diff --git a/CHANGELOG.rst b/CHANGELOG.rst index e074d702b6c87ab9dae882cdd6a42e9eac12c669..2790ec5d8549a8ae2352c5aef6cf6c8d862d0842 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -2,6 +2,17 @@ This document contains the ``fslpy`` release history in reverse chronological order. +2.3.1 (Friday July 5th 2019) +---------------------------- + + +Fixed +^^^^^ + + +* The :class:`.Bitmap` class now supports greyscale images and palette images. + + 2.3.0 (Tuesday June 25th 2019) ------------------------------ diff --git a/fsl/data/bitmap.py b/fsl/data/bitmap.py index ec7b6b1fe1c9e12c5fa8e52c6e52589f1be3281c..51b354f7ddfcef93cb44a2d2a83231b518d89fe2 100644 --- a/fsl/data/bitmap.py +++ b/fsl/data/bitmap.py @@ -51,30 +51,48 @@ class Bitmap(object): data. """ - try: - import PIL.Image as Image - except ImportError: - raise RuntimeError('Install Pillow to use the Bitmap class') - if isinstance(bmp, six.string_types): - source = bmp - data = np.array(Image.open(source)) + + try: + # Allow big images + import PIL.Image as Image + Image.MAX_IMAGE_PIXELS = 1e9 + + except ImportError: + raise RuntimeError('Install Pillow to use the Bitmap class') + + src = bmp + img = Image.open(src) + + # If this is a palette/LUT + # image, convert it into a + # regular rgb(a) image. + if img.mode == 'P': + img = img.convert() + + data = np.array(img) elif isinstance(bmp, np.ndarray): - source = 'array' - data = np.copy(bmp) + src = 'array' + data = np.copy(bmp) else: raise ValueError('unknown bitmap: {}'.format(bmp)) - # Make the array (w, h, c) + # Make the array (w, h, c). Single channel + # (e.g. greyscale) images are returned as + # 2D arrays, whereas multi-channel images + # are returned as 3D. In either case, the + # first two dimensions are (height, width), + # but we watn them the other way aruond. + data = np.atleast_3d(data) data = np.fliplr(data.transpose((1, 0, 2))) data = np.array(data, dtype=np.uint8, order='C') w, h = data.shape[:2] self.__data = data - self.__dataSource = source - self.__name = op.basename(source) + self.__dataSource = src + self.__name = op.basename(src) def __hash__(self): @@ -132,7 +150,6 @@ class Bitmap(object): if nchannels == 1: dtype = np.uint8 - elif nchannels == 3: dtype = np.dtype([('R', 'uint8'), ('G', 'uint8'), @@ -158,4 +175,6 @@ class Bitmap(object): data = np.array(data, order='F', copy=False) - return fslimage.Image(data, name=self.name) + return fslimage.Image(data, + name=self.name, + dataSource=self.dataSource) diff --git a/fsl/data/image.py b/fsl/data/image.py index 417a0445ceccd64f6bcc28d7abc1d2214c2de32d..1bf901c287d5c2ba3ea033e11f08fdb79cc55e3d 100644 --- a/fsl/data/image.py +++ b/fsl/data/image.py @@ -809,6 +809,7 @@ class Image(Nifti): """ nibImage = None + saved = False if indexed is not False: warnings.warn('The indexed argument is deprecated ' @@ -841,10 +842,10 @@ class Image(Nifti): # The image parameter may be the name of an image file if isinstance(image, six.string_types): - image = op.abspath(addExt(image)) nibImage = nib.load(image, **kwargs) dataSource = image + saved = True # Or a numpy array - we wrap it in a nibabel image, # with an identity transformation (each voxel maps @@ -906,7 +907,7 @@ class Image(Nifti): self.__dataSource = dataSource self.__threaded = threaded self.__nibImage = nibImage - self.__saveState = dataSource is not None + self.__saveState = saved self.__imageWrapper = imagewrapper.ImageWrapper(self.nibImage, self.name, loadData=loadData, diff --git a/tests/test_bitmap.py b/tests/test_bitmap.py index b59c4083e2e822400f19ccc6895d500179fb4149..20b369e75775e52b2acd5e83397aa980bb437f93 100644 --- a/tests/test_bitmap.py +++ b/tests/test_bitmap.py @@ -19,22 +19,30 @@ def test_bitmap(): from PIL import Image + nchannels = (1, 3, 4) + with tempdir.tempdir(): - data = np.random.randint(0, 255, (100, 200, 4), dtype=np.uint8) - img = Image.fromarray(data, mode='RGBA') - img.save('image.png') + for nch in nchannels: + data = np.random.randint(0, 255, (100, 200, nch), dtype=np.uint8) + img = Image.fromarray(data.squeeze()) + + fname = 'image.png' + img.save(fname) - bmp = fslbmp.Bitmap('image.png') + bmp1 = fslbmp.Bitmap(fname) + bmp2 = fslbmp.Bitmap(data) - assert bmp.name == 'image.png' - assert bmp.dataSource == 'image.png' - assert bmp.shape == (200, 100, 4) + assert bmp1.name == fname + assert bmp1.dataSource == fname + assert bmp1.shape == (200, 100, nch) + assert bmp2.shape == (200, 100, nch) - repr(bmp) - hash(bmp) + repr(bmp1) + hash(bmp1) - assert np.all(bmp.data == np.fliplr(data.transpose(1, 0, 2))) + assert np.all(bmp1.data == np.fliplr(data.transpose(1, 0, 2))) + assert np.all(bmp2.data == np.fliplr(data.transpose(1, 0, 2))) @pytest.mark.piltest @@ -47,17 +55,23 @@ def test_bitmap_asImage(): img3 = Image.fromarray(d3, mode='RGB') img4 = Image.fromarray(d4, mode='RGBA') + img1 = img3.convert(mode='P') img3.save('rgb.png') img4.save('rgba.png') + img1.save('p.png') - bmp3 = fslbmp.Bitmap('rgb.png') - bmp4 = fslbmp.Bitmap('rgba.png') + bmp3 = fslbmp.Bitmap('rgb.png') + bmp4 = fslbmp.Bitmap('rgba.png') + bmp1 = fslbmp.Bitmap('p.png') - i3 = bmp3.asImage() - i4 = bmp4.asImage() + i3 = bmp3.asImage() + i4 = bmp4.asImage() + i1 = bmp1.asImage() assert i3.shape == (200, 100, 1) assert i4.shape == (200, 100, 1) + assert i1.shape == (200, 100, 1) assert i3.nvals == 3 assert i4.nvals == 4 + assert i1.nvals == 3