn e.g. array[6] into array[6, :, :] if len(sliceobj) != len(shape): missing = len(shape) - len(sliceobj) sliceobj = list(sliceobj) + [slice(None) for i in range(missing)] @@ -301,7 +304,7 @@ def sliceObjToSliceTuple(sliceobj, shape): def sliceTupleToSliceObj(slices): """Turns a sequence of (low, high) index pairs into a tuple of array - slice objects. + ``slice`` objects. :arg slices: A sequence of (low, high) index pairs. """ @@ -319,8 +322,8 @@ def adjustCoverage(oldCoverage, slices): given set of ``slices``. :arg oldCoverage: A ``numpy`` array of shape ``(2, n)`` containing - the (low, high) index pairs for a single slice/volume - in the image. + the (low, high) index pairs for ``n`` dimensions of + a single slice/volume in the image. :arg slices: A sequence of (low, high) index pairs. If ``slices`` contains more dimensions than are specified in @@ -336,26 +339,27 @@ def adjustCoverage(oldCoverage, slices): low, high = slices[ dim] lowCover, highCover = oldCoverage[:, dim] - if lowCover is None or low < lowCover: lowCover = low - if highCover is None or high > highCover: highCover = high + if np.isnan(lowCover) or low < lowCover: lowCover = low + if np.isnan(highCover) or high > highCover: highCover = high newCoverage[:, dim] = lowCover, highCover return newCoverage -def sliceCovered(slices, coverage, shape, realDims): +def sliceCovered(slices, coverage, shape): """Returns ``True`` if the portion of the image data calculated by the given ``slices` has already been calculated, ``False`` otherwise. - :arg slices: + :arg slices: :arg coverage: :arg shape: :arg volDim: """ - lowVol, highVol = slices[realDims - 1] - shape = shape[:realDims - 1] + numDims = coverage.shape[1] + lowVol, highVol = slices[numDims] + shape = shape[:numDims] for vol in range(lowVol, highVol): @@ -364,7 +368,7 @@ def sliceCovered(slices, coverage, shape, realDims): lowCover, highCover = coverage[:, dim, vol] lowSlice, highSlice = slices[ dim] - if lowCover is None or highCover is None: + if np.isnan(lowCover) or np.isnan(highCover): return False if lowSlice is None: lowSlice = 0 @@ -376,30 +380,36 @@ def sliceCovered(slices, coverage, shape, realDims): return True -def calcSliceExpansion(slices, coverage, realDims, padDims): +def calcExpansion(slices, coverage): """ """ # One per volume - lowVol, highVol = slices[realDims - 1] + numDims = coverage.shape[1] + padDims = len(slices) - numDims - 1 + lowVol, highVol = slices[numDims] expansions = [] volumes = list(range(lowVol, highVol)) - # TODO Reduced slice duplication. - # You know what this means. + # TODO Currently, the returned expansion(s) includes + # the current coverage. Remove this duplication; + # you can return multiple expansions per volume, + # so figure out how to expand the coverage with + # one or more expansion slices without + # overlapping the existing coverage. for vol in volumes: expansion = [] - for dim in range(realDims - 1): + for dim in range(numDims): lowCover, highCover = coverage[:, dim, vol] lowSlice, highSlice = slices[ dim] - if lowCover is None: lowCover = lowSlice - if highCover is None: highCover = highSlice + if np.isnan(lowCover): lowCover = lowSlice + if np.isnan(highCover): highCover = highSlice expansion.append((min(lowCover, lowSlice), max(highCover, highSlice)))