From b3a82c7bf61b5580a5c073be0037644f13a04fb4 Mon Sep 17 00:00:00 2001 From: Paul McCarthy <pauldmccarthy@gmail.com> Date: Tue, 23 Jul 2019 15:08:25 +0100 Subject: [PATCH] ENH: New image.roi module for extracting image ROI/expanding FOV --- fsl/utils/image/roi.py | 106 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 106 insertions(+) create mode 100644 fsl/utils/image/roi.py diff --git a/fsl/utils/image/roi.py b/fsl/utils/image/roi.py new file mode 100644 index 000000000..84aee2434 --- /dev/null +++ b/fsl/utils/image/roi.py @@ -0,0 +1,106 @@ +#!/usr/bin/env python +# +# roi.py - Extract an ROI of an image. +# +# Author: Paul McCarthy <pauldmccarthy@gmail.com> +# +"""This module provides the :func:`roi` function, which can be used to extract +a region-of-interest from, or expand the field-of-view of, an :class:`.Image`. +""" + + +import numpy as np + +import fsl.data.image as fslimage +import fsl.utils.transform as transform + + +def _normaliseBounds(shape, bounds): + """Adjust the given ``bounds`` so that it is compatible with the given + ``shape``. + + Bounds must be specified for at least three dimensions - if the shape + has more than three dimensions, additional bounds are added. + + A :exc:`ValueError` is raised if the provided bounds are invalid. + + :arg bounds: Sequence of ``(lo, hi)`` bounds - see :func:`roi`. + :returns: An adjusted sequence of bounds. + """ + + bounds = list(bounds) + + if len(bounds) < 3: + raise ValueError('') + + if len(bounds) > len(shape): + raise ValueError('') + + for b in bounds: + if len(b) != 2 or b[0] >= b[1]: + raise ValueError('') + + if len(bounds) < len(shape): + for s in shape[len(bounds):]: + bounds.append((0, s)) + + return bounds + + +def roi(image, bounds): + """Extract an ROI from the given ``image`` according to the given + ``bounds``. + + This function can also be used to pad, or expand the field-of-view, of an + image, by passing in negative low bound values, or high bound values which + are larger than the image shape. The padded region will contain zeroes. + + :arg image: :class:`.Image` object + + :arg bounds: Must be a sequence of tuples, containing the low/high bounds + for each voxel dimension, where the low bound is *inclusive*, + and the high bound is *exclusive*. For 4D images, the bounds + for the fourth dimension are optional. + + :returns: A new :class:`.Image` object containing the region specified + by the ``bounds``. + """ + + bounds = _normaliseBounds(image.shape, bounds) + + newshape = [hi - lo for lo, hi in bounds] + oldslc = [] + newslc = [] + + # Figure out how to slice the input image + # data array, and the corresponding slice + # in the output data array. + for (lo, hi), oldlen, newlen in zip(bounds, image.shape, newshape): + + oldlo = max(lo, 0) + oldhi = min(hi, oldlen) + newlo = max(0, -lo) + newhi = newlo + (oldhi - oldlo) + + oldslc.append(slice(oldlo, oldhi)) + newslc.append(slice(newlo, newhi)) + + oldslc = tuple(oldslc) + newslc = tuple(newslc) + + # Copy the ROI into the new data array + newdata = np.zeros(newshape, dtype=image.dtype) + newdata[newslc] = image.data[oldslc] + + # Create a new affine for the ROI, + # with an appropriate offset along + # each spatial dimension + oldaff = image.voxToWorldMat + offset = [lo for lo, hi in bounds[:3]] + offset = transform.scaleOffsetXform([1, 1, 1], offset) + newaff = transform.concat(oldaff, offset) + + return fslimage.Image(newdata, + xform=newaff, + header=image.header, + name=image.name + '_roi') -- GitLab