funpack_demonstration_with_outputs.ipynb 190 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
 "cells": [
  {
   "attachments": {
    "image.png": {
     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS8AAABkCAYAAADXNrbDAAAgAElEQVR4Aex9CZxcRbX3OXW7Z8tkJcssPT0hBpgFUIyIiMrihttzBf1ceU/B91R8IIogJD09LCqCKH7qA3zuywPUTxR9rk8UV3TkKcxMgiFkenqWJEPWmczSfet8v3/dqju3t2QSAgTM/f26b91bp06dqlt16tSpU6eYjlxHauDQ1gATkTQ3N6xVyuuOohYRTUTbs9nhZS5eRISZkYaCMG0aHBx+BhFNEVE+mv5I+EgNRGtARR+OhI/UwJEaOFIDT5YaOMK8nixf6gidR2rgSA0U1MAR5lVQHUcejtTAkRp4stRA7MlC6H7ohM7E6E2gOrG//SR50ka7chYXAOWOXnOFQ5q5wAKmHNzjVd+HIv9yOFy9ufuB1GElfMW45goXzdt9F6SNXg63u0fj/qHCT2bmBakRCmBvbbKjjdlfrnRsvq9k8KqBvvvm+BU9i+NJ0RAWLVq0yPf9GHTcrnzMDNplz549O2xZXFR9fX19jXvAva6uTm3dunWMiPzI+1oAAk8ULxjV+Pj4I3Yg0MlkctHMzMzTlZJGZq5SSqbzebWTaGZgZOSRfosP3+RQ1yXKKvPnz19SX1/TEYupZq25Gvn7vjyi9czfR0d3brb5G9hI2RB07YQaGpa0x2J1rb7vH6WU4NtPau2P7NkzuX58fHxbcTrkGa0TW0dqfHx8K2ARv3hx3Um+z01ELFr7W0dGtv6OiPZEGL20ti5c6fvz20TyywI42jYxMXHv7t27t6P9Fn2PkN6WlpZOrWdWEvES4NOad/u+Pzo1NbXBpgUZ5cpcVJSn5uOTlXmZD97V0vlZZnkdES1g8WpJEbry3u5k+4ZtVbkzRqurp+7o7Z1xn+6CpjV1idjUg0KUIZbPpgb6vmEbNxoAGOFhfdXW1p7jeXwdGjuz6ZQkEtBdV1d35pYtW8BEwDz8lpamr4nImcxsGJWIeb+oqWn564eHt37PFbS5uemLzPRCdCLmQLIKcMooEZ0FBtbc3HSb1vkXxmJqMTOjc5krFsMKYfV4c3PTmOfxpZnM0B1EVEVEYZ072IO5r1lDcaTbsqXxNiI+nYgWEbFSlgLPI1LK293cXPeQ70+9dXR0e1+0MyN9Tw/lksnmc7SW64noKGaZF4uFRSBmpRcvju9auHDBn4eGhl9DRNOoiwULFtTPn1//ADPFI/XiM/PS8fFxbmpq+JhS6nwRXuLoAWGJRNN2rf1/Hh7e8gOMF4lE4w99n05ilgXMaLagmWjBgvqJ+vq664aHR7Ei6xiQYVxNTctfrFTssyJ+s1KxOld3SOd5nK+urt+zcGH9nwYHh9H2J238oR40XLaH7X32Kx4+JFaiCR8YF+L9dLL950rRe4hoCZNUCzqtGSalmlidtGymum/V5GStTWNuzbGJtxBTM5GsYeKvp5Mde1It7edesGZN0KrKT4uiKJ7QsO/732dmdOA6EanHjwidgo+qqqJOy7hMWUTojCK4+WA8SsVeZQth6pOZTkIng3Azi5PqRah/8eLFyxOJppxSfC7yKS48RDUiqmWmRhG6PZFo/NEhGgRAW35oqOG5W7c2zxDxq0Ffmfw1ysgsx8fjtb3NzQ2XRCW/nh7Szc3Nd4E2IlpBRDWWZoPKhVFuZjqzpaV5oqlpxSvAfNGUmAn1G60XUwctLY1Xe573YRsXDnoWX73nxe5salrxykSicSMRP99+h5C5WDjP87x0U1PjRyM060Si4SbPi/+UiFqJqNrRCIJtWNnvBHrHm5sbXmbTu/5RXE1P2edKjOKJKDBoQcfTlzQduzSV7HhrOtl2eTrZ/u9Xthz/tMgHCjod0RmwG8IUhlh5RiJAc2Pl4SuDSdXka/5iRzVTHiF+2BYMUy+krfeU+lbj2OQD65LtL7Z5HE51Ev0OvHXr1i1ay2ZmMAwVdz8Aaa1ebqcfjOklMy9k5piDwV1EIBFBusDFS5YsaWGm5ejUDo6IUZfVzLxFxO+xfUaCeFYiOiciU/ghW+YAXkR8ZvWylpamHwZSnHIDgs1u7rcFCxbEGxoazojHvbutbRg+b9xJfXiHjoxnV0YRySvlXd/U1PAhm1Osubn5p0rRKwLaTJlQNjM/tt8fj8riRpvwwXgSicTLampqIPWFdWxhqgIGoq4I0s/SZCoU2JgBoz0v9n1m1TBLY2DLFoEzjNTz1GXJZHIx6iyRaPwGs3ehpbcKdQt4EZm29Z2bpdd8T62Ud1dDQ8Oz16yhJ+ssyn6uA78dTh2V1ybanted7Ni0MB7f5jF/jdm7lll9qkrJxnUt7VdY5hKMYKzuwIcsW2Rr9Ogxr+puabsYMGcQxboy/T8noV22QYVpldDKGKufdifbLjtEkkNZsh7lSzty88fL4WFmSAy4pufNq3mJDRfdjK5swapVqxYioqbGayVidJywLiLM/lx0RFtXkVGdp4lkB5HsjCJ3HY2IX5JMrjhTax1KJFG4/YVFRO3evXsyHvd+aRkMGFQkf4PBcIkoLjAxwCulPrJ06dKmxsbGNylFZwFmlrYghcVXjNPABUxRfrRt27YJO5hGswFMMHhWantBfpCOQkmrAEHkweHK56dfB4mPWb0Z0VF6LczuoM5pbyQ54JCPjsXUbzE9LvqOUdCnZDjaaJ+wAl7e3HZUd7Ljp3HPu5uYj8Yoio/ifiTa95i7L1r5jEXndHbGzunsrJrM+6m5EOyz+iDaw7LOTpTV80X/a3E6dFItNOmTOsfGuYbt7sVJnqjnqt27d0OvVHChnpiNUrceEcz8TwUA4YNh9t7U1PizAyYdx5Qx7JDRMDMvC5PZgNby+/HxvcdnsyNN2exIo9b5N1ipIGRU6LRae/8VizF0ZgdzbUskGr9pExbUf4BbX+H78nLfl/OtFIi24uOHwQ3T6ro6r8Pz+D/LMRAR2ZnP67cSqVdoTTdWIrC5uRGDBBTqZS8R+V8R/T0rzZbAOMYkojeJyLdEZBxVUwJo6l+tYvZuKhfn+/l3ZrPDy4M6H24Q0T9GuXA5eDDupqYGqFDK4ndwT7X7E828IBZ7tZ66nZjNKIkKDqYCZkqAUVe5aWFtbsprmJ7mO3p7cx8dWv+gCP2kUoNwH8pjbkytbD8FaaAEmtS530D6Kk6nSGJEjKlQ9AobSPTlExjWxx67Z7fWUryaajp5Y2Pj/wFtzPxydOwydBophtk7GXFKSVjnZWDDVwFz0Ll83r94586dAy4iUPzLXVYidq/BQI7yfXq+ezHXe9DhFVbuXozvM8sAgo6qtb5uaGjk2pGRkZ8MDw9/QWv9DttWMB00P+SltfdFKzUWMD/E+f70c0dGRu7IZrM/GRoa+oCI/k6UPuQJxsDM70RVRuMQxsCqtfwumx0+KZsdeW0+r18aYZ4F4CK6N5sdOTabHf7nbHbY6ByjTGcWmM9QiqHjKrrkzuHhLV+KSFTTSsXfHNSLmK1TVvqaUUr9S1Hip/zjYzpPxlTt7mBZ3jCB4udzOjvBjGr8GTptfwoSEdk9XpvPjVZDN2+X41nfzKReCsnM6LoqfC7WCqPSH0DL3UMbs+lkZx8TPStsFEGL8jySBywK6WppP56Z30CiN0zHYv9z7cMPbLHws/lXyO8xfJ3v6SFKJOjnREbRbrJyHc7z6PVEdKudCpoVPyuRWKblpl8KewfRNytML4PYyL9CP47H1aebm5uiZhYY6ZPRaY7r8Mz0okj6OQeZKVGGZyDPWD6v77SI8A1iw8NbvtvUtOLNIio66Ex6Hr2LiFssEzIMyDKNhyYn/RGrGzRSitb6R56nXm+ZpRnMbX1Cx7Y0SriFifm+xsolLjU6Ovq7RKIJK5ToS0XNmL8NoDVrSOO7iehfM6sXBEln/5Xi50ZpdTEivKa5uekeV6d4r3UuF8xYOdp38X1WQB2wadMmmGn8Q0hg0QpwdXao7t7dRPkLV69esGTKWzmT90c+OroRtjRO2pNtvb26YfXqaQoU6W37ylgTbYTpA9I4uKnp3G9qq6vxbfGuqOE4KMPpjKTh3miiP3pEzwkU+8ZQCiOtEvKxykMXJzqXMMs9ZmWPPYr7ek9XsvPu3vn0BkhwNq9oJ3aoH5d7Pq9/FIsps7IWYRwzInxSY+MyJ/F4VrocJcOUGRICyslEckJ9ff1yZrNqad8FpIsIpkqLUKkBbDit9Ij4FMf+KhV0No1qqARz4O8heTHl8/nBSFpIHvnh4S3firwzwebmxjeDVRS9x0RrdOfOnbsL38ugZWwF8K4chbDBk1La4UC7wyCBe0F6QCplzBj8np4gTkRtqVR/5fIDI2fmRCENgTBYBI9vunB8fBzMdrwQ/qn75BjJoSyhqd1US9sLu5MdG5flqnd5XuyvtdXVW7uTHdvTyTaI4/jQCpLQZzZunCaW3++PAI94GIzj7sioMllTX25qFKKynZc8kmz4Er1S9N/RNY15RRBhGOLunP7VBWvWxOsoVxuYJATzBI+oRjG96oRxmk63tKcvaFoDjonrsag/i7rybXR09G7baaIMFHZa1Z4XP8+mBG1ahLYqpf7TvjMdjJlWLliw4I3RHGwHRoF/TGSUv1HcUdAnLJzL5aISVkU6MJUsx0yiEsxsYjlgOynPK51OzuKbDWk9N7jZFAcXslNmTEtDm7CDw/TkSnWoJS/TYbpb268kUlehKoyoDX4RKFMXM3m3dCc7L1yX6T3Rdn7RQjd4TP9MIjliNoaJxdUopBdesGZNrHrXLvWZjRsx2sliPf0qYgVO6BUoJ4KeiGXlKi0yOB6ffovNyzApZmNdHWaBYQsPNww/OHZe1cqamdg830xO8TJYXTI0mbIotbaZJ9+7Ltlxbnem7xe2Q5SMuiHyxyggwj9QitwCA3KB5AlbqDdZsqG7gdXuw5nM8B0tLc14jfJjClmjlL4Y0kxkBDdKb6317Up5rwskl6BW7dQT8Z9XqsA635ROa1VQ/eYlySmYDgXhR/sfyCu1tbXNe/bsGbPY0NbqmpsbzyeScBARUdMivEIpKlnxYyasrKKDO4ZFzLGjUQdY5YxSOSulRt8+NuFKeUG3xky/LW6vxfWtlDbtL5fLYZfF494WH5ta2T/WQ828dKq1/eWGcVk9lFG4Bz08bODCckx3suOBdZm+4xF1VaavN9Xa8SWP+Z8rkcysnt84NnHOtr3V38d04dKW41Yw8VpwR5eHSRv0WNYiWSb/Q12Z9d+1HdswrgC/6nRM1eaHZXaz9D8xb55eviU/QXUeFNNJy7wMmMtHE82LMf+8u7XjQ+sG+qD/MEzb4npcblpPX6dU9Tmu4VsmhE5oDHNN+Zhj+byRpFBNQ8xsOFhAIK8sIhT1s3t4eMudiUQTjD/D7+U6xPR07vNjY2MbitKVfWxuboZpy0EwL9khYpiwscmyyI1KIB73sBPgr/adbmhoWKOU+mQxAcEKYAFjBgiqqGPRokVH7dy5M+PSMPMZNjJkXsHYB6lVJmEL6GAfwzu2YRXo1wKaZHM2O3LpY5jvkxr1IWVeFycStSx8u7BMMauCfXXRWmLiGmLqTLe2XZIaWP+pC1evjqU39v1LOtnxxkqiLzqjx943GmppQzrZOUwkJ5GxNo9gtozL1/pb6cF+YzMT1U/ZBQMsY50Ka0sMu0FqvFLQ8xB0ancQ7elu6egnpmQEexj0mGH5jNWwT3QnO45Zl+l79+PJwIJtL2N/TiSa9hbXV0SSMlJWLpeD0SiY17eZ+d9dISJw5hWkVN/XZnopQncFVvUBtJ2GUU1N/NNEdLbDgTu2FylFS7SenUIHkoKeOdBZdcA0ZGMgITL0lIaBOlqZKZVMNg/u2LH7f+rr60/2PLrNMhonbQCUtfbfo5R3K+ibTRsw4/r6eXfW1cX+Zc+e6YEFC+rfRkQlA2aAg36slMCU5DFnXiLyjei3cfULu6+GhoZvjI6OYueCuWBAK6KdWYStH8mJ0LahoZESMyCX7ql4P6TMa5Fa8HZmnoeeMpfZPpMHqeWG+zduxEdgIn0ZUXl7Fyf1EMmxRHQM24Yd/ShmamrmQgS9jbtC3Q30Zelk29uY6MSoYCHExnrTMjezBO0T3ekxn22ZVDgqO6Sgx8QRnZ9KdoymM31zsjtz6R/NvacnmLqJ0B3M9I4KuEDf9NjY2DD2G2qd/45SVSHziqZx0ltNTe3HADs0NPyulpbmc6MwCDOrlyYSTTtE5MuBVT6fhyloUEchND7NDhF9JXNozR9G7j/Ai6ency+rqan6e2nd83xs9Vm0KNip5Oh2TA7wkJbyebkrHperlVJrS/OTEz2vumfRokBtaZlfCOZwxmLjF/r+vPUF8mcIdWgDGBx8309hu1AUM8oTj3s/TCQaf81M92jNZzDLaXb670Ax8GIFtOy3dUBPxXtJpzzIQkKsZyFr5V1qEV0Rbaq144tYlYRwsFOPfwHTN18ES8/lLzO2wvartFkZBifaV6RKRqCulZ3PSCfbv8jsfdmYVhRiN/VwZrLd2EkhKj3Yd7MFMcysEDx4MgyMSDzmdVe2Ht8O49lycI/BOyNVieTNBuviDoj8LHPFnj5cas+eyYrTPVSpiPx906ZNu9asMTqTcd/334uEUSNMm898pdRFSpk6xnTbTNtN3QfbhaA/Ph1bY4KsD/Rf1LZt24a01pfYMoT1b+n0rXEqNkmHU1vQaeGvxjaqoaGRbhHJWINnJ5kZSSx4Z7Y5hbZktqx54NRaf2DHDtkFNe2BUn8w8CISwwZtEco6A23gseXBtqsXEKkrlOLTEI/3+AUg2FmgfzUyMgIj10PVnw+mGI97mkNSWBh/mookwebXyhcksshlGpzQubCcx+sbs9lJYboE0zIjvUVg5xw0+xzp1FRr519TybZPp5PtX+5OdowqLfcyq0BKwf7HyGUaAhYLhCGO40J50C/TmE7Zd2VvthGRJ/rr1oPFIanTspkVvpTpaf9Pga4uMFgsjEYBMAM2V358fHyPiPSVY3SAEBEYQ3JPTzCQDA+Pfs6V3zEAdOyIaQY6VwwvgNMyj5jW/isHBwcfENEh07E0uFtBG0DWLgL3YBGYYkNDI5/UWl+LPCyzMnDByprZUxh+QywomMUZra8dGhrBRmdc+b17p06wynmzW8O+t3TP7ku09IMpgBl/dmho5MZAgQ/VaWGbdTjmcldmLSkKWQlX4Pkjmx06joh2oE1B6kLKaH3bZzNbsosohF0P2ewI7PXQ7kyaaI5P5fCBdDR0aMCj0eAXpr07aIAYpsb2VVniVnlsg2CiuGKet1hPvRrpMG3rGuj7oi/0Z3y1feHaZxxansjxHnvvB8MSosXGUGifiShGTM+8LNGxGquakKJSmb4uEeMaJkgZtHJdwliD7Usm7ePYgOSRRx4ZIqJhbBouV7Tx8cnfwjOBNcqcJJINYDblYHM5H+YX+KaOmcSy2eGufH7mBSL0x/2Ua1KEfzYxMZkcGhqFjg1TxxKaLKM3CwqY6oAOx/xtmEXI6Uqrh4ZGrsjncy8l4r9VotuW5X7fz70W8NZY1Lzevn37VDY7vIBIviRSuW0GDJj+5vv512Szw++DpwxLDzaoh/XlaM3lClerA88a7MxnLEmw5peCOlDKfIsw3gWYxQ2Qgq1AWutPiVDUps2BRu8Pi8iVQ0PDWBTBQPEPxbhQEeGHidZKcTiqC4rGRd4Dj6Ra267xyPtIFMaFtcgdE4rfP1/TV4ipwLLbF/lLOtN38hmWIT6v5fjWGMv9irTxGOFwHPDd6N5mG99c0mst/7drsO9CN5KtbTn25LiK3yskU2ahoRwSm48IfzSVeaBs+cslOxTvYGxaW1trNlpH8dXVzeQHBnZhxRTMyDCk+fPnL62pqYG5QPSS2tpanclksAJXLC2Z7wrgxYsXJ2tq4u2eFzsVhwNpjX2EtFnr/D25nDxkdWsANWkWLFiwpKqqaqmVpML8amtr/Uwmswnx1dXVR4URNuB5udzoqFkNRGd0+XutrQuTWtecorWCNAWr/lHfl7/m8/k/btu2DeWE+YyDL0YLx4FL6+urVyoVf74IrWQmOPh72PPU/VNTub9s3boVOFB+4MClli1bdnTk2bzEuDg2NgbGEm6SXr58+dMwe47C4rmurm5bJpOB+YK5li5d2ghzlmidAG5qamqnc3DoYGEtn8vlWnw/d7rn8SoRWqE17BXVxpmZmV+PjY1h4MLm8Ypldrieqnf3oSqVz1TMpUuPm183T72RNb2LFD9dC+WY+Nd5L3/J1Q9vgC7FwK1NHndajLxfM6yb3dRMtA9rI5/oJb/O9P3q1IbVi2uqqtYzbJIiNl1a06u7BnthBmGurmTbBYq9m8tu/XGivBsVD4JJuXyid6cgHt1L8z+3rTe0VF7b2nGSp+UaZvqbaPmxUvxvxOpcI4HN0pAT5t+lBnrN0nsU72MchgQTSsFFeZktQpF3+4KFwa+TuiJJTBD4kRYMpYDBOYeBbroZSQjpHGnK4QRdxfFoQ6YdWUYUQWXeA1exhAF4SDfF76NpXdiVvbhOXNnK4XASkcOBO/JEXUUlnUpwwBkuGEW2EEXrBPgAA9joVYlewEDKK8YdTfsPEUbF7fNa29z5dM+THyjmlnKAOZ179lWDD/7JxXUnO+DNcnXImCxjgXfJrsH1WKWidcmOF8JOKmRMIjkYmk7s9RddN7YBe7PQoHS6pb2blVprlJQkWBDAR4eS1TQWSGyKCOYCz3P5P+q7YbbqD6lMr8OJOoo2NpNFKtkxBceW0JPgBRYZPOIH1mV6sWfyqXyhPly7Qb2U1M1jWHiXb/SbHGj+hwLHY1jEEtRPNnpLCvBYvag0YiM/7z3LOutjSr7PgRfKEhrQYWMc+/EHV5w4zzVoX9N5hnEVSUeKGR4fjV7LWKZr/cVQOrMSWF2tui2SiUoN9q/Tov9Du9GLKc/E20j8y9cN9HI607cmlel7Pmkf+/yM1jmS/iCDWMmh0+AMsQIC05gUP66dtgIpT8hrMAtIHfgdKOOoSHBDQ0NnItH050Si8U/NzU1/wQ/hRKLx3uXLlz/dJkR+Ln8XroizQoRL5+jH8+F8PdnofdzqshLzQgf1V9To81kx9AvlxGKIHVBoLplfk8NWIMG+wHS2714R+U2Jwp3VuReuXl0Nv1pQhm/3qi8hgTV1uKqilFIvSyfboG9yIjl3Zfr/jVX+GZrVS3K+nLgu05tYl1n/MejbwGBxzy6f9xktMiGBOP/oKs9OAz2ir3a1tMMDgCkX8rGmEAIPr1b/FdSfCDS4VULy50jmjPKiThxjj8QdCZbWwDxmXkPEa5Tik/BDGL9YLPaYG4qWknPkzeFeA04kLabTTNu6WzuNX/gSRlQMDe2lqCV/yNyPKR+dkex8jmK6p0AnBC4g+qJUph9W2uZKt7avZVLdDs7pnLRPL+vK9kYNTV2S4jvol9TK9ucozfcw7HKcrq0Ystyzkw4R53RXDi5YIwdnvTid6TOO4s5bubJmlT/vG6QIBx/MXnYrlO/nn57ObvjbbEQYMnSGT0cCJTXQ0NBwciym/mDVAmYqbs0BROv86cPD5lSeknRHXvzj1kAl5kXhyuFclOGAEf7VusHeM62UId3JzvVEsmpW92UU9xOpTB9Wxly+kk52YDUGh0gYKcYZReZ9fvZVQ73YxwbFblTpGT5ftrJtZa3w20i4y6Wv+CkDZgR7INMxACdaMsy8S5OsgslGqINzSJyfMCEYLG4l5mNMlHvv4HDXdLctv2H8qWTHuR4ztq+ME+kPpDLrsV3FxEWTHaIw6hO4McVwUqtDjfLiXfF7F+/uSI9fseLYvcc3KJ5i4VsUX6DF4UB8MU2gJ4oLMHrFihWnxOMeTDug0yxgXr6fO2tkZBuOFANu1xYc7mj+Li/QjGtfZXa0O3w2SbjIUPzexR+5HyY14D5yCTmeeO8wjKRYIimBNC/ypOiMrpXHwidX0MDFv6VA9xUINwu6WtpxAARg8OM865dHGQ+mqPjFPbmvq7UNNiw+pmuYftmpov/hps5kd7LjhzXa64PkFk1fQl5gm2U6kzVC/JMv8rZxnW8eq545YZOaePZkbKoZCwpGagNjctfsYR4LQ8aFuIh0hzoSkbEdQq+39AFCMfHbDShzPbN3SzrZjiPL9tWZXK4Hesc3dJ1aNzUtf25j4/KXNjY2vgDmCJaRaLcqWAG5Y3D5o446qrmxcflLGhsbz47omlB/+F6GqVgcLk/UV/TnGJdjUhq0AGdLSws24jtcru0hrTDnnI+sEhLzeXMOIuBcWtCCcDRfhFG/rizYuH0G8sWBJBGkoNvR5kPiQ301NDScCXOQCF7AAPbIdZjWQLmPo9Ym205SpH7rwTVypKPurwxC+sbUQP8HnIQRTDsjXk5F+1rop12D/TjpBnlD/+Udv0d+w2w24oZZmNU7swFa36pF38KkpkRR0tN8ISk+O9jiw9hcXWAI6BC4Kah5FnlISO4aq8qt+8zGjaaTQB91/8aNsMwU0ABfYe9Z1jlvRY3+OSt1SmiIWo55R6VRkYFpnT/tmuyDsLshMNrVO/35tTFvrJiWnJYX3DPY93u7HcpFP9r7/JaWhjdg+wgR45SlkktruWFiYu9nrAtn1Ds6Py4Thp1SVVXsImaGgWbJJaJHtJYb9+yZ+OKePXsecechQpkOTxUixhmkTSeN2ezwwqamZScpFf9UoMcqRKm1vmJoaAT7KGuam5t/QCSgu0YpLtmhEYw9tI2ZZ4hkkdb5tylVpYj0F4nYqCmAXUSqmOmubHb4nc3NjTcrpS6I5jo4OATDUzA8MPgXMsfSSvGpURgX1lp+5nn+dZnMFnisPXIdpjVQlnl1tbS9XSkP20VKr8Buy2zHKI4Ukc079e6OfE2NhpPBrpb2H0EJH8IFSoyZnKda/14nO9yBsOlk2/lMKthLGGUWUSYRIjENFVMLN3JHYmwcRmQwNZGf59m/NsPTv//y5s3OkR3SofO6DlyQHh06ney4gJn/AxFgosYHcjCsSwFDF5OO4GcAACAASURBVP3hbVW5TxuHipYZI0l3S+cvIYkWIxaRbCrT1wIJ7RAwsFhDQ8Nx8bi60zEtqyMq+KaunrDFRmt+D3y/u8EF9CWTTR/WmtY57xRuASVK+ywOGff9/OtHRrYaj7OJRCOs+2F4WXCJyOXMbLbplKEJRuvYUvSHbHb41ESi6UF20/ECLOUfcHgGTrtWyvtKMYTW+utK8Xyc8xjJF/Uxns0ON65atSo2MzP5A7hXQtpyZcV7V15svbEW7LCrqrzftpiQI8+PSw0UMwA8awkOIi1LgLW1Cq2Lo0DMvHIBzTtmeuFCiO9KGKNj5Ao2plVX+/o1lnGZjgZ9EFYKS1YLixmZReUaVwRzGGQzleD1e32Bq5oXjy6t/82XN2+OGiaWY1wFHT6V6bt53UBvTEhfo4hGdHB8+7gi2iXEv8UUE6Ya6zL9n/jMxo3Omyvw+unk8dcaxgXGG72CDcyJrmTbKw8B44LFe1M87j0Aa3GXTVC9sweXFNYTK8/jWxsbG+Hn3kxfceKMCBsJKILDbPpFWvdzcTAIjcXiP2luXgG/WujmZafBYFyOMZShCYwLg89zmpsbr8GRXg42ks9+gsberwSGWb0+OKA22BNo6ce3xWp5Ppeb6nGMy1AfKaMrK+6Ig8THLM8Cgz7CuEqq+rB4Ucy8TCf2SK0uoc5M+WRCFJ88sddP+lr+XwkMXnjeRbf09OTOW7myKq+te+eijswUnj0Y5i/CX6hkkmHyiTKyaMbBvMIwJ5wmlBN6Iby0fizbB79QHmgBuDVzQNAwlcsbVi+DJwi7KdyYQ1i0iEc9SGqg/8pUpu/odKZv+dCy2oZUpm9FKtN3OoxtI/qtkPF1JztvZZbLzZSzmN5A2phRpMAsHu3l1dfX4ugteIt1imfT4aKIo0wBcDi4NBZT34YubNmyZcd4nvdZy0jC74D09jgzGBubC1WMAA6jhcEwkfcNPIsU6MAC4CA9mBqS4bBU6AQLGDkYROAdgf5FhMPFmhDBPgLwkFopGofxurwgedkN5aBlS3CcGmMbT0iLqx+tZQCH+QIv6hT3YE+jObS30Z5qXSnbI++foBqo1BDc5thZslh5wnRz1+be/713bMPklM8XGY8GEQU3GotHgTfUqqOO8vNV+XGs6EV8xWOJzyemhbDctwpX5OHNxLjbZBZpXLOZ7yNkWhlP+qxPTWV6z75qsO83EWgocXHpxTU1kkq2vz2d7PgjdHHwqV8luneJ5Hakkx3/cUtPDxq5qw808KhUoR0TtPjIufEBXFdr+zODVVMdOLYrZlwuEaRRotYrjm4vc8zVLND+Qs3NjZcHJwRFVk4DyY61lru09s8Tkf+LPhjtrHZbCdXX17+uujr+nYCBzEoayNf39U3Z7HBNNjt84uDgEIvo/w46ckAVFj2gm4L0xWx0SCXkWikGTBUSD07hCRl8ITDHdu3afTryyeX8Z4OZgCYH4xjQ9HTuuYDBb2ho5Bv7clXj8rISH7xeQIJMMitj3uLig2ml+L6fO21oaHjl0NDw0dPTudXRTe4OVik+H04J97Po4cg+cn+casB11uLsoh13Nk7M5lfTcT8+3Jshls8GK3SzoxmAL21enUBn//imTXs0c8HhF1iqw5isYhI6T7tgzRqFo8XA6ErsrWZzLxvyha5bl+ldlN7cDxuhcPncGodSquW4Z3UlO7+aGJua8Vh9hZnRSWbgL18wxRSB9PLu7mTHtq5k27simXBkhdMYw0akLcJ+z3Rrx1vSrZ2/VKR6jMfN/SxucLCdqL4qT8+x0l0kuzkFY+hAzIwVWysdBOnQ0bSWHwwNDb9qaGj0K9ns8IVaa7j0CRmHCyvFcJwIp46R728O+s0MD4+472IYfzY78nKspjopxVHJjNOLcHJ24WV1TZTL+Wdls8MKP+iOitPbVLG6ujr43a9SSpddeAGcUgpMEL/qNWvMNy7MtOhJa/k+M50LpgevFCLyyygIGDqYm+/TP0ftx7Zu3fpQPq9ndbQ2Ec6hbGpqerpzAhnFdST8xNUAloOjlxGpNfFIpFWH8arQJzljWpVOdnyICQbm7BkjUWKqVR4c0YFpaSK9LTjgwvYhO30iCQ8l5Vt6ekxHEaZ7mAiHZezzAvNhnB+rcs9JDzy4PgLsJC0zXQTTUkxw9Vtwuelp2KsRy7xYkXdzOtnxCU38HxPxqRuu7+nZ6hLCXwwusy+T+CIheQETBy49A0ZSXJc2ReTmGAkTVrmwFQrVXH6giCSLBL2eHoq3tMDyfPaynZFzuXyB59CpqZkbq6urH4rHVahs9n0f3oFejNW4qFQGiUNEFjY3N/2GucCVC9Yr5kWlnSA/9TKR0J98SAyYgtZy++joKBgGqhiC9+3M6lQwMKdTcglyuRymaTNaq5wq1+gM8zJTOagG4G9MNUc88Ts8uINxMtMvhoaGjYslF9fc3HTpLAufZfpK8QcSicb3OzhLr3GHE3lngkppnLYEOzRbpmKII8+Pdw0UdzgwL4zh9xcMykHDgKfK6IGZgPV80f8UU15gDR/YRW1JD24It8l45VdplMe88CNHH7/i2ocfwFmOhmkK0UNzqQCc4ZjO9HZaSSuaxDSsrtbO01nk/zHTAjs1Ki5nNM1sOBAPqj2mSxfkay7tbu3EauNGj2QPEa8EgwuBIYViiusYUhix/4AmBVe+WI7E8W8Hwrx40aJF5cpivtvWrVv7owxx+/btMCX4ejFFzc2N5oxMJ4m5eGZeSCSnoAm4d7gzQ9qZfYV0lvG1Rd/PphFIweGlNW2rxJhCoEcZCBgXpKlc6ErZmnSA2lXl6GSmZwQHWxVkPlvQyGsRBX/2R67DqAaKxzrTCXzhv4DGqKgfSFdE6db210bo192D638C+yUSfbFP/lu2qyp3eCxws7BagR4eSWOCPo6agsfm2Ys9FrdyN/s2GsJUTyQ7kq/F4QxI6yQtgt0WSO5u7fyWIvoFcyAVOWvtKJqK4UBRYry4urJ7zKuJFQ77WGyYldXJGentIBgX8vbYnNZN2OdZkZaDi4B0EsWJ7wlJAjpM/BBGPZX40UJ2wZSP8Q0KflD0F/+wAgcFfjkyg62eBTEl378g9pA8BHtko9PAWbSzusHZdyZUUE5bbiwwlJQXK+k27eNQliIqjzyWrYHoKO4+iuyomvnTkpmqRzwiTIuCzmD1OSzGkBErjdAvGeZhDS9xLHm48nXBmjXe0rG9SzGSFx+WgWkkE+0d5kl3zhzyhnu7p0UG+EKCgy058bz4r7lluKfEVKNaZGG6pQOueZIHKxGFGQYiiauP8PXBSFmziW3ISmtXJtqPubq3FyuiB3QtWbJEcrlwFliQdv78+Uft2bMHJ17jAv3S2HjUynxeoZOa50BoImfzZkHD2ziR8RwbZYCl9RCAQ7m+6oAGhzCbAwmI5PMVbfIiiArMJ0B/VKKtVF7nrdRI/hZZufJi6ut2AERhI/kfCT7eNWCYV9RoEmFYoXe3dP6KWL+6RNxmPgv79tKZvtthfgB7Lbvyho+OBgOL9apbenpmupMdXyU2x5wVlMsn0h7R/c5wFG6XsdrnEz0v5H4FKdD1lCfif+SqzHooxwsaZyrR8WyVp1+x4poDYVxWujKNHMr0Q8KciukufrbSmscEvdXfi6P39bxmDfk9PZtmmpubthRZo5sOt2DBvHP37NnzeWcBv3z58hNjsfhfY9Ehymbg9GQuP1sX/TAcde/2d08kmtH5i46j31+qA4qHiiyulDgJD4wjlLb3h8kq2DFc9DNTsC81kDChsOepqZlXzvUcSptXOGDvL+8j8Y99DZhmDeZj997R0LK6K+7u6eFdfu7dC+Px16FRFyhZjb92dVtXa/uCrt5eWGu7KxyRsNUmnez8qZCcVTyMAR9c6Yznp3HWoblu6enJw3e8maJV0iOJ9D+spm6MMlokhpmCIoaP9eA6gKmcKRfO68bF5U59tjgfg5tiwWELB3TZzphjll8QsTuXEjwXJg05ZnX9kiVL7iLaPor9fFVV3o/L6fy01jjD8aUiuiZiGoB6OBn7AUdHR936BMwqli9cOP/fo1NB+C4Skd3YdH4A1X1AZQWwa3exmPpKU1PT9cy6KpfTP9ea9Rx1aFb6kl8R8T85hh3Ul+Rraqp+YFddQ9oaGhpe7nnei0T8iGEz1xLx7cPDw1DYH7kOkxowzKurpeMzbl9bYtsk9h0ef8Pwg2PdLR3fZDXbSQzNRgKSvGJ1a3dLx/t8pb/gK/nZ1un6wUW8a0ldLH62Er6SmFoLpDajKwIjVB5c3lw3tBGrkeBt6DRSrcwBooWMEhniVB/meJ7oQiepubqDf3lFCv7DsJiApfR9XxYXgGBkq4h+oEnfrxXHY6JfQMTY5L1/PJFcipl78XMEtCgYPb26KKryo+mMuZy+qapKvRlGoE7vZJlQfN682szoaNPA/PlcYkvm6ikW23up79ftYlbvjHRoI/TGYupnTU2Nn2NW/US6mZnfA59txSSJ8JVgJgXfuBjoAJ5hcBWLKctsChPCTsvz6CYIx/E4nVc0JSwELvM0NDRycyLRdD0RY/poVhPtdPeYRKKpV0R/UUTNMNNzleI3BSgK5wCTk9Mft+YaEaZWJrMjrx63GohhxY99/VZ0OjQKZu6EE76uwf5fz5BaFyf9Ohaqjk6pQj2H4qd75H1G+TLTFJvyBeY6xNXl9FbBgbBqfIp0+7XZ/hFbQiP1pJNt72DmZ1oaCgvPHBfSn+/O9P/CRUA5v2BvzfI4+7/Hu7kwHCuBxEnoCxOxyQ9+fGATVuKineX36WRbH5EX+tF3+VW8GwNdntacW7OZZjYfrWveSKS+QDiMYT8iCZNyU6GK6CtFbNmy5Y8tLY2fZFYfcMwnCqtUKeNCPOpJa/rq4OCuh4l2vSuRaHo1MxccM49v63lszQeiqq8gB2vHNTw0NHxNc3PThaVLMVFK5hzmbdu2/S2RaIQZRyAJV0iqNcOkopCzVICNvJ7Q2n+N58XuLB5cmLmD2Rx+HAEPgqhbhJjlWnvASPFEoiTNkRePXw2oKi2dzLzIiuimtbIK/NVfPfjAQyRyG8zijS6pHF3BB4ZXZM+DLsp+8BDUWuBrkdtgTPr3evWIlbhMXpc3tx1LrMwmaDdNCNMiIPq+1ED/e+xqoomq2qvmV8X05nKrmNG0UWaoSX4INzjrMr3nb6qtnYzC2bA3o/VfRGRr4LGiDETxK1behD9z3PBR842JRyqz/itE+moDVlwPRWmFxK1eFcXs/xE6rcHBkUu0FhjdGrMFlNV1NocBz/a90ROJ6J8MDQ29A+khRezcubsTW2MAD6YUxYGERXicrmlIqZjZdM4cGC3bdMjfDAZc6iLbEILBwsEiRztY4g6moEXoS2CwlhaTJvrn6MHJRZbmCL59KvXV8PCW72utL3ZtzOXhcLry2vxsOUzdfmNwcORKCxfWiUt35P7E1YAS8QsM+opJ2TMdf691ixNu2yiAQe8JDh+tMp4cohJHsELo5Sl/Vnqw3+honCcJNNa1yY7OGk/dV+5IMS00CZ3KtqocOgrDcwP0XbBsXxiL/RkrmK4hFtDjHgLLeQU7LS3Umc70v+a6wQ3YZMuWhqjUBVOLmE+xWoJtWBnTDoe24C7yI0x/sdgwO6WFK6/9yyMcuGcpQDfXh54eY8rAQ0PD5+GQVxyB5eoisp8QS5LuNGvP9+X8bHbkbJTfpp/BcVtDQ8PHi8gn7HYasxACHDAbsLjMKdKIF5Hrq6pqTsTRZZZWNwUr2MTtecGZjK48Sok5nNa2EwuLsyYZexGdNKOGhkb+TUR/x9IStKzIP/BB6gI+hFHmyG9fkiy+NbYWfYpInYDTwV0emEpHygv1Ay4lQpOwth8aGoGRs6PRFenI/TCogZgSPsV9GnNkGTH5QqOWNr5+y98mupMdPyfmF82ZXozaQQf+2+4p7/m7EzUzNOByCUZI2Isx8XfReMrhZZLqSaWf5vxvod1iYeGsOu97xOWnRQaPzVsTzbDotelM/8fNVqGMyR8jZ3T0RKM0z9V76mJ11T4s1GtCSssRhnc2DyExrmGiK2AsfIKQOZLddLBKKMC89xG3vyjXmbyhodGf4CzARCLxMhL9ZiGG8W4tM5gP9Yv4PxwaGv2q7YDlVstwMOulRHR5c3Pju5jpbCJ1NJHALmyaSLL5vPxkZGQEeyVBM8pl6029W2t/npOEQHQsJvFcLueMVE3dxmKTv56ZqQMTwLOjXSsl+R07dkASx3v8VDY78gb4F4vF1OuY1cqIZf+gCO/RevKe6mphrWv/JZ83NmmuroDP6StNvi7C3s275csHN/T00LFLly49rrq6CnsWT2GWxSJghDKhtfSI+N8ZHt76s8KyFmE7tI+uToqxlitHMcw/7DN8V+1yBp1OOT6d4+Q1ww84GxiC91OlVHkvEsVVZ5XiMGtIZda7o9cJDAT7HS9tOa6pnr2vEfNZjglEUTgnhJrpJGwCn+0oRN3JThxY+3ZMPZykEU3rFNIk+ut7lPrQJzb3ggmX67CedUA48+FVqxbW+DXrSOg1HvOqcjRF80DYbh7WWvzTIrsJjNSSTnbcS0QnhXrB4sTuWeir6zK973CPj/EdtKEjVOoMhvb90IAOVgxXCd9+UO0zujiPfQKXibSMtUzM7Ku55FGu3cxi2H/oCEPafx09KgiI8+H+PCIxfve8eA4ucQzzwqETe2b83yyc49o0zl/UpF+Rzqz/UZTxgHF1t7R9gJR3g/WCauT+AuqxHs9cDQ8R6c39YFy4TAdJJ9vfBsYFzlGOcVnY7bk8nX3VUL/zfY/XTldjQQiMVC0emWroSnZ+Tvn0ilkdVzAZDQErBHAUG6Z9EcYFSL6gaU0d09QCrHvMChjlkYgItkUd1GWPZbvEC/RGBocQ54lk6oH56kWRqbnDvz8pr1x8MRPAdyipS5fBIbyXo+VA0M+Foc4lj0db1rnQQZc3tx1V43l3EkkVw3OxubDqqpUm9f6uTG/US8qB1MNTHjZWIGkEexMlxgqrTdhY682PxaRn84M7z2rFbGTfF/RUxPK89EA/the50Y0vWvmMhYv1zE+I+dmBdAd9R+HlpCmYUaSzxkOESQ+JbfGOHXXsK0x9ChleoGU1zExE0qlMH9zqoGEibdj4nNSH5IYJjk29k+N0Op7NKiTxnAxUDY1EPhisiMaUI3rJTNUjmnRdHg4bKw27LoEoCv1luXdzvSvWK5g87MubTWJcyfDeeRMTKPuhuND51AdXnFg7r2qmS2HfowTuc7BG4LN4LPLNrkz/EVfJhbVtmH462f4pJjUvotPDqmV1num/ugf6f+gG9nzci4uWZyhM0wu8kigi8aO+9wtzOfJEsRLlstFV8Wu6k+23zWi6MjZN1WcmOz6/z7pyOiD2L00PrDf7Ip1O58OrVi2ozeegKA8UqmV8zoeMi/T5Xdl+d+SZGR0hsaWSHf8T7aeztGB1i3fsZf/kjw2sN87kbFx0ZFUWx7ke8S1CMp8D5mZA9zu9AxTKF7Q2rON7RP4bUpn133EN0OUJpX13a+f9JHJcwaBgAczN1tWMUmjABzU1Yay2gUVZXC5/V+fR7B5lmP24X61YvZmJGgnH8drLC9ReOObtCPNylRK5mwNYmBYXrt0wkdbwgoJvH15iBlzjlRbtIfB5R6w079tsJETwDxqImeO/FOPUlPAKmIk6t8qjc8OX+w7kRWQynVkPpa65sDKIQF2u5m+EUbqCz3nABKs7/ke6MusL/KsjDi5ovMAGDKteMcfoECfEn0tl+t5v8zIjHt5HmUIq2f5WRQy/VisrLQ7YNMHNMCrDFFWEsWd8kd8R6++mMxu+beGj+YUo1g30vrkr2b5TE7/IIyr1SGtMG+i38F9mdwuEaecaEAX3Q0HFuTTWxKD8irADOsg7w6ehMV4LhhD3DQqcTB4k7qdqMmyBUxV0s9Eyx8WoGIKVehdhJTBP9KGSoh3mp9QdOi+MngXMK2Q0VuKIdOLyhWeOa/I/EYlkrAx2J9svIi5kjBGYMCha/jM1aJT7JZKIR/p5JAwdE3qQYWAkNDTj5V949cMbNgCJ3VuJIBwIYp9kLt3a9noSdRMzN5mMAl2ZW40K83YB0yGDqaY5MUlE9pLoW3Ps3bx9kgY/t61v3MHaeyWdhuCU7/cs66yvr8kvqOPYKiaN1btVIrzNV3Lf+vke9mdG6S5Cvb9H2SRCPwv8pDlYyWuhaXiwpc2bQwnJxdp7lGY4WORj16zhB3t6xLrmiUqscNnDNYKqDwSCIlzgZC4fd4/id+CIU9Az4oXNC3DIqxy8Sxe9F9MKlYBL6/KOwiOM+H3FAYbPIPL2UQeGdldPLoP9lAFpHG0uSfEdMIY2LbEpovyPtZYq5aaNsJdjVnmtnD85A1uEpFwe5eCQrBg2rE9EVvr+Rfkddo8xYf1rJgVbodKrUOYtjccbO3XxlbjleFQUGioa2PVulC6bGCuTxFtTg33umKpQT+Xg81r9OKbo/UzsaZJHFOkvpzL9V1mjVXws5Ofu0rh1/OmpZMfNTPxMIeMxNTDbKFOWItrQmTYT8a8002e7BvrMggE2mW8b6EWcywOkuUbi7o5cd+dty2mmetfEjt4FC++9o7c/VLo6idQBHsw9NWCmrJi2ll7hGnFpVPTNh1etqo/n6pbS2HTV8pbjZ471q0est46wnBgUnpWvmqrx8sWN36ASNvZmCJeLd3jkQys7l1VvH19IOq6Q13NjNA7JM0pPmbBLD6X2Ig9blMamY4ubOifuhhff2atc3i52X3GAkdOajm/ksen65Yn2/LNy8WGYBrnEiL840bmwOuYvqHlkT+AaXcfV4qbO8VPZn/jo0HqYeeAKad3f1N0LXGeDLkPbxzL3w7OK8YxrcZW7lStHNE+Xphwc4oySweV5WfKEBUTTi2Nj09WkcnpR8+qJY2Xh9oi3FsAXDGQug8Ppzl3Jzg7F1HvQRFnmhdN0nJcJ4LoicWxztRfPBj7rVenQbdNpzrV3bS7whlpCCnD5iqq35+eP2goOK9dOvfIfaW1vrBb6GrMyJ9sUMaZCnIZpBvo+LTKomG7Swj+6O9P7YESKi35wM0KfsHq1h5ORINkVIpz7E5iuPXHooBtHqrXtzSTexQo7Hywj1cQ5RTSdyvSelWrp+K5ibqDItAOGwEKUGlpe+6PEtr1f14QzC3kp7OmEeFqRDPtMd6YH+i5BadLJthQTv5pIaSE5oewWLJEBIR5moiqf5GfpTN/l6CjndHbGsOLZnWyH/dibiFWCRBYZfSHD/o52+UQjRPzTdKb3w3aaj7IUdD7svqhV6tPExnZuGeyuODirMaMVvZ19OUkzfUCJzDIcGK4SjazL9L0avt1EYyeDXT9hpTXTPNb6LROeGqv3jcPK44RoYaC60B9PZfovQzvu2E1rPdavIFLLhWQhkxiDXGvADCl8tyYeVaS/ncr0Y98jdSfbLhNSryWCkS+fWk6fCn90JDIUuLqT0XUD/a9Nt3beTQI31261MWhPRvyyO1TCFob6I86ty/TZE5wCxmnMmZivDk5ot+lZ+TjrMp3pM6ttaxMdp8QUX0Uk7USE/apgyKj3cSZ6hFju16zS1kQp7GNh3odZIDY+7Q3Mq8k/qIRWh9PFQ0BknD1zAKqzVi1BCUlIqKcrcONcMl2Mwl+TfXAUonvE62jY8U9KJOJnqvoPMalro5LWvsriE015RPfMEH/w6kwvvI8a5nR3ZIWyaOSRY5vWVNWP75p3VG5vS7q17UwSdbJmblciKwvNTQLKzeEkQWcbEpItRPKwkPxuJsfwZOCMgKPFnHPYE0aHegZodFM3hpRJZLY9eUzHC0sLpNUQqTnH0n9GYmzqe0ScC9IJOjpmn9U4GMQj/kC6pf201GD/qULe0xhH4GGngtVfhrjCgCSYqAk7K5SQ802mj93BK1LJjvuI+Sizuixa2XaAqT866VKPeAkxPaO7tfNS7ftndmXXO08WRqLoam17nSLvOyY9QfdjRGe2Cy5tSvg+zfQNjxmncIeDCRikbyRo8zE7iOk4D+cmmKmAaI+4Wpjb67R8XjPVKxwQYgcAMDHDMMdpg7DRexrVFfIWK2wDVojqmWSeR7SCWD0rlez4UDrTt1SL18Isz8SRcOUYF2hgkkZiXgHEJGzkZBY5UYiqmcy2LUxZTPv2SDYK83FR9QCOB9REgkNcrnm4H1u7TH0JTmhn7uRIXXhMca3lv5Fvd7IdtpXYwzyDrXzh9wiksgWmTMJJRfSadLLj5lSm798c7vBzH2YBBTFZidxpOqvTcR0EkWsTbSdE7Yt84fIe8yK4JZAcjG4l8rpcECdbm9OOUaFun2O6pePVi9XC+5i9ayHhGemgeHqIMgWSFqa4f9fiv3tmZuZp6zJ9r7h64IF+N40Dfug/jDW+pQAOA9Mt7Rd3t3R+pzE+eR9OHMJhG0ze9cz8Ro/oRCaab4xWkYf9BeYXtJCJ5qHzwH02s3qHYu/mGlLDXclOMDCUe39W+OXqAuXAtpiYaexgSszogHGm8PTwGIuY93bLljFNYfa6IJEaCSbY0mUWJcDoTWeDXlCpU7pb268g0laakejCRQE96ADYSR15yWgHVTG9SREtNnkZ+ozkDd9DYIS+MQkwzDT4NsrzfgnJwXWWta1tpwaMCydNoXzwGs4hrXiHOlbMb7Fqi7CspiyWCZBIDMzJ1YEXHOIB8e4Gj/komLw4vCiDEl5QE1OwEUShsM3L5O0GMgNLRu+qXBlQRpQVUp7ZA0xkB4RIrUSCrs7AjZ1vbQkYaITOgG4hwUou6g2mPEE8ThZnnlfl87MtWlP/nuLXFtcF4n0lV6VbOn5PrMC4oDOuiphk5INzTs3QAMuDuO1H7+5u6YCdJiTh6PeNlOSJD5oRKZXpvxSN15ymc5A0eVx41HxOeQ8CVbDlqAzSQIF+8mXJY1dFpmplAEteSWxqSnUnHLXhcAAAIABJREFUO37Bir8H5mAgnLKzBNwMYzN5kpevy/Qd25VZf+tHRzeGBqI2bzNdQXjJtpn6dLKjK53seKTKUw+yUp8kltd6xDhtp/QK9sIFH942MMMIwESLGalNrZhekU62f/kAy12a90G8iXbWkuSg10xT1FVGijUAgdRSAotvG0zRjHSng+1EFFPqp4ax2n2HLp05OSlgKrMMO6gjy1j5jnM6O004LupbZmV4H9/U1DGQV6hjl2/B3cIqDhwPFMThQfGbw322EbzISxM/KFr/MTDknk1p64B9kWcrJQk8B+Y0szDRkKuzQPqpsBIScAwmpl8REbwGh6vISG/wCZ1i8fqpxHEnIlyy+isyoMS7hBU/B4wtrDP77ez2J3M8XEgj6hwDvuKzu1s6PlI8lQ/hDoNAUBFg7z69LFq4OdNmP7Iw10fSeFBEBqN8hcaPdCK5Wor98YNPe9pypLVSDzoD6MKvQBKC7ivV0nnVYm/hXmwvMhJPJNMwGHqyoEkSurIr01ffPdD33xa/YVRRqefDTZ3JVGvb+9LJzt/Vsd7ObI4GM4d32NHskI4+QjIFSSyk93EKhPUlsoPww1VB2hbmn2ryT8uLOQpsm5XYAkptGl/oUzmmNTnJP2/Sz72vO9n2YTa6tlmPFEjgi/wlJ3T6RGxq8V5Nx/pCJYsNaHvHj+uPrU22rRGiFtuxgvzsv2FoQl8Qkc8Y3VFB7AE+FOuS9pHcF3ljOtPbnhrsf852VW1cCBXUBxoq8yot9Fk4IZjydTsJ7SpXtyJyc471aZrlBcLy+osTnUswDSyXfV77WWa5u6y+keg014YVe29Hejf9dbjARBXJqwO9c2Cj59qAT/6FU55q3KF5qYgfLJi5thB4KtHEdAEcIbh8HN7D5e5GQdWV7f0x5rpMdMEBjWblSxLopEQ+T0q9tzyIYf+Y7iydn6seTLe0X5bq6bmxGBbHonW1tB8vxN2K6aXMVOdgyjJbNEozetBdk7HJt35806ZdDt4q2p1+Kw+8zPQ5YjmZySvYkF0Wt0P0KO8sGHEFq3ANdv/lo8Q4h+R25BWRf92pd391Qq/gRGzvl4hVgS2f2x2gRD3clentw97PWL62YPN84JsNiiR/U3pg/X0u9+5kx7VGp2IdOtqOMjVN+XM+Nvig80SB73FuV7JjsyJqMFMVIDBeQNTFHvnrQ+nCIgYefI+81i+5Krse0giu96eTHXuCqfms8ayN2/cNnTSQML6c0/rLxHqvxwr7UZPa17cT2kIwV2TytNpZlYfhNQYw+dTm/92JU6WcEwOTkR3A8+I9vHVZXcYaRedhI1/MUIj0wFUD640fOqRFG6i0rudJ/Kic+FfHmV5TPIhCmlq5cmWMNm9G3bzS7Qk29JjymTqpCtrx7NgbPMuH0gOzNplEdGu6tW1B1K+Z/QatdfWxpy1b0dlHvQe/pmdoegz+HPMyzCaV6fvXdLJzJRPhoM6ym59LaLAVJWb1KIw1fuwnJ/zr64TeW1zxIZQNmA+s1Ce7Wzs/KaLvYeJ+YfFJ1GpieX4oyjvdVTGCQIAw9ArxFk3+h9KZ9d/EqlEENFwUOKOl8+Wns1yjmOEORrNADxOBjAbtFiS8QoOFziIIG51IpVRRDGXDYACBgWLZ6EP/Eh1My19Tg303f3DFifPII8mxfCpOdG7Z72NXKmdmar15oXxeTNasVI3DfW1sCI1zPLHnsk5ib+pOtsXEWoyzlolgahXspbXpTFsUUlAUF1zAo4UGLeOarXORS0mpzxUA7+/BtVfxzwv8r4VTNxzeEjoQwOe+svW4lUzcsCQXf2G6pR2K8+OF+bxAkildQc+L5plHcG7N7AJCMTm+3WLlmGFxfMEz6xqc2ZBOduxl5nDQdjAtft3Jl7Yc95CQLFMRYzw3uJgVRCIzq3FpcPdJL04lO9KK7enkmuCkc0G5PqC0/0939K4vcJAQxfVEhh3zcjRwKtN7NqZmnuIrjZgOTQBXPDrKpaPuTN/dUVMJ+LGH3VQ62f4VDvytl+xnDBMbRWHgRodZPZ+IwLCCsQ53N5IArswVjjpaf3FiUl903dgGeElVdgEBBpLmEFp4bNWk1ikmc45fhEGHHc6gDxiWjw3YRqlrKcFttueAY1oprwxN+3rlGte1A6FH2X2BH7I4ITH2Ztdv+RtWJTmV6PAJ3ujLSggHlq0iPsZI7DjSzl1QtBMtIqZrjM7ZvTfb//EQqU0rvXhET3dg4Z2VpzQZ5oJat++9vEhf2QYRJiwbyJNINpVZ/zVrohHaFqL94uCYdEsHFmReSSLLw7M6bakCiiN0l83i0LzEFlJg0kz/4RF9oBhrnPntSuhmuOmOTmON1KTlrz5T3CgkowmN8wPvI0HV23K4L+b6WRSelNOtAdjVfQHEE/XgyHb5gzhOD/aunSHu0MR/FirwmRQwEtPebRJmKCshVvvbeo0xZxQXpTL95/lEY+5lxbttvGXjK8VZOhTRpBb94nWD/e+8d2yD85LqKlqaxvaekEp2PMTsfVlFTrspnp6EeQf5jRPxw772r8dS/hTppvvrqXpa6ZW+5M/xtf4WplhhmgMIQIfhE4dThwNI+qhAte0MDgnH8ruFaLLioooDnMtdlfq5n0uyEpgK31pIF5+TLczGTqkExb5emNVRIezMwGwjZFxI07Er39bd2gnPXpcICXZFLDADJ9pZtM3vK4NDGOez2e8I3yFY+Qv6nsMv2heStxOrDrwqbss++1erMlLXPlVCZereJ17lsjzc7sWSF+hDh1QwIyCi0648+rjjYj6fzsTnGgPQMgVkkYtRfxVWz9Q0eZ214vcx7GJwlcFxQBVjJSNIhGAuEzNVXdYy2p1AbaaIXYm2M9jzupjodCvAYWoZnUqabCMSGNalfygkX53K8x8+XmjJbXyA/fbh/qG7iWBf8+1U8rjveuLdbiQXtwq0v4KgEzBzXuegawqnsvtLdijiVRGzzUsVx+Bs9SAHVB3FJ7wVdVygCwoc3kNf1u8584UKBfED0wFIgSuK/eoHerTgoF5bZ8Die6zmfEybyTbU++mSk9kvb1i9jFXsDyYvmC6YdlIoYfkiI0rkC8SMhYmSdlShaAWvYyoqbhZEVXzYo/m+Rcqcp7l01ubOmLd4Sig8ITyKIJ3Z8N10BYcKvsgDXtD2At10NGFhGGdSRHczFMY+wU/lmBdICgt19cMbYPKA8wVvQQRcN3sipzNzmybasVvzp2/M9ruDTssVR2Pl8cLVq1cuman+X48O/MivYqRgFjD0nNF8xtWD650i2NHtda089hil47cT0wl2amdQFI9ODq95L/Lz++fzK9xUM1oHYLeAXVxTIw2rV3snEHmLclUdnub3EqyPCuY/DmuFOyRV7V9/TfZBeNp4Ul5hec0JUUERtPY3eF4Mm+VDd0Cw61JE21KZvpPmWtDgRHb+bqgqCBJiv6mCP7h1g+s/6b4HE62LDjxzzaOMxMw11fF/YnOyUIRh2YFGRN86VpW7EK7IkUcq2XEpfGIfzCAsgVU70MxZar8x27u9O9nxgBjTQFtKKwAw4ZSuoksEkppm4QeIYU5oL0vzpD/jTu9yMXO5hzxhLsCPB0wl5hXNG5WMn5E8ruo1yw7RpQdMPfc7H75/40YYmrabLSNCVwcGcdjbaJS2lQ0h7alGkAbBZOAFg5iuTWX6brZEIm+TP0wp4ir+eSX0quDNfnRSWAAwpxP5H0xl1t8AnQecL8K1DZawFylsD6E1QmqVImryt00uZqpaASNBk3fxpDtaa2XC0M0pokd+Nbge22jm3HjLoHpcX2HOVJAhOk5wfufbulra7hdFM8xen9Y0qSKGt9aINuEOKY5Kml3JtguEqYrEerlkrZXmeM6nu+JKsP2mCtuOkG846Cjvhu5k50tJZEyYXnlAEm9BAQoe8BXRMUsc1vlEM0oknsr0X3BxIlFrt3ZNQw9qBsXoDoYClPt4EL6wK9mWYVI7iLUei03/rG5m/0KckL6JGedJFi2kRWcxjtmS/p6hQMkPg80jlh4LW+tV34ZZlX1ryt+VbH+REjnRZxXalCmWau3rn6SzG+C84bC75sK8HNH+Hb29BToCGzEnjuymlOsy/dedt3LlTUfrmosxO2VWwYlDFexucM4jGBdO9REtF6QG++4q0lUY5ppOtr2KuejYsiCto7/0biy1jbvqGxB5R2+vseKHIzkiudDQ5oZ50/Mio3Iptn2+QaNDo98dmzrJ1cU+ExwmkRO6ZmqxmpoIDL0j5Q/qdplS3pdAqtbyDWb5EJEK3SI5ycRjvq2rpeP5Qj7ceK8k8lJY6TVFtChFlGbFj1w90HtjuqX9KwwTm3LSDdNLIOuaZIh/9JfBAZ/eXtFg5GGvISuVaml/U3qw/7+QVXey889zWahRgbfdSIUFhGIrGZN3s8EhKvuZjRtXppMdJXBFxfJSmfU/gInGfi64pspNKoL/fdor+e/WUAxqE+wkCPp64K34uelkxx+16LWaZSJG6nxjd1jiP4ShFPxedCFuP/k/rtFFn+vxyXti3jwN//apTJ8HQ0gh6vaFv0+i7vFJ/RE/Iv4lCd8mWn8AiwepTN+K1GDfnc61iqXUfHSM7GBcxpPrgRRBqAd0RDxUaGySZVb/roPTc+bEmPeXpbVTUlhU+PNDD+1rir0/VI97PDbCC8lu7Ncrm7llIIplXmqg/7MkAl1pgXIZ5VeK3+ep2J88jt2hiDrAzJ0y3EkTM74+Dd8iNdj/PmPNbiW8KGyQRptB1Ccq0V2VpXHfL8G8sJv7gRIwO/h5Sn0rneyYhjKfmNZEttcUJIH+EJ6H8VKT/N4x7wIgPJg6M/VZvk5LEoRS+n+FUmgpjHnDxIMf2xw45vxY5sFNSuhaw7iccGClLyY62VPeT+Ic+w0Yl7HJA13QJxuvvCBT33p1tv/v1nKgQo5P3OsDkbwOGZVWrwTGI10D639HRPi5y41CxaOqgS/y6KAuS3QcjZEdiRUHpyE7RBXv+EjQPZG+CTCf2bgRSmVOtbb9H6Pct770K6Y/gAjLuGKk/Uu6Btdjr5or3wFgeWJBmeSbxOrksCxRcty0ReBDn2hb1cxzls5UDRjjUdiKBfsSw1EfMGEHNFyJp/DdRORcdBRbP4zN4anWtqs99j5SWmFwj6TPF8HGaA7OyYzQhN3bkce5BGVir3y3rk4+C+BQLeBSBop+nCcJZlN507UX7jJRpPla8ujVjjE7VOYeMGWzWb3gfeUHjd0hubGJm+Lk2RO9i4CDNh3XpK+PxKh1g33XppKdyzxWF5m9t87cyNBgJVe3xS3gq8YgWGv9312D/c5V1YHWZ4SExy74hEhetjjlKgT0oK26X7TkxfCA8esU/TjQP0RB9x22Cn+sjDkpCPlqEg9Hnz361VCXvVvd0voqq2jGFLi4HA56zneJNkCbCqtfQmJ0cWI2hJcaUcJzQTQTFq0Mw49Mr930IthvbKB5Xab/UyJym4uL4nBhTWxcxuC4tFSmbzGx/FC4yMwGHcYxOyQ0XEyGIX2nMn13WFyoH/NLD6y/Aq6WNPmv98m/VkR/GpL46F6a3zXQ/wWPab7LP3pnxpFtZn9ZXcgo8cLmDV/yUXiEYRvos35x8XvzHKZjxcK/EaHfloOLaXmnVepzOtt3r2i5oaIZSsDUzfeyuwRmTdbwPXCwpJ61r4TDwHyeHrTeSkqztzSiXiLbecBsOZ3pvRgOCYQo3NMbliv6PUwnoF2i9VVdg/0vx3SxNKPD580TInnto/hzFaOBQsyeyDw/jcRYNIMxzOlyDZqFj0ECTEWxDcljais7Us4JayGQk1KE9OdTg/3r0KAOla4Lo6JSvFNICxsnBrAyxY4EazEt+iJNNN/FgTIIk6QkeiKT7FFVQ4tl+l1G0LR4oL3SorzdFMvaEoGReKlM35vWJts+ESd+vhZ1jGKCJMLEaiuLHtdMfwS8lWIV/FTBK0ec6XnMcjYJHydMjUy0S5jBsH6rie66KhNulcEAgm+6bF4ufoUyhsvGfxfmMhMslN+bV5+E+YrZo2q6Ib+xsNaDJ1/kzyYkcpkmvdDVg6uvPGk3RYwKdYxtO5clT2ipldxbmbyXEEmnGQiIBoQE3m+/0zXY/3N4vYgRP5OstOloEBXajZl2nBrs++Da5s6veZ5/CpN6plmcEuOb/hHFekwT/HoZI9R3sfg4cN4IE6AT7yd9L9x6BXdNdw+tf6SrpfMdQn6DK5PLG55GSInxvFrk2gm4VFdm/S3vWdb5zaU1/mnM3tmK6GQSadFMcUWUJZI+YvnBXuX99hOb+8yRgXa6GK0jQ1eY5xMciBL2BJNy4Nlf2XL806qUbHSM4kAxwN4lnek7AStJN2azk0anYaeUB4qrHLxhXAP978HoZ6WJcmAH8w74Kn07dBzTCcogRuMrboCVYEsGEsuAoW8qxuHoKU7jBpRyCz3GJZDtaA4ff3DFiXULanz4PpsfOOibLYUm+t/tVTNn4iBi7JaA0XG5wSbYSN3nzhqYRTAbKlcPs7EVQpHyV6r7cnidtF1cN9E6q/QNyuGrBOuoLs7HvcddnWEPb46+jIQr0RoBOXyClT7C4UPhfigBw4Gifs76riJ8UKK747u6k523EtO7ikAO6NF4jDBeS/WlqYH+TzyGKzWVvh0a/L7iistzILBIC/jiNOU6mcvHwKPTuBd322lhMEtxb2fvXcmO25no9XgT2pSZB+OJZIsQb2KmU0sYl0gOjiZnfH30Iw3zdt/S0xMu+89iD0OSTrZdyOQ9i0SHcJpVXNi/FxuXIeFF/NWjjFHGUFwHDjHgiq9KdQa4Q/W9HK7ivMs941vAQYEpQ+R7mOd0sv2jmnnp/2/v6qPkKqr8vfWmk5mQLIlJJGwyPaBRMj3gcUFWj4pEkF1kkV0XP1ZXPQIuB1jxICLKYqa7JwiIqH/AuoofsCLuuoKKq4AKsouo6HFkF5jpyAbC9CR8JIHJB/PdVXfPr17V6/devxlmxkmchHnndL+vW1W3btW7VXXvrXsDU9fmmjDc3zfK/Zt8lPisfPfrs7m2bJx25Y0xb7fRvGcwY8KMTRH/h3OJq4a1/mRzoE5nouWRt4PpYBTKuJqFzN8W+yo2wnjcQeN0spoCbNZH4pNN9s7D+PN0YJEG8NNJY+FjXnB9uROdVana+65ivjBi7anSUMyH+Z0afvlvQcJ9pjk25iLrW94uyNKJo3v7kQoFpzDDJjDiq47DMmRp10OUkGJYUQYzoUE8cep6uvRMJZ/2rWXC3nWtT+1cRhFtH353gMA5cKvoDkshIWwDnDPMq95qHssD68yl/sr3NZm/0kRWRY/ReKpVcGYtS+F7HJ0UnX6U5VhN9LDNA/vHppAfmKArc/t4jV7tGJdfMk0VnXm4kAIGs9XdasEqLQktNAR346B1/OeJBuWANnJ+qb8CLxNT6tcwMPTp42cNPyMv4qNhvxgmBpZbzy26TKmR53A7WqKW+yp3PFVrOb5G5vRQgWVdMr9wB4SmxZpMqH9CqDLYGMHTQ7naezxU8U7Njz4+Do2mZWRoSPdz9+OhHY3c+vASzm/c1mPdCKcMaecwCeceapitwm/WUyub14+LHE0iN5HIM5gNg9bxnxb6rRhzwc7c2GHl/t4vuSXtlAYwDVdIOJz7bnuGdsLaZs49uuxHjGqhEa1zbe49uXJi2bwf0cku6oBfNvpq3fBkN9TjNox6Md9xa8ChzMS/n+wcMC9Z1UL/3Ll5M7ybgqEzVM5E9NVSa/sFTPx+ZtVKJCsptiHXiDxPzFtY0ydKW3vvcsaukxU1W+/q8/nGHD3T9gMTPmTA44d3/n1jyjoc3nkG4IW4E6WdCJd0ORPBoSzANryHvGmgowNGkmelkPWwURmO9r7O/nn83j+LsmLip0jkMR33nCKyQNV906EcX1aULkZD/x5544fy/HUc3sN5mk4El5UGz3w6XE9ap1gGvkyPT7zMrDrZpKD5mnyhj0jVEHoID+EXmkQWEckul/9E6S18rL95vONlx1BMXPp6IY3H3afPLC/zYSLLA+smqrT1KKHUPUDfCn1T9izxamEZgtF8XOv1MU+dnja2QS5bvW75wpxZqXVoWwQPDZpyA1f0P+KtvEF8T+x49vv1OqYR8x0JzCeu7UvfW/wyFAvxzhSHgZ82n/d+qVsGbr5ci+OFa9fm/KZp/yJ9niSPNOiU7ifLD7Ij77UXfvlTcs+I/hPkEfmfmwIiNnhs2gQnVn5DFpO9awCewYMJ6mRzmuAd6IHvJqtPTfpNHTQzL0dnEAA/fra59qvrNm9eUMx3PBAwvcYu9SZgYG7ZN55T6itEhJh2yCPOiPiqbZt2rSfajejKvk0xSrlRIg3vQWb7jLKl3Fb4exZ6kze2xbCI9a+w/BYzxmJb+2mB8DUIheURQHxKEbn0qZcuus0Jov0rm+eygeamUlv7B0T4owGz9RHlAbTQpoDNLc/vqX2diLw3DHXZ6nXLmgPeQHaDtZN6MzzTqpw2teviG3rhLcIQv41FRoFrmDc25cu2YnVTVzHfcbUiOdSXSSzGGFr63MLxs0YHmoOufPvXEAHHv8dSsdhf+RfcL9HNS7taC+cI0z8w8xEeBmct0huQfGX3wPg3qe5XztYZs2pF2O4T7g6w8NbuSbq3rVh0w+rtw1cJyyERvixGRC3eWxu/2OzePVjMd3yGSM7HzN2XCfOY4R1jlxMRYgTIywZoVTlfuAbRpjyMLcfI90YG6CIiSrucMYc9M9hRzrdfSMSnpOuDtCLyHBPdP27M5zcdGvwq5qLZ1oueolw5334xs0IMTsS7DA+RW4efHjyvs639dU3C7zCIpRBrC0MMkUkR9VJklnHc5RHRAsN88xiZykKiDYhmxyxgPECoZhSPlvt6P/7KIXN4V779mrR7cWPk+t27qUhE3jDcIUUaUcCI6XJmPj56KNJrjLlAB/xos6ErDKmRqDwH5DqRT3LQnW1jdrW1f4pIbbTr+Jg1eVZt3UcB2QkOMKW5dIT1yRduJLgjTh9CP7QGnf5DgYAbduWoh7PKh3X4I0voJMwGvOFsua39HBb1OWIKmYdL57O3zN3daJIby329ZyPtG9uOal0g6v+y9vrFNK4W53Jb++eZFPy+JQ+RLZ3V3rVd+Y7novJjEM+b2upDOPhf+PjyihGLj5HLsfWl3Nb+RY65jvYwPguPu/UKzHJFsa+y0c8AyvmOu5jpLz2sP4vQT7eowTOONIuezXK/jLqR8E02XqfzLYe0cFcNWsBcZkzJuqBG72tSKty+ZJ0H1gXeHi9oy6F0QvpP5o9Z1kK125034RCddFvE2tICiPQMUXDCY0vMINoU7rgVB/f4WKJxeqBMLbKXSH4WsPrrsID6Pwa4UrW3rZwv7IR31vqb8EpIX1LT9JNcEDR4mRCRIcPmEwEF11noWH09XeBVxZA+eWP193aHwoVr1/7JitEFP7bRjUKm7BVfEEXbiRX6W0CcFhvYIvzSII3nwXJvZ0adfZVPQyMJP06Tag9h6qDUF30IrjlMhERAjAhPJigs6iO8E3B7xgU4ZnrDMXvJ7uHDcqOcP/pKJvVVaxTqM0oJxv1jnAOhD5bz7fchejiZnNLEQwmaug3AYhCtOXYIZeKsXaBcIfEecGOJiFq46XbvnBAd2ndqYXq2mO/4RZxxIaGH8WefGbZPMamurtbCLX4ZxzaytYeon5nC7UUu7Fj9hbtioe945oACo7LcwIiYCznNPU2M6NQ+kY09GSkb/GPF6iYwLRhKLyL9CyZ+nX9nz+m28FvDPBBzx0LSd6NOCESLze9EySA1EX5WGcFLshgXshMOgxYzcbItnLbR7ihQyqC940wRacHkI8ZlH9Tr6wc3mL40UXDruX963CIMfivHFjxATMfWq1JXxvhnEzEuvD/YmRfqaGdP0EgKy2utkNZTJn3GslKMPnovwe3OXJt1pbFtuHfaT+sVwHYu3+lSkJrk/YgK1NlWeCuzXAYtm7eZSjAiny6ej/1W1QnLRnOXGKWHeB/3oWjJD1yclteh1RUwvb4BX+89IQSPL/1DraLi93a1FS7xVZvxOdQ+w2wjWYbLULk4lniPtpgIDrPNZqm9ZwkvfhMxQ2TR5OsZMQiRx0TkfoGCKHUAJmA+9tLVa9c0afWtMKxefU8kwBNlgz7x9kzl94fc2nJegC4IjXd40/Dp69sKiPDd3uCRNt7G6MkT0Bd4vhiYl20/DA6lvsrvBgy9SkSecMFFMtuKmU4p5TveiDSZAHP0IRiQc9AXzVCyUMUIKOO5Q5qEIePDsBltCkYeRujmEcWrBjQth7cHG/Q01uHxwWA5pJRBmPjMjzer3Bk/C+MI1jC8219oDGyj4nima/MGjpj9iPwMNmKJd66eIUPgSzHywxPOzHBC9O5oZpGdh5+FuWjkFpcYDRPlsjqVFb3JPvN1dDM6LdKFYMlb1NApg6KPgjPO1Adty18cNJ1NJMexJDffh9VmRULdIvRjPwtKlD+bN3G6TFBfRXKaMvSRrGKdHHdXGNuT9zS0YSzRwSawj1Wt4dLOpL6wtQfq3iOL+cLDAVHoEC8O6jqdIoFv8JO9XCgOMpevWfg+o8bPH6TcriVCtxDRSVn4HkIKQtLVdhSOKTLQacrVHhvE1KX7Tim/bpni4Mv4aNCZvM+6BbrpEsjYCF4s9v3xgBa5X5EZYVFvJ05FGQot7AP4frui2mMNlkutHWcoRbfHZZ1YQkGIfUL+qNc6L77Tw1yMNqTGDMmZw8wPLjZyHoIUe9okMrNMV5+7ywS3LQ3Micwq7d7agiuiI7Sh6xHS2pAZJwgvlEFogcXlaqUEIHj3hbKkmC/sTASRcQOskDq5YUeCo4mI+UCxWkG0JLIeggPaxmJys83ImHivMeaDu0XdBy/EzOob6f4FHAzx8YFKKoUsIew7+c9ytfI3/h4iCiJ+QxYTezExL08PzBT4uQVjr3nZu4qbAAANBUlEQVTJ2ML7FcmxDYSxIzifVDqi49WlJ3q8Jwaffm6eRcYN0djo+Ni7rurfbH0uXLh27WkrxxeOZH1YhvlDVlXkGVdYZ7tuLre1fxwBF1FRCaNz1LWAeOgjKhOdmtLKzi5tHE5wg1Psr0QBiUv5QodKh0jDoGPkriv6LeNC1aTU3/ODcmuhysyIwJ04FLxGsIxNa3Jt8VEIenFLqa/3TpdhqZwvfMyQDTOWdLUjckexuukrbgD8XjHffnu2vEmU2zPYsPWm1NZ+rAgdzcLHK2YEkjkmURHXfswcztziL8NZ6BbHuCxN4A+/3Nr+WVIqdP8Uh5/ptWsnw3JxqWqVD5gN3lxubf9HVlHotCj3tDY7ekFEe8ze98Bmz3knkZroj+VU7jfxAcjDvxiZF+ousAv6p7b2MxYKV0lEx5dO7uOsiRB8TFm3OZ5gc/WsiYwiGrzq6ZBxwZ7nuu5ueP/MRBlyksQL9xEo5ncS8Tv9gjm+bo4zeVxrscFOscDJXjolCpj+DXzIByK7HOOKIp0TUVKo7bNm+bG7jJayTHI3sTrbg/hzQLLOCqDjFfQvX+Bs2Fj3PzEwozJCMGkxvYBxG5/B9L1NYCypNcKzqwK02WFPjxRygVykic6MTDCAI3426PL0ENZCfvAFTWw5Wpl7m2gWmRfBKy4mVGZTomJM0Er6uI+JV1k30HbWmpvN6KGHRrhu7H/0t2Eftp5nQ9MMl3ifdLosxObgM7ZBX0XeZxkXRo/UETCv3dBWmHLkm1Ty/XrrPp7oo3U2aBaHTOaSUV8LDM8MIqPpH2SE6R8cUDUIXCeu9fT6mvdmy3yvyzJqH79sTRel6zZEEaxmtTMNh3shOhxRg7PevdAza3ryQkB4r1xwEQerMI/NPEIB++odQ3fmmuh/YAYDxmXlc04A7rcuZSbHwwnaM7ARkdKpVEP07TTEdO6tFh9bqiTwFvg2uYiCQXPjMQGuimjx3lotQSO4SEIGNt5mKqfpdahU4gP8Fh08KPZXvi1E/20FwbEK+Q8kJ6bBDigGduBe+uXiFGtgwi8dX3v080ayU8nCEHQJMzhEhz7xp5A0EFnhwKIPICBalZVUiJ+eqcA+I3RaVhGkMB+JHYk4l7HnAdFgOV/4dxsXNfbcyuecADykNW8Xka0TMKrIRirKIpQXnOjuI5o0iRwXwcziRY3rdmyTZTthv2Fedvh48yEDIyMRri3NtVciL2srlsr0xcy8QArYIiHQICyd0SfqHcB/3M7bqpu4p8h34N6KiLeUDyvhRkPN5uKnai0vwW9wtGk5fsNDemWfGloa/+0Y5hUj2hwD9T2+EU8JWMPimpU5CudzjzvOiiYCkndP8NH5pJlnIxzNnPzyi4lCT6mpFMLB6b5MX66Q/EUcP5+EyfQQy5wQmwhJm7XPy5iRwKhYG/OeYUMdndWeNSLycGLG6NIIyX2+bv4MJgE/d3DcmJBNcvBhK0PygPv9zL/OahOg0RIEN3k7PNwHwh8NYRtFE3Oi8fY77ZIFCoTyXa3tX2elzrYfmGdcdro6tdEkmeUBcMdyIxFfHtXX1TkwwZk3PNltHfFd2/0QmLnAErptZNGriLUxfumzUFRAwTKiGMMH04K5hmVm/JHL17zyW5/u7t7WlS98mZjbZsK8RGELUXSASSoh80Om4IzoKS7EaGb1Zqtk6e62ch5sSWLiVeGHGg3mNlmN6Sc54T/3sr1EXvv5xhvhpmf/GEyHKXjb1f09e1BDGLIqVmvERjlvQPIRElonJId7MUH9HNzUlS+8S4j6mRgMfuWMrUQaip3JAwmYrR+9xmAiTKd35Ts2iZi7ielVzHTCREqVeeYVzg5ynd3d55TzhZMa9pKxsn7BLR+bSTvN0TTC+pts+NKEogK4KloPrxz07NC1G1Z3DAdN+uU8pr7GAS+FaVRCYmrM1zXxzgAum2NcwH00axYGua0JhUFsUJghWbAMU4O6dueiQA0m4hFazZrRitSD0OqxIGitemvInOvBSJx93x74zi/lO3ScM84Qp32WDMvGFtKnrSf6dmFlR8tSpc+CttFFrUyUa1g2s6HbleILMHh4xmWBQpOJ0yz7noHQP1HQLNwY5maj9ZW5IPi7LC2ikLyclbIz94a6xMqfy20XQ3PfXjoPAGqoxidCUG33aUm4VUKUwNPqQXeI5sVaJLTnii9XwmgcZwaiftXUJA8oCm5j5qWWCQDOWT3DWLKzv3JOIDQoxMmtQJ5aDt7e4gOanUNfs23zVoaPrzAYcbRk9XZLMEdQSr3VFhdnmHZ2xggcgg3CNJEzwtlBc+q5hDPVbHgm/ub6fOHxw1rk98yBDdWXBRkILyr19yBQ7zPwopLI09kuhoyCc0asbV5WNvvlWSBGb9y66WER869os7TBuJX1eet6zt5WBkTnmVe9uQwi02jW7QjcqWygVbPhgLHzqtdjSleslEEUaBHBki5cU4HZuGs74onkoqUebLug9Anf79mja1boq0muthrHLObk8w0NE2FkOe0DrocyEkHR8mHE+7QzjDiTzACOGG9o93ST87aaBWmfQSkRvUTe7phQ0OwBZn7+JbxfZCa3IZroMCLyyogEmMdJE1tD4c5q7yoh/klmyDVWgRHzJUWmIdYlMg2cbV+igNiNVzhk5S2S2U6x1I2XxWrlgwhpZ3dwpF9bg116SBtjDVYT8mgHO8+8kkTjK/p+v6Wz2rNusGnkqM6+Cho5sVJKgv9x7iDzSJdsQkl5w/M0XPwexpPFau95iLZjP3C3DQezT7bKDEYMLms6gXRgFFrM7SParP3ck4/uxCMwwJoxn3IjKPbwjUGtjzPyccxuB5FEVtNxHAK33kwE2nCF4RTJ2OKJiLTD/QQSXbRlwCNuOGu25XscLD5gonhv5PzOau9ZsKcK8/aueZKZ+0HdALcYA/ZLsbTmC3CgfzoXhNyNP5vIVMIQrxil4I3+A43XA/QHM8UAISJ7sMcxnidwQjpFfLJ/Xqz2nKqNOdaQnAMXPST0VRJ92bjo15SqlfO10HIPmzyzHWAa+pejQR1/7LKo90FcCyVkkzZbBHlL5h/ewajSPQ8Qm3NQ9CvgXUPEfFaMfE0LXVMz+tRytffPRBHkfY3aRpG5oW3JquAf6ZkfZfkzjz++1+EwW8udWauSEf5dwOb7cV/rCtPr2HLAa+a0ERsIJF54wHToCOldPihGuWrDhKlSft25QurCgLhVyPpqUoYIcqFRMnLbkFDx6q2VzTGGbunV1V/59IY1hbtVwDeQyJGKKPDptKHPlvt7NsDjwQJN97LQgPYdn60/rz4rTxT5kRZa5vEMMONiaRZWmYadzgEfd1Y3bVxPdOWbWwtXE9N7mXiRobBfK4KfLnlOyNwIVzgOb/ZRhRTpXxrBVsi60iGAFwfSv1ywfLlWO4Z+SIaXeHyBk2FaaIif8HjizEQ/YKImbSQK0howBYqMdx1j6SRGHmKWO7REXisoUGAC6omrqw8PrCdqOSlfgMcPRE5aKARrC0v/YRHzb8Vq5SIoIbShHYSdRIjVaCvFopmk1Nb+IRGzSzEcj2E5prE38J5hrf8L8RnA8C3eCjEpGw9N5nE8ZeI7iMwK3798W2imzWZc7dFN8t2ASDSIh/KZ0Uf0cG3EfzPhdyTyoCH6UWJZyALjt0ed654jhY1mUegvLKR/YziobKz29Hhcm4jfEmLaqG30HLCxJvNPDlQKoEN7ORDa1zPkyeoTt163cHDTYvTwIdtztZ1uX51Pjw6bZuhRmZjVLN3+/EoztnD3tc88hH2POLLSuFdTOk1WD7xD+RYndPrXH3m0nVlcueWRZ3zueJ6OETlF2vgs0mePU1T3NMA075EP8rT1uHTFUUuohZbs0ot33fBk9xDycnWom/MkC+ByvrArctUTfyfmwc5qxe6oKOXb36JY/RQM2+3zjCBF9EeK1U3X/4F0ifKb7KIr3/7ttMNCDz9GtZdhBYR2LecLfUxyuJdnWpgwxF0fiDV/zFNgngIHAQWKrYXvKqa3pZkSqqZFnlVEFWaGt5TkEToOHBXi40vVHmzx8YNfEm727oLSmo5TVEB3enFFPOtwJsw/JxJsyI5ms4Dx2kfsdwW3nz/mKTBPgYOAAoMLRs/zW5cS2kax68tDwbjiS2RU2d5DkcHyhVK1B0qDfc24UKwpbe25S8TcA5liGicAMNOb03JQz7g00UPY7zrPvA6CTjtfhXkKgALXPvbY9tFAXkFCu61yIQzpZjXEfjbmz2AEYBr23sjlxb7Kp9yydX8Q04oyitXKW0jkDouDx9UyLudM0fuZC7XJ1mGmGPPrPXo3NubXjff2B8bzZcxTYJ4C+5YCP9+18/l7d++4av3S5c8bVquZ6CXMnKUxH2CWn44LvaPc3/tdx7imIh+dtQpAPnrtpoduPnHpS39OxEcw0VJibkkXIEyjJPQgEcE10sUP7NkDPM3/A++3QTrTVSMJAAAAAElFTkSuQmCC"
    }
   },
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![image.png](attachment:image.png)\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
15
    "# `funpack`\n",
16
17
18
    "\n",
    "> Paul McCarthy <paul.mccarthy@ndcn.ox.ac.uk> ([WIN@FMRIB](https://www.win.ox.ac.uk/)) \n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
19
    "`funpack` is a command-line program which you can use to extract data from UK BioBank (and other tabular) data.\n",
20
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
21
    "You can give `funpack` one or more input files (e.g. `.csv`, `.tsv`), and it will merge them together, perform some preprocessing, and produce a single output file. \n",
22
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
23
    "A large number of rules are built into `funpack` which are specific to the UK BioBank data set. But you can control and customise everything that `funpack` does to your data, including which rows and columns to extract, and which cleaning/processing steps to perform on each column.\n",
24
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
25
    "The `funpack` source code is available at https://git.fmrib.ox.ac.uk/fsl/funpack. You can install `funpack` into a Python environment using `pip`:\n",
26
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
27
    "    pip install fmrib-unpack\n",
28
29
30
    "    \n",
    "Get command-line help by typing:\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
31
    "    funpack -h\n",
32
    "    \n",
Paul McCarthy's avatar
Paul McCarthy committed
33
    "*The examples in this notebook assume that you have installed `funpack` 1.6.0.dev0 or newer.*"
34
35
36
37
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
38
   "execution_count": 1,
39
40
41
42
43
44
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Paul McCarthy's avatar
Paul McCarthy committed
45
      "funpack 1.6.0.dev0\n"
46
47
48
49
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
50
    "funpack -V"
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Contents\n",
    "\n",
    "1. [Overview](#Overview)\n",
    "   1. [Import](#1.-Import)\n",
    "   2. [Cleaning](#2.-Cleaning)\n",
    "   3. [Processing](#3.-Processing)\n",
    "   4. [Export](#4.-Export)\n",
    "2. [Examples](#Examples)\n",
    "3. [Import examples](#Import-examples)\n",
    "   1. [Selecting variables (columns)](#Selecting-variables-(columns))\n",
    "      1. [Selecting individual variables](#Selecting-individual-variables)\n",
    "      2. [Selecting variable ranges](#Selecting-variable-ranges)\n",
    "      3. [Selecting variables with a file](#Selecting-variables-with-a-file)\n",
    "      4. [Selecting variables from pre-defined categories](#Selecting-variables-from-pre-defined-categories)\n",
    "   2. [Selecting subjects (rows)](#Selecting-subjects-(rows))\n",
    "      1. [Selecting individual subjects](#Selecting-individual-subjects)\n",
    "      2. [Selecting subject ranges](#Selecting-subject-ranges)\n",
    "      3. [Selecting subjects from a file](#Selecting-subjects-from-a-file)\n",
    "      4. [Selecting subjects by variable value](#Selecting-subjects-by-variable-value)\n",
    "      5. [Excluding subjects](#Excluding-subjects)\n",
    "   3. [Selecting visits](#Selecting-visits)\n",
Paul McCarthy's avatar
Paul McCarthy committed
78
    "      1. [Evaluating expressions across visits](#Evaluating-expressions-across-visits)\n",
79
80
81
82
83
84
85
86
87
88
89
90
91
    "   4. [Merging multiple input files](#Merging-multiple-input-files)\n",
    "      1. [Merging by subject](#Merging-by-subject)\n",
    "      2. [Merging by column](#Merging-by-column)\n",
    "      3. [Naive merging](#Merging-by-column)\n",
    "4. [Cleaning examples](#Cleaning-examples)\n",
    "   1. [NA insertion](#NA-insertion)\n",
    "   2. [Variable-specific cleaning functions](#Variable-specific-cleaning-functions)\n",
    "   3. [Categorical recoding](#Categorical-recoding)\n",
    "   4. [Child value replacement](#Child-value-replacement)\n",
    "5. [Processing examples](#Processing-examples)\n",
    "   1. [Sparsity check](#Sparsity-check)\n",
    "   2. [Redundancy check](#Redundancy-check)\n",
    "   3. [Categorical binarisation](#Categorical-binarisation)\n",
Paul McCarthy's avatar
Paul McCarthy committed
92
    "6. [Custom cleaning, processing and loading - funpack plugins](#Custom-cleaning,-processing-and-loading---funpack-plugins)\n",
93
94
95
96
    "   1. [Custom cleaning functions](#Custom-cleaning-functions)\n",
    "   2. [Custom processing functions](#Custom-processing-functions)\n",
    "   3. [Custom file loaders](#Custom-file-loaders)\n",
    "7. [Miscellaneous topics](#Miscellaneous-topics)\n",
Paul McCarthy's avatar
Paul McCarthy committed
97
98
99
100
101
102
    "   1. [Non-numeric data](#Non-numeric-data)\n",
    "   2. [Dry run](#Dry-run)\n",
    "   3. [Built-in rules](#Built-in-rules)\n",
    "   4. [Using a configuration file](#Using-a-configuration-file)\n",
    "   5. [Reporting unknown variables](#Reporting-unknown-variables)\n",
    "   6. [Low-memory mode](#Low-memory-mode)   "
103
104
105
106
107
108
109
110
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Overview\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
111
    "`funpack` performs the following steps:\n",
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    "\n",
    "## 1. Import\n",
    "\n",
    "\n",
    "   All data files are loaded in, unwanted columns and subjects are dropped, and the data files are merged into a single table (a.k.a. data frame). Multiple files can be merged according to an index column (e.g. subject ID). Or, if the input files contain the same columns/subjects, they can be naively concatenated along rows or columns.\n",
    "\n",
    "\n",
    "## 2. Cleaning\n",
    "\n",
    "\n",
    "The following cleaning steps are applied to each column:\n",
    "\n",
    "1. **NA value replacement:** Specific values for some columns are replaced with NA, for example, variables where a value of `-1` indicates *Do not know*.\n",
    "    \n",
    "    \n",
Paul McCarthy's avatar
Paul McCarthy committed
127
    "2. **Variable-specific cleaning functions:** Certain columns are re-formatted - for example, the [ICD10](https://en.wikipedia.org/wiki/ICD-10) disease codes can be converted to integer representations.\n",
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    "   \n",
    "   \n",
    "3. **Categorical recoding:** Certain categorical columns are re-coded. \n",
    "\n",
    "\n",
    "4. **Child value replacement:** NA values within some columns which are dependent upon other columns may have values inserted based on the values of their parent columns. \n",
    "\n",
    "\n",
    "## 3. Processing\n",
    "\n",
    "\n",
    "During the processing stage, columns may be removed, merged, or expanded into additional columns. For example, a categorical column may be expanded into a set of binary columns, one for each category.\n",
    "\n",
    "A column may also be removed on the basis of being too sparse, or being redundant with respect to another column.\n",
    "\n",
    "\n",
    "## 4. Export\n",
    "\n",
    "\n",
    "The processed data can be saved as a `.csv`, `.tsv`, or `.hdf5` file."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Examples\n",
    "\n",
    "Throughout these examples, we are going to use a few command line options, which you will probably **not** normally want to use:\n",
Paul McCarthy's avatar
Paul McCarthy committed
157
158
    " - `-ow` (short for `--overwrite`): This tells `funpack` not to complain if the output file already exists.\n",
    " - `-q` (short for `--quiet`): This tells `funpack` to be quiet. \n",
159
    " \n",
Paul McCarthy's avatar
Paul McCarthy committed
160
    "Without the `-q` option, `funpack` can be quite verbose, which can be annoying, but is very useful when things go wrong. A good strategy is to tell `funpack` to produce verbose output using the `--noisy` (`-n` for short) option, and to send all of its output to a log file with the `--log_file` (or `-lf`) option.  For example:\n",
161
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
162
    "    funpack -n -n -n -lf log.txt out.tsv in.tsv \n",
163
164
165
166
167
168
    "    \n",
    "Here's the first example input data set, with UK BioBank-style column names:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
169
   "execution_count": 2,
170
171
172
173
174
175
176
177
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
178
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\t7-0.0\t8-0.0\t9-0.0\t10-0.0\n",
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
      "1\t31\t65\t10\t11\t84\t22\t56\t65\t90\t12\n",
      "2\t56\t52\t52\t42\t89\t35\t3\t65\t50\t67\n",
      "3\t45\t84\t20\t84\t93\t36\t96\t62\t48\t59\n",
      "4\t7\t46\t37\t48\t80\t20\t18\t72\t37\t27\n",
      "5\t8\t86\t51\t68\t80\t84\t11\t28\t69\t10\n",
      "6\t6\t29\t85\t59\t7\t46\t14\t60\t73\t80\n",
      "7\t24\t49\t41\t46\t92\t23\t39\t68\t7\t63\n",
      "8\t80\t92\t97\t30\t92\t83\t98\t36\t6\t23\n",
      "9\t84\t59\t89\t79\t16\t12\t95\t73\t2\t62\n",
      "10\t23\t96\t67\t41\t8\t20\t97\t57\t59\t23\n"
     ]
    }
   ],
   "source": [
    "cat data_01.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
200
    "The numbers in each column name typically represent: \n",
201
202
203
204
205
    "\n",
    "1. The variable ID\n",
    "2. The visit, for variables which were collected at multiple points in time.\n",
    "3. The \"instance\", for multi-valued variables.\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
206
207
208
    "Note that one **variable** is typically associated with several **columns**, although we're keeping things simple for this first example - there is only one visit for each variable, and there are no mulit-valued variables.\n",
    "\n",
    "> _Most but not all_ variables in the UK BioBank contain data collected at different visits, the times that the participants visited a UK BioBank assessment centre. However there are some variables (e.g. [ICD10 diagnosis codes](https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202)) for which this is not the case."
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Import examples\n",
    "\n",
    "## Selecting variables (columns)\n",
    "\n",
    "You can specify which variables you want to load in the following ways, using the `--variable` (`-v` for short) and `--category` (`-c` for short) command line options:\n",
    "\n",
    " * By variable ID\n",
    " * By variable ranges\n",
    " * By a text file which contains the IDs you want to keep.\n",
    " * By pre-defined variable categories\n",
Paul McCarthy's avatar
Paul McCarthy committed
225
    " * By column name\n",
226
227
228
229
230
231
232
233
    " \n",
    "### Selecting individual variables\n",
    "\n",
    "Simply provide the IDs of the variables you want to extract:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
234
   "execution_count": 3,
235
236
237
238
239
240
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
241
      "eid\t1-0.0\t5-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
242
243
244
245
246
247
248
249
250
251
      "1\t31\t84.0\n",
      "2\t56\t89.0\n",
      "3\t45\t93.0\n",
      "4\t7\t80.0\n",
      "5\t8\t80.0\n",
      "6\t6\t7.0\n",
      "7\t24\t92.0\n",
      "8\t80\t92.0\n",
      "9\t84\t16.0\n",
      "10\t23\t8.0\n"
252
253
254
255
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
256
    "funpack -q -ow -v 1 -v 5 out.tsv data_01.tsv\n",
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting variable ranges\n",
    "\n",
    "The `--variable`/`-v` option accepts MATLAB-style ranges of the form `start:step:stop` (where the `stop` is inclusive):"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
271
   "execution_count": 4,
272
273
274
275
276
277
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
278
      "eid\t1-0.0\t4-0.0\t7-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
279
280
281
282
283
284
285
286
287
288
      "1\t31\t11.0\t56\t12\n",
      "2\t56\t42.0\t3\t67\n",
      "3\t45\t84.0\t96\t59\n",
      "4\t7\t48.0\t18\t27\n",
      "5\t8\t68.0\t11\t10\n",
      "6\t6\t59.0\t14\t80\n",
      "7\t24\t46.0\t39\t63\n",
      "8\t80\t30.0\t98\t23\n",
      "9\t84\t79.0\t95\t62\n",
      "10\t23\t41.0\t97\t23\n"
289
290
291
292
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
293
    "funpack -q -ow -v 1:3:10 out.tsv data_01.tsv\n",
294
295
296
297
298
299
300
301
302
303
304
305
306
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting variables with a file\n",
    "If your variables of interest are listed in a plain-text file, you can simply pass that file:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
307
   "execution_count": 5,
308
309
310
311
312
313
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
314
      "eid\t1-0.0\t6-0.0\t9-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
315
316
317
318
319
320
321
322
323
324
      "1\t31\t22.0\t90\n",
      "2\t56\t35.0\t50\n",
      "3\t45\t36.0\t48\n",
      "4\t7\t20.0\t37\n",
      "5\t8\t84.0\t69\n",
      "6\t6\t46.0\t73\n",
      "7\t24\t23.0\t7\n",
      "8\t80\t83.0\t6\n",
      "9\t84\t12.0\t2\n",
      "10\t23\t20.0\t59\n"
325
326
327
328
329
     ]
    }
   ],
   "source": [
    "echo -e \"1\\n6\\n9\" > vars.txt\n",
Paul McCarthy's avatar
Paul McCarthy committed
330
    "funpack -q -ow -v vars.txt out.tsv data_01.tsv\n",
331
332
333
334
335
336
337
338
339
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting variables from pre-defined categories\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
340
    "Some UK BioBank-specific categories are baked into `funpack`, but you can also define your own categories - you just need to create a `.tsv` file, and pass it to `funpack` via the `--category_file` (`-cf` for short):"
341
342
343
344
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
345
   "execution_count": 6,
346
   "metadata": {},
Paul McCarthy's avatar
Paul McCarthy committed
347
348
349
350
351
352
353
354
355
356
357
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ID\tCategory\tVariables\n",
      "1\tCool variables\t1:5,7\n",
      "2\tUncool variables\t6,8:10\n"
     ]
    }
   ],
358
359
360
   "source": [
    "echo -e \"ID\\tCategory\\tVariables\"      > custom_categories.tsv\n",
    "echo -e \"1\\tCool variables\\t1:5,7\"    >> custom_categories.tsv\n",
Paul McCarthy's avatar
Paul McCarthy committed
361
362
    "echo -e \"2\\tUncool variables\\t6,8:10\" >> custom_categories.tsv\n",
    "cat custom_categories.tsv"
363
364
365
366
367
368
369
370
371
372
373
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use the `--category` (`-c` for short) to select categories to output. You can refer to categories by their ID:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
374
   "execution_count": 7,
375
376
377
378
379
380
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
381
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t7-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
382
383
384
385
386
387
388
389
390
391
      "1\t31\t65\t10.0\t11.0\t84.0\t56\n",
      "2\t56\t52\t52.0\t42.0\t89.0\t3\n",
      "3\t45\t84\t20.0\t84.0\t93.0\t96\n",
      "4\t7\t46\t37.0\t48.0\t80.0\t18\n",
      "5\t8\t86\t51.0\t68.0\t80.0\t11\n",
      "6\t6\t29\t85.0\t59.0\t7.0\t14\n",
      "7\t24\t49\t41.0\t46.0\t92.0\t39\n",
      "8\t80\t92\t97.0\t30.0\t92.0\t98\n",
      "9\t84\t59\t89.0\t79.0\t16.0\t95\n",
      "10\t23\t96\t67.0\t41.0\t8.0\t97\n"
392
393
394
395
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
396
    "funpack -q -ow -cf custom_categories.tsv -c 1 out.tsv data_01.tsv\n",
397
398
399
400
401
402
403
404
405
406
407
408
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or by name:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
409
   "execution_count": 8,
410
411
412
413
414
415
416
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t6-0.0\t8-0.0\t9-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
417
418
419
420
421
422
423
424
425
426
      "1\t22.0\t65\t90\t12\n",
      "2\t35.0\t65\t50\t67\n",
      "3\t36.0\t62\t48\t59\n",
      "4\t20.0\t72\t37\t27\n",
      "5\t84.0\t28\t69\t10\n",
      "6\t46.0\t60\t73\t80\n",
      "7\t23.0\t68\t7\t63\n",
      "8\t83.0\t36\t6\t23\n",
      "9\t12.0\t73\t2\t62\n",
      "10\t20.0\t57\t59\t23\n"
427
428
429
430
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
431
    "funpack -q -ow -cf custom_categories.tsv -c uncool out.tsv data_01.tsv\n",
432
433
434
    "cat out.tsv"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
435
436
437
438
439
440
441
442
443
444
445
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting column names\n",
    "\n",
    "If you are working with data that has non-UK BioBank style column names, you can use the `--column` (`-co` for short) to select individual columns by their name, rather than the variable with which they are associated. The `--column` option accepts full column names, and also shell-style wildcard patterns:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
446
   "execution_count": 9,
Paul McCarthy's avatar
Paul McCarthy committed
447
448
449
450
451
452
453
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t4-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
454
455
456
457
458
459
460
461
462
463
      "1\t11.0\t12\n",
      "2\t42.0\t67\n",
      "3\t84.0\t59\n",
      "4\t48.0\t27\n",
      "5\t68.0\t10\n",
      "6\t59.0\t80\n",
      "7\t46.0\t63\n",
      "8\t30.0\t23\n",
      "9\t79.0\t62\n",
      "10\t41.0\t23\n"
Paul McCarthy's avatar
Paul McCarthy committed
464
465
466
467
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
468
    "funpack -q -ow -co 4-0.0 -co \"??-0.0\" out.tsv data_01.tsv\n",
Paul McCarthy's avatar
Paul McCarthy committed
469
470
471
    "cat out.tsv"
   ]
  },
472
473
474
475
476
477
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Selecting subjects (rows)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
478
    "`funpack` assumes that the first column in every input file is a subject ID. You can specify which subjects you want to load via the `--subject` (`-s` for short) option. You can specify subjects in the same way that you specified variables above, and also:\n",
479
480
481
482
483
484
485
486
487
    "\n",
    " * By specifying a conditional expression on variable values - only subjects for which the expression evaluates to true will be imported\n",
    " * By specifying subjects to exclude\n",
    " \n",
    "### Selecting individual subjects"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
488
   "execution_count": 10,
489
490
491
492
493
494
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
495
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\t7-0.0\t8-0.0\t9-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
496
497
498
      "1\t31\t65\t10.0\t11.0\t84.0\t22.0\t56\t65\t90\t12\n",
      "3\t45\t84\t20.0\t84.0\t93.0\t36.0\t96\t62\t48\t59\n",
      "5\t8\t86\t51.0\t68.0\t80.0\t84.0\t11\t28\t69\t10\n"
499
500
501
502
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
503
    "funpack -q -ow -s 1 -s 3 -s 5 out.tsv data_01.tsv\n",
504
505
506
507
508
509
510
511
512
513
514
515
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting subject ranges"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
516
   "execution_count": 11,
517
518
519
520
521
522
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
523
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\t7-0.0\t8-0.0\t9-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
524
525
526
527
528
      "2\t56\t52\t52.0\t42.0\t89.0\t35.0\t3\t65\t50\t67\n",
      "4\t7\t46\t37.0\t48.0\t80.0\t20.0\t18\t72\t37\t27\n",
      "6\t6\t29\t85.0\t59.0\t7.0\t46.0\t14\t60\t73\t80\n",
      "8\t80\t92\t97.0\t30.0\t92.0\t83.0\t98\t36\t6\t23\n",
      "10\t23\t96\t67.0\t41.0\t8.0\t20.0\t97\t57\t59\t23\n"
529
530
531
532
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
533
    "funpack -q -ow -s 2:2:10 out.tsv data_01.tsv\n",
534
535
536
537
538
539
540
541
542
543
544
545
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting subjects from a file"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
546
   "execution_count": 12,
547
548
549
550
551
552
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
553
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\t7-0.0\t8-0.0\t9-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
554
555
556
557
558
559
      "5\t8\t86\t51.0\t68.0\t80.0\t84.0\t11\t28\t69\t10\n",
      "6\t6\t29\t85.0\t59.0\t7.0\t46.0\t14\t60\t73\t80\n",
      "7\t24\t49\t41.0\t46.0\t92.0\t23.0\t39\t68\t7\t63\n",
      "8\t80\t92\t97.0\t30.0\t92.0\t83.0\t98\t36\t6\t23\n",
      "9\t84\t59\t89.0\t79.0\t16.0\t12.0\t95\t73\t2\t62\n",
      "10\t23\t96\t67.0\t41.0\t8.0\t20.0\t97\t57\t59\t23\n"
560
561
562
563
564
     ]
    }
   ],
   "source": [
    "echo -e \"5\\n6\\n7\\n8\\n9\\n10\" > subjects.txt\n",
Paul McCarthy's avatar
Paul McCarthy committed
565
    "funpack -q -ow -s subjects.txt out.tsv data_01.tsv\n",
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selecting subjects by variable value\n",
    "\n",
    "The `--subject` option accepts *variable expressions* - you can write an expression performing numerical comparisons on variables (denoted with a leading `v`) and combine these expressions using boolean algebra. Only subjects for which the expression evaluates to true will be imported. For example, to only import subjects where variable 1 is greater than 10, and variable 2 is less than 70, you can type:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
580
   "execution_count": 13,
581
582
583
584
585
586
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
587
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\t7-0.0\t8-0.0\t9-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
588
589
590
591
      "1\t31\t65\t10.0\t11.0\t84.0\t22.0\t56\t65\t90\t12\n",
      "2\t56\t52\t52.0\t42.0\t89.0\t35.0\t3\t65\t50\t67\n",
      "7\t24\t49\t41.0\t46.0\t92.0\t23.0\t39\t68\t7\t63\n",
      "9\t84\t59\t89.0\t79.0\t16.0\t12.0\t95\t73\t2\t62\n"
592
593
594
595
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
596
    "funpack -q -ow -sp -s \"v1 > 10 && v2 < 70\" out.tsv data_01.tsv\n",
597
598
599
600
601
602
603
604
605
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The following symbols can be used in variable expressions:\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
606
607
608
609
610
611
612
613
614
615
616
617
    "| Symbol                    | Meaning                         |\n",
    "|---------------------------|---------------------------------|\n",
    "| `==`                      | equal to                        |\n",
    "| `!=`                      | not equal to                    |\n",
    "| `>`                       | greater than                    |\n",
    "| `>=`                      | greater than or equal to        |\n",
    "| `<`                       | less than                       |\n",
    "| `<=`                      | less than or equal to           |\n",
    "| `na`                      | N/A                             |\n",
    "| `&&`                      | logical and                     |\n",
    "| <code>&#x7c;&#x7c;</code> | logical or                      |\n",
    "| `~`                       | logical not                     |\n",
618
    "| `contains`                | Contains sub-string             |\n",
Paul McCarthy's avatar
Paul McCarthy committed
619
620
621
622
    "| `all`                     | all columns must meet condition |\n",
    "| `any`                     | any column must meet condition  |\n",
    "| `()`                      | to denote precedence            |\n",
    "\n",
623
624
    "Non-numeric (i.e. string) variables can be used in these expressions in conjunction with the `==`, `!=`, and `contains` operators. An example of such an expression is given in the section on [non-numeric data](#Non-numeric-data), below.\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
625
    "The `all` and `any` symbols allow you to control how an expression is evaluated across multiple columns which are associated with one variable (e.g. separate columns for each visit). We will give an example of this in the section on [selecting visits](#Selecting-visits), below.\n",
626
627
628
629
630
631
632
633
    "\n",
    "### Excluding subjects\n",
    "\n",
    "The `--exclude` (`-ex` for short) option allows you to exclude subjects - it accepts individual IDs, an ID range, or a file containing IDs. The `--exclude`/`-ex` option takes precedence over the `--subject`/`-s` option:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
634
   "execution_count": 14,
635
636
637
638
639
640
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
641
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\t7-0.0\t8-0.0\t9-0.0\t10-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
642
643
644
645
      "1\t31\t65\t10.0\t11.0\t84.0\t22.0\t56\t65\t90\t12\n",
      "2\t56\t52\t52.0\t42.0\t89.0\t35.0\t3\t65\t50\t67\n",
      "3\t45\t84\t20.0\t84.0\t93.0\t36.0\t96\t62\t48\t59\n",
      "4\t7\t46\t37.0\t48.0\t80.0\t20.0\t18\t72\t37\t27\n"
646
647
648
649
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
650
    "funpack -q -ow -s 1:8 -ex 5:10 out.tsv data_01.tsv\n",
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Selecting visits"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
665
    "Many variables in the UK BioBank data contain observations at multiple points in time, or visits. `funpack` allows you to specify which visits you are interested in. Here is an example data set with variables that have data for multiple visits (remember that the second number in the column names denotes the visit):"
666
667
668
669
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
670
   "execution_count": 15,
671
672
673
674
675
676
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
677
      "eid\t1-0.0\t2-0.0\t2-1.0\t2-2.0\t3-0.0\t3-1.0\t4-0.0\t5-0.0\n",
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
      "1\t86\t76\t82\t75\t34\t99\t50\t5\n",
      "2\t20\t25\t40\t44\t30\t57\t54\t44\n",
      "3\t85\t2\t48\t42\t23\t77\t84\t27\n",
      "4\t23\t30\t18\t97\t44\t55\t97\t20\n",
      "5\t83\t45\t76\t51\t18\t64\t8\t33\n"
     ]
    }
   ],
   "source": [
    "cat data_02.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use the `--visit` (`-vi` for short) option to get just the last visit for each variable:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
699
   "execution_count": 16,
700
701
702
703
704
705
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
706
      "eid\t1-0.0\t2-2.0\t3-1.0\t4-0.0\t5-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
707
708
709
710
711
      "1\t86\t75\t99.0\t50.0\t5.0\n",
      "2\t20\t44\t57.0\t54.0\t44.0\n",
      "3\t85\t42\t77.0\t84.0\t27.0\n",
      "4\t23\t97\t55.0\t97.0\t20.0\n",
      "5\t83\t51\t64.0\t8.0\t33.0\n"
712
713
714
715
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
716
    "funpack -q -ow -vi last out.tsv data_02.tsv\n",
717
718
719
720
721
722
723
724
725
726
727
728
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also specify which visit you want by its number:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
729
   "execution_count": 17,
730
731
732
733
734
735
736
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t2-1.0\t3-1.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
737
738
739
740
741
      "1\t82\t99.0\n",
      "2\t40\t57.0\n",
      "3\t48\t77.0\n",
      "4\t18\t55.0\n",
      "5\t76\t64.0\n"
742
743
744
745
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
746
    "funpack -q -ow -vi 1 out.tsv data_02.tsv\n",
747
748
749
    "cat out.tsv"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
750
751
752
753
754
755
756
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> Variables which are not associated with specific visits (e.g. [ICD10 diagnosis codes](https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202)) will not be affected by the `-vi` option."
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Evaluating expressions across visits\n",
    "\n",
    "The variable expressions described above in the section on [selecting subjects](#Selecting-subjects-by-variable-value) will be applied to all of the columns associated with a variable. By default, an expression will evaluate to true where the values in _any_ column asssociated with the variable evaluate to true. For example, we can extract the data for subjects where the values of any column of variable 2 were less than 50: "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t2-0.0\t2-1.0\t2-2.0\n",
      "2\t25\t40\t44\n",
      "3\t2\t48\t42\n",
      "4\t30\t18\t97\n",
      "5\t45\t76\t51\n"
     ]
    }
   ],
   "source": [
    "funpack -q -ow -v 2 -s 'v2 < 50' out.tsv data_02.tsv\n",
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use the `any` and `all` operators to control how an expression is evaluated across the columns of a variable. For example, we may only be interested in subjects for whom all columns of variable 2 were greater than 50:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t2-0.0\t2-1.0\t2-2.0\n",
      "2\t25\t40\t44\n",
      "3\t2\t48\t42\n"
     ]
    }
   ],
   "source": [
    "funpack -q -ow -v 2 -s 'all(v2 < 50)' out.tsv data_02.tsv\n",
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use `any` and `all` in expressions involving multiple variables:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t2-0.0\t2-1.0\t2-2.0\t3-0.0\t3-1.0\n",
      "4\t30\t18\t97\t44.0\t55.0\n"
     ]
    }
   ],
   "source": [
    "funpack -q -ow -v 2,3 -s 'any(v2 < 50) && all(v3 >= 40)' out.tsv data_02.tsv\n",
    "cat out.tsv"
   ]
  },
841
842
843
844
845
846
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Merging multiple input files\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
847
    "If your data is split across multiple files, you can specify how `funpack` should merge them together. \n",
848
849
850
851
852
853
854
855
    "\n",
    "### Merging by subject\n",
    "\n",
    "For example, let's say we have these two input files (shown side-by-side):"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
856
   "execution_count": 18,
857
858
859
860
861
862
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
863
      "eid\t1-0.0\t2-0.0\t3-0.0\t \teid\t4-0.0\t5-0.0\t6-0.0\n",
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
      "1\t89\t47\t26\t\t2\t19\t17\t62\n",
      "2\t94\t37\t70\t\t3\t41\t12\t7\n",
      "3\t63\t5\t97\t\t4\t8\t86\t9\n",
      "4\t98\t97\t91\t\t5\t7\t65\t71\n",
      "5\t37\t10\t11\t\t6\t3\t23\t15\n"
     ]
    }
   ],
   "source": [
    "echo \" \" | paste data_03.tsv - data_04.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
880
    "Note that each file contains different variables, and different, but overlapping, subjects. By default, when you pass these files to `funpack`, it will output the intersection of the two files (more formally known as an *inner join*), i.e. subjects which are present in both files:"
881
882
883
884
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
885
   "execution_count": 19,
886
887
888
889
890
891
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
892
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
893
894
895
896
      "2\t94\t37\t70.0\t19.0\t17.0\t62.0\n",
      "3\t63\t5\t97.0\t41.0\t12.0\t7.0\n",
      "4\t98\t97\t91.0\t8.0\t86.0\t9.0\n",
      "5\t37\t10\t11.0\t7.0\t65.0\t71.0\n"
897
898
899
900
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
901
    "funpack -q -ow out.tsv data_03.tsv data_04.tsv\n",
902
903
904
905
906
907
908
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
909
    "If you want to keep all subjects, you can instruct `funpack` to output the union (a.k.a. *outer join*) via the `--merge_strategy` (`-ms` for short) option:"
910
911
912
913
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
914
   "execution_count": 20,
915
916
917
918
919
920
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
921
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\n",
922
923
924
925
926
927
928
929
930
931
      "1\t89.0\t47.0\t26.0\t\t\t\n",
      "2\t94.0\t37.0\t70.0\t19.0\t17.0\t62.0\n",
      "3\t63.0\t5.0\t97.0\t41.0\t12.0\t7.0\n",
      "4\t98.0\t97.0\t91.0\t8.0\t86.0\t9.0\n",
      "5\t37.0\t10.0\t11.0\t7.0\t65.0\t71.0\n",
      "6\t\t\t\t3.0\t23.0\t15.0\n"
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
932
    "funpack -q -ow -ms outer out.tsv data_03.tsv data_04.tsv\n",
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Merging by column\n",
    "\n",
    "Your data may be organised in a different way. For example, these next two files contain different groups of subjects, but overlapping columns:"
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
947
   "execution_count": 21,
948
949
950
951
952
953
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
954
      "eid\t1-0.0\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t \teid\t2-0.0\t3-0.0\t4-0.0\t5-0.0\t6-0.0\n",
955
956
957
958
959
960
961
962
963
964
965
966
967
968
      "1\t69\t80\t70\t60\t42\t\t4\t17\t36\t56\t90\t12\n",
      "2\t64\t15\t82\t99\t67\t\t5\t63\t16\t87\t57\t63\n",
      "3\t33\t67\t58\t96\t26\t\t6\t43\t19\t84\t53\t63\n"
     ]
    }
   ],
   "source": [
    "echo \" \" | paste data_05.tsv - data_06.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
969
    "In this case, we need to tell `funpack` to merge along the row axis, rather than along the column axis. We can do this with the `--merge_axis` (`-ma` for short) option:"
970
971
972
973
   ]
  },
  {
   "cell_type": "code",
Paul McCarthy's avatar
Paul McCarthy committed
974
   "execution_count": 22,
975
976
977
978
979
980
981
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "eid\t2-0.0\t3-0.0\t4-0.0\t5-0.0\n",
Paul McCarthy's avatar
Paul McCarthy committed
982
983
984
985
986
987
      "1\t80\t70.0\t60.0\t42.0\n",
      "2\t15\t82.0\t99.0\t67.0\n",
      "3\t67\t58.0\t96.0\t26.0\n",
      "4\t17\t36.0\t56.0\t90.0\n",
      "5\t63\t16.0\t87.0\t57.0\n",
      "6\t43\t19.0\t84.0\t53.0\n"
988
989
990
991
     ]
    }
   ],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
992
    "funpack -q -ow -ma rows out.tsv data_05.tsv data_06.tsv\n",
993
994
995
996
997
998
999
    "cat out.tsv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1000
    "Again, if we want to retain all columns, we can tell `funpack` to perform an outer join with the `-ms` option:"
For faster browsing, not all history is shown. View entire blame