diff --git a/nonlin.cpp b/nonlin.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..5047a362ae6bb09fa6a3ff544ed06c75bd1d2d18
--- /dev/null
+++ b/nonlin.cpp
@@ -0,0 +1,982 @@
+// Definitions for module nonlin
+
+#include <iostream>
+#include <fstream>
+#include <iomanip>
+#include <string>
+#include <vector>
+#include <cmath>
+#include "newmat.h"
+#include "newmatio.h"
+#include "bfmatrix.h"
+#include "nonlin.h"
+
+using namespace std;
+using namespace NEWMAT;
+
+namespace MISCMATHS {
+
+// Declarations of routines for use only in this module
+
+// Main routine for Variable-Metric optimisation
+
+NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo);
+
+// Main routine for Conjugate-Gradient optimisation
+
+NonlinOut congra(const NonlinParam& p, const NonlinCF& cfo);
+
+// Main routine for scaled conjugate-gradient optimisation
+
+NonlinOut sccngr(const NonlinParam& p, const NonlinCF& cfo);
+
+// Main routine for Levenberg-Marquardt optimisation
+
+NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo);
+
+LinOut linsrch(// Input
+               const ColumnVector&  pdir,    // Search direction
+               const ColumnVector&  p0,      // Current parameter values
+               const ColumnVector&  grad,    // Gradient at p0
+               const NonlinCF&      cfo,     // Cost-function object
+               double               f0,      // Current cost-function value
+               double               sf,      // Scale factor for cost-function
+               double               maxiter, // Max # of iterations in line minimisation
+               double               sm,      // Stepmax
+               double               alpha,   // Alpha (sorry).
+               double               ptol,    // Tolerance in parameter space
+               // Output
+               double               *lambda,// Resulting step length
+               double               *of,    // Value of cost-function on output
+               ColumnVector         *np);   // New parameters
+
+double scale_factor(const ColumnVector&  p,       // Current parameter values
+                    const ColumnVector&  pdir,    // Search direction
+                    const NonlinCF&      cfo,     // Cost-function object
+                    int                  maxiter, // Max # of iterations
+                    double               sf);     // Scale factor.
+
+LinOut linmin(// Input
+              const ColumnVector&   p,      // Current parameter values
+              const ColumnVector&   pdir,   // Search direction
+              const NonlinCF&       cfo,    // Cost-function object
+              double                sf,     // Scale factor for cost-function
+              pair<double,double>   lp,     // Left point
+              pair<double,double>   mp,     // Point somewhere in interval
+              pair<double,double>   rp,     // Right point
+              double                ftol,   // Fractional tolerance
+              int                   maxiter,// Max # of iterations
+              // Output
+              pair<double,double>   *x);    // Best point
+
+pair<double,double> bracket(// Input 
+                            const ColumnVector& p,      // Current parameter values
+                            const ColumnVector& pdir,   // Search direction
+                            const NonlinCF&     cfo,    // Cost-function object
+                            double              ptol,   // Relative tolerance for parameter values
+                            double              sf,     // Scale factor of cost-function
+                            // Output
+                            pair<double,double> *p_0,   // Cost-function value at p
+                            pair<double,double> *p_m);  // Point between p_0 and p_l
+
+// Utility routine that checks for convergence based on "zero"-gradient
+
+// Utility routines that checks for convergence based on various criteria
+// Based on zero (neglible) gradient
+bool zero_grad_conv(const ColumnVector&   par,
+                    const ColumnVector&   grad,
+                    double                cf,
+                    double                gtol);
+// Based on zero (neglible) decrease in cost-function
+bool zero_cf_diff_conv(double cfo,
+                       double cfn,
+                       double cftol);
+// Based on zero (neglible) step in parameter space
+bool zero_par_step_conv(const ColumnVector&   par,
+                        const ColumnVector&   step,
+                        double                ptol);
+
+void print_newmat(const NEWMAT::GeneralMatrix&  m,
+                  std::string                   fname);
+
+
+// If user choses not to overide the grad-method of the NonlinCF
+// base class this routine will be used to calculate numerical derivatives.
+
+ReturnMatrix NonlinCF::grad(const ColumnVector& p) const
+{
+  ColumnVector gradv(p.Nrows());
+  ColumnVector tmpp = p;
+  double tiny = 1e-8;
+  double cf0 = cf(tmpp);
+  for (int i=0; i<p.Nrows(); i++) {
+    double step = tiny * max(tmpp.element(i),1.0);
+    tmpp.element(i) += step;
+    gradv.element(i) = (cf(tmpp) - cf0) / step;
+    tmpp.element(i) -= step;
+  }
+  gradv.Release();
+  return(gradv);    
+}
+
+// If user choses not to overide the hess-method of the NonlinCF
+// base class this routine will calculate numerical 2nd derivatives.
+// Note also that the hessian will only be used for the Levenberg-
+// Marquardt minimisation.
+// It is in general _not_ a good idea to use a method that explicitly
+// uses the Hessian (i.e. LM) when calculating it numerically.
+// Note that it returns a (safe) pointer to BFMatrix. BFMatrix has two
+// subclasses FullBFMatrix, and SparseBFMatrix which can be used 
+// used interchangeably depending on if the structure of the Hessian
+// renders it sparse or not.
+
+boost::shared_ptr<BFMatrix> NonlinCF::hess(const ColumnVector&         p,
+                                           boost::shared_ptr<BFMatrix> iptr) const
+{
+  boost::shared_ptr<BFMatrix>    hessm;
+  if (iptr && int(iptr->Nrows())==p.Nrows() && int(iptr->Ncols())==p.Nrows()) hessm = iptr;
+  else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));
+  ColumnVector tmpp = p;
+  double tiny = 1e-4;
+  double fx0y0 = cf(tmpp);
+  ColumnVector fdx(p.Nrows());
+  ColumnVector step(p.Nrows());
+
+  // First calculate all f(x+dx_i) values
+
+  for (int i=0; i<p.Nrows(); i++) {         
+    step.element(i) = tiny * max(tmpp.element(i),1.0);
+    tmpp.element(i) += step.element(i);
+    fdx.element(i) = cf(tmpp);
+    tmpp.element(i) -= step.element(i);
+  }
+  
+  // Then values of matrix
+
+  for (int i=0; i<p.Nrows(); i++) {
+    for (int j=i; j<p.Nrows(); j++) {
+      if (i==j) {   // If diagonal element
+        tmpp.element(i) -= step.element(i);
+        double tmp = cf(tmpp);
+        hessm->Set(i+1,i+1,(fdx.element(i) + tmp - 2.0*fx0y0) / (step.element(i)*step.element(i)));
+        tmpp.element(i) += step.element(i);
+      }
+      else {        // If off-diagonal element
+        tmpp.element(i) += step.element(i);
+        tmpp.element(j) += step.element(j);
+        hessm->Set(i+1,j+1,(cf(tmpp)+fx0y0-fdx.element(i)-fdx.element(j)) / (step.element(i)*step.element(j)));
+        hessm->Set(j+1,i+1,hessm->Peek(i+1,j+1));
+        tmpp.element(i) -= step.element(i);
+        tmpp.element(j) -= step.element(j);
+      }
+    }
+  }
+
+  return(hessm);
+}
+
+// Display (for debug purposes) matrix if it is small enough for that to make sense
+
+void VarmetMatrix::print() const
+{
+  if (sz > 10) {
+    cout << "Matrix too big to be meaningful to display" << endl;
+    return;
+  }
+  else {
+    if (mtp == VM_FULL) {
+      cout << setw(10) << setprecision(5) << mat;
+    }
+    else if (mtp == VM_COL) {
+      Matrix  tmp = IdentityMatrix(sz);
+      for (unsigned int i=0; i<sf.size(); i++) {
+        tmp += sf[i] * vec[i]*(vec[i]).t();
+      }
+      cout << setw(10) << setprecision(5) << tmp;
+    }
+  }
+  return;
+}
+
+// Update estimate of inverse Hessian based on latest step
+
+void VarmetMatrix::update(const NEWMAT::ColumnVector& pdiff,  // x_{i+1} - x_i
+                          const NEWMAT::ColumnVector& gdiff)  // \nabla f_{i+1} - \nabla f_i
+{
+  // Sort out if this call defines size of problem
+  if (pdiff.Nrows() != sz || gdiff.Nrows() != sz) {
+    if (sf.size() == 0 && pdiff.Nrows()==gdiff.Nrows()) {
+      sz = pdiff.Nrows();
+      if (mtp == VM_OPT) {
+        if (sz < 100) {mtp = VM_FULL;}
+        else {mtp = VM_COL;}
+      }
+    }
+    else {throw NonlinException("VarmetMatrix::update: mismatch between vector and matrix sizes");}
+  }
+  // Now do the actual update
+  double sf1 = DotProduct(pdiff,gdiff);
+  if ((sf1*sf1) > MISCMATHS::EPS*DotProduct(pdiff,pdiff)*DotProduct(gdiff,gdiff)) {
+    sf1 = 1.0 / sf1;
+    ColumnVector v2 = (*this) * gdiff;
+    double sf2 = -1.0 / DotProduct(gdiff,v2);
+    if (mtp == VM_FULL) {
+      mat += sf1 * pdiff * pdiff.t();
+      mat += sf2 * v2 * v2.t();
+    }
+    else {
+      vec.push_back(pdiff);
+      vec.push_back(v2);
+      sf.push_back(sf1);
+      sf.push_back(sf2);
+    }
+    if (utp == VM_BFGS) {
+      if (mtp == VM_FULL) {
+        ColumnVector u = sf1*pdiff + sf2*v2;
+        mat -= (1.0/sf2) * u * u.t();
+      }
+      else {
+        vec.push_back(sf1*pdiff + sf2*v2);
+        sf.push_back(-1.0/sf2);
+      }
+    }
+  }
+}
+
+// Multiply representation of matrix with vector
+
+ColumnVector operator*(const VarmetMatrix& m, const ColumnVector& v)
+{
+  if (m.mtp == VM_FULL) {return(m.mat*v);}
+  else {
+    ColumnVector ov = v; // Multiplication with unity matrix
+    if (m.sf.size() != 0) {
+      std::vector<double>::const_iterator                sfp;
+      std::vector<NEWMAT::ColumnVector>::const_iterator  vep;
+      for (sfp=m.sf.begin(), vep=m.vec.begin(); sfp!=m.sf.end(); ++sfp, ++vep) {
+        double tmp = (*sfp) * DotProduct((*vep),v);
+        ov += tmp * (*vep);
+      }
+    }
+    return(ov);
+  }
+}
+
+// Gateway function to routines for non-linear optimisation
+
+NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo)
+{
+  NonlinOut status = NL_MAXITER;
+
+  // Call functions that actually do the job
+
+  switch (p.Method()) {
+  case NL_VM:
+    status = varmet(p,cfo);
+    break;
+  case NL_CG:
+    status = congra(p,cfo);
+    break;
+  case NL_SCG:
+    status = sccngr(p,cfo);
+    break;
+  case NL_LM:
+    status = levmar(p,cfo);
+    break;
+  }
+
+  return(status);
+}
+
+// Main routine for Levenberg-Marquardt optimisation
+
+NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo)
+{
+  // Calculate initial values
+  p.SetCF(cfo.cf(p.Par()));                                   // Cost-function evaluated at current parameters
+  ColumnVector g = cfo.grad(p.Par());                         // Gradient evaluated at current parameters
+  boost::shared_ptr<BFMatrix> H = cfo.hess(p.Par());          // Hessian evaluated at current parameters
+
+  double olambda = 0.0;
+  bool   success = true;                                      // True if last step decreased CF
+
+  while (p.NextIter(success)) {
+    for (int i=1; i<=p.NPar(); i++) { // Nudge diagonal of H
+      if (p.GaussNewtonType() == LM_LM) {
+        H->AddTo(i,i,(p.Lambda()-olambda)*H->Peek(i,i));
+      }
+      else if (p.GaussNewtonType() == LM_L) {
+        H->AddTo(i,i,p.Lambda()-olambda);
+      }
+    }     
+    ColumnVector step = -H->SolveForx(g,SYM_POSDEF,p.EquationSolverTol(),p.EquationSolverMaxIter());
+    double ncf = cfo.cf(p.Par()+step);
+    if (success = (ncf < p.CF())) {                  // If last step successful
+      olambda = 0.0;                     // New H, so no need to undo old lambda
+      p.SetLambda(p.Lambda()/10.0);
+      p.SetPar(p.Par()+step);
+      // Check for convergence based on small decrease of cf
+      if (zero_cf_diff_conv(p.CF(),ncf,p.FractionalCFTolerance())) {
+	p.SetCF(ncf); p.SetStatus(NL_CFCONV); return(p.Status()); 
+      }
+      p.SetCF(ncf);
+      g = cfo.grad(p.Par());
+      H = cfo.hess(p.Par(),H);
+    }
+    else {                               // If last step was unsuccesful
+      olambda = p.Lambda();              // Returning to same H, so must undo old lambda
+      p.SetLambda(10.0*p.Lambda());
+      p.SetCF(p.CF());                   // Push another copy
+      // Check for convergence based on _really_ large lambda
+      if (p.Lambda() > p.LambdaConvergenceCriterion()) {
+        p.SetStatus(NL_LCONV); return(p.Status());
+      }
+    }
+  }
+  // This means we did too many iterations
+  p.SetStatus(NL_MAXITER);
+
+  return(p.Status());
+}
+
+// Main routine for conjugate-gradient optimisation. The 
+// implementation follows that of Numerical Recipies 
+// reasonably closely.
+
+NonlinOut congra(const NonlinParam& np, const NonlinCF& cfo)
+{
+  // Set up initial values
+  np.SetCF(cfo.cf(np.Par()));
+  ColumnVector r = -cfo.grad(np.Par());
+  ColumnVector p = r;
+
+  while (np.NextIter()) {
+    // Check for convergence based on zero gradient
+    if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {
+      np.SetStatus(NL_GRADCONV); return(np.Status());
+    }  
+    // Bracket minimum along p
+    pair<double,double> lp, mp;                                                                      // Leftmost and middle point of bracket
+    pair<double,double> rp = bracket(np.Par(),p,cfo,np.FractionalParameterTolerance(),1.0,&lp,&mp);  // Rightmost point of bracket
+    if (rp == lp) {                                                                                  // If no smaller point along p
+      np.SetStatus(NL_PARCONV); return(np.Status());                                                 // Assume it is because we are at minimum
+    }
+    // Find minimum along p between lp and rp
+    pair<double,double> minp;                               // Minimum along p
+    LinOut lm_status = linmin(np.Par(),p,cfo,1.0,lp,mp,rp,
+                              np.LineSearchFractionalParameterTolerance(),
+                              np.LineSearchMaxIterations(),&minp);
+    // Check for problems with line-search
+    if (lm_status == LM_MAXITER) {np.SetStatus(NL_LM_MAXITER); return(np.Status());} // Ouch!
+    // Set new cf value and parameters
+    np.SetPar(np.Par() + minp.first*p);
+    np.SetCF(minp.second);  
+    // Check for convergence based on small decrease of cost-function
+    if (zero_cf_diff_conv(np.CF(),minp.second,np.FractionalCFTolerance())) {np.SetStatus(NL_CFCONV); return(np.Status());}
+    // Check for convergence based on neglible move in parameter space
+    else if (zero_par_step_conv(minp.first*p,np.Par(),np.FractionalParameterTolerance())) {np.SetStatus(NL_PARCONV); return(np.Status());}
+    else {  // If no covergence
+      if (((np.NIter())%np.NPar()) == 0) {                          // Explicitly reset directions after npar iterations
+        r = -cfo.grad(np.Par());
+        p = r;
+      }
+      else {
+        ColumnVector oldr = r;
+        r = -cfo.grad(np.Par());
+        if (np.ConjugateGradientUpdate() == CG_FR) {              // Get conjugate direction Fletcher-Reeves flavour
+          p = r + (DotProduct(r,r)/DotProduct(oldr,oldr)) * p;
+	}
+        else if (np.ConjugateGradientUpdate() == CG_PR) {         // Get conjugate direction Polak-Ribiere flavour
+          p = r + (DotProduct(r-oldr,r)/DotProduct(oldr,oldr)) * p;
+        }
+      }
+    }
+  }
+  // If we get here we have used too many iterations
+  np.SetStatus(NL_MAXITER);
+    
+  return(np.Status());
+}
+
+// Main routine for scaled conjugate-gradient optimisation. The
+// idea of the algorithm is similar to that of Levenberg-
+// Marquardt. In the LM algorithm the search direction is a 
+// "compromise" between the Newton direction and the gradient
+// direction, where the compromise depends on a factor lambda.
+// A large lambda means that it is close to the gradient and a 
+// small lambda that it is close to the Newton direction. The 
+// value of lambda is updated each iteration depending on the
+// success of the last step. In this method the compromise is
+// between the "conjugate gradient" direction and the gradient
+// direction. The variable names follow the (excellent!) paper 
+// by Martin Möller (1993) Neural Networks 6:525-533.
+// I have tried to follow the notation he uses in his paper, thus
+// enabling that to be the "documentation" for the routine below.
+
+NonlinOut sccngr(const NonlinParam& np, const NonlinCF& cfo)
+{
+  // Set up initial values
+  np.SetCF(cfo.cf(np.Par()));           // Current value for cost-function (E in Moller 92).
+  double sigma = 1.0e-2;                // Step-length when estmating H*p from g(w+sigma*p)-g(w)
+  double lambda_bar = 0.0;              // Update for lambda if approximate hessian not positive definite
+  ColumnVector r = -cfo.grad(np.Par()); // Negative gradient
+  ColumnVector p = r;                   // Search direction
+  bool success = true;                  // True if previous step was successful
+  double delta = 0.0;                   // Used to check pos def of H in loop below
+  ColumnVector s(np.NPar());            // Used as approximation to H*p in loop below 
+
+  while (np.NextIter()) {
+    double p2 = DotProduct(p,p);                            // p'*p, Temporary variable to save some time
+    if (success == true) {                                  // If last step led to reduction of cos-function
+      double sigma_k = sigma/sqrt(p2);                      // Normalised step-length when estimating H*p
+      s = (cfo.grad(np.Par()+sigma_k*p) + r) / sigma_k;     // Approximation to H*p
+      delta = DotProduct(p,s);                              // Approximation to p'*H*p
+    }
+    s += (np.Lambda()-lambda_bar)*p;                      // Equivalent to adding (l-lb)*I to H
+    delta += (np.Lambda()-lambda_bar)*p2;                 // If <0 then H+(l-lb)*I not positive definite
+    if (delta <= 0) {                                     // If it H is not positive definite
+      s += (np.Lambda() - 2.0*(delta/p2)) * p;            // Make H more diagonal dominant to ensure pos def
+      lambda_bar = 2.0*(np.Lambda() - delta/p2);
+      delta  = np.Lambda()*p2 - delta;
+      np.SetLambda(lambda_bar);
+    }
+    double mu = DotProduct(p,r);
+    double alpha = mu/delta;                              // Step size in direction p
+    double tmp_cf = cfo.cf(np.Par()+alpha*p);             // Value of cost-function at attempted new point
+
+    char fname[100]; 
+    sprintf(fname,"/Users/jesper/Desktop/gradient_%02d.txt",np.NIter());
+    print_newmat(r,fname);
+    sprintf(fname,"/Users/jesper/Desktop/step_%02d.txt",np.NIter());
+    ColumnVector  step(p); step *= alpha;
+    print_newmat(step,fname);
+    
+    
+    double Delta = 2.0*delta*(np.CF()-tmp_cf) / (mu*mu);  // > 0 means attempted step reduced cost-function
+    if (Delta >= 0) {                                     // If step reduces cost-function
+      np.SetCF(tmp_cf);                                   // Update lowest observed value of cost-function
+      np.SetPar(np.Par() + alpha*p);                      // Update best set of parameters
+      lambda_bar = 0.0;
+      success = true;
+      if ((np.NIter()%np.NPar()) == 0) {                   // If npar iterations since last resetting of directions
+        r = -cfo.grad(np.Par());                          // Reset search direction to negative gradient
+        p = r;
+      }
+      else {
+        ColumnVector oldr = r;
+        r = -cfo.grad(np.Par());
+        double beta = (DotProduct(r,r)-DotProduct(oldr,r)) / mu;
+        p = r + beta*p;                              // New search direction
+      } 
+      if (Delta > 0.75) {                            // If attempted step was \emph{REALLY} good
+	np.SetLambda(np.Lambda()/2.0);
+      }
+    }
+    else {                                           // If step doesn't reduce cost-function
+      lambda_bar = np.Lambda();
+      success = false;
+    }
+    if (Delta < 0.25) {                              // If step reduced cost-function only "a little" (or not at all)
+      np.SetLambda(4.0*np.Lambda());
+    }
+    if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {  // If gradient is (practically) zero
+      np.SetStatus(NL_GRADCONV); return(np.Status());
+    }
+  }
+  // If we get here we have exceeded allowed # of iterations
+  np.SetStatus(NL_MAXITER);
+  return(np.Status());
+}
+ 
+// Main routine for variable-metric optimisation. This implements
+// the variable-metric optimisation with the BFGS or DFP updating
+// schemes. The implementation details are mostly quite close to
+// those described in Numerical Recipies in C.
+
+NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo)
+{
+  // Get scale factor to ensure a relative scale beteween
+  // parameters and cost-function such that fast and robust
+  // convergence is acheieved.
+
+  double sf = cfo.sf();                      // Suggestion by "user"
+  ColumnVector grad = sf*cfo.grad(p.Par());  // Gradient of const-function
+  if (p.VariableMetricAutoScale()) {
+    sf = scale_factor(p.Par(),-grad,cfo,p.LineSearchMaxIterations(),sf);         // Refinement by "me"
+    if (sf == 0.0) {                                                             // No minimum in indicated direction
+      p.SetStatus(NL_PARCONV);                                                   // Assume this means we are already at minimum
+      return(p.Status());
+    }
+    grad = (sf/cfo.sf()) * grad;
+  }
+
+  VarmetMatrix  iH(p.NPar(),VM_OPT,p.VariableMetricUpdate());   // Inverse Hessian
+  p.SetCF(sf*cfo.cf(p.Par()));                                // Current value of cost-function
+  ColumnVector  pdir = -(iH*grad);                            // Direction to search in
+
+  double        lambda = 0.0;     // Step-length returned by linsrch
+  double        newcf = 0.0;      // New value for cost-function
+  ColumnVector  newpar(p.NPar()); // New point in parameter space
+
+  while (p.NextIter()) {
+    // Do a line-search to find a new point in parameter space
+    LinOut status = linsrch(pdir,p.Par(),grad,cfo,p.CF(),sf,p.LineSearchMaxIterations(),
+                            p.LineSearchMaxStep(),p.VariableMetricAlpha(),
+                            p.LineSearchFractionalParameterTolerance(),&lambda,&newcf,&newpar);
+    // Check for convergence/problems based on outcome of linsrch
+    if (status == LM_MAXITER) {p.SetStatus(NL_LM_MAXITER); return(p.Status());}
+    else if (status == LM_LAMBDA_NILL) { // This means we might be heading uphill and should restart
+      if (p.NextRestart()) { // If we have spare restarts
+        p.SetCF(p.CF());      // Another copy of old value
+        iH.reset();           // Back to being unity matrix
+        pdir = -grad;
+        continue;
+      }
+      else {  
+        p.SetStatus(NL_PARCONV); return(p.Status());
+      }
+    }
+    // Test for convergence based on distance between points in parameter space
+    ColumnVector dpar = newpar - p.Par();
+    p.SetPar(newpar);
+    p.SetCF(newcf);
+    if (zero_par_step_conv(dpar,p.Par(),p.FractionalParameterTolerance())) {p.SetStatus(NL_PARCONV); return(p.Status());}
+    // Get gradient at new point
+    ColumnVector newgrad = sf*cfo.grad(p.Par());
+    // Test for convergence based on "zero" gradient
+    if (zero_grad_conv(p.Par(),newgrad,p.CF(),p.FractionalGradientTolerance())) {p.SetStatus(NL_GRADCONV); return(p.Status());}
+    // Update estimate of inverse Hessian
+    iH.update(dpar,newgrad-grad);
+    // Update parameters and get new direction to go in
+    grad = newgrad;
+    pdir = -(iH*grad);      // N.B. no unary - op for iH, parenthesis necessary
+  }
+
+  // If we get here we have exceeded the allowed # of iterations
+  p.SetStatus(NL_MAXITER);
+
+  return(p.Status());  
+}  
+
+LinOut linsrch(// Input
+               const ColumnVector&  dir,    // Search direction
+               const ColumnVector&  p0,      // Current parameter values
+               const ColumnVector&  grad,    // Gradient at p0
+               const NonlinCF&      cfo,     // Cost-function object
+               double               f0,      // Current cost-function value
+               double               sf,      // Scale factor for cost-function
+               double               maxiter, // Max # of iterations
+               double               sm,      // Stepmax
+               double               alpha,   // Alpha (sorry).
+               double               ptol,    // Tolerance in parameter space
+               // Output
+               double               *lambda, // Resulting step length
+               double               *of,     // Value of cost-function on output
+               ColumnVector         *np)     // New parameters
+{
+  const double lmin = 0.1;             
+  const double lmax = 0.5; 
+
+  // First make sure that the step-length suggested
+  // by pdir isn't completely unreasonable.
+
+  double totstep=sqrt(DotProduct(dir,dir));
+  ColumnVector pdir(dir);
+  if (totstep > sm) {pdir *= sm/totstep;}
+
+  // Calculate expected rate of change in the direction 
+  // given by pdir.
+
+  double fp0 = DotProduct(grad,pdir);
+
+  // Calculate smallest meaningful lambda given what is
+  // smallest meaningful change in parameter value.
+
+  double almin=0.0;
+  for (int i=0; i<p0.Nrows(); i++) {
+    almin = max(almin,abs(pdir.element(i))/max(abs(p0.element(i)),1.0));
+  }
+  almin = ptol / almin;
+
+  // First try a step of full lambda
+  
+  *lambda = 1.0;                        // Start with that
+  (*np) =  p0 + (*lambda)*pdir;         // First new parameters to try
+  double f2 = sf * cfo.cf(*np);         // Cost-function value for par
+
+  // See if that does it (fat chance!)
+  if (f2 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f2; return(LM_CONV);}
+
+  // Calculate Quadratic based on f(0), f'(0)
+  // and f(1) and find minimum of that quadratic.
+
+  *lambda = - fp0 / (2.0*(f2-f0-fp0));  // Minumum of f(lambda)
+  // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l
+  *lambda = max(lmin,*lambda);
+  *lambda = min(lmax,*lambda);
+  (*np) =  p0 + (*lambda)*pdir;         // Second set of new parameters to try
+  double f1 = sf * cfo.cf(*np);              // Cost-function value for par
+
+  // Now we will start fitting cubics to f(0), f'(0),
+  // f(lambda_1) and f(lambda_2) where lambda_1 is the
+  // lambda most recently tested and where lambda_2 is
+  // the lambda tested second to last.
+
+  double       l2 = 1.0;     // Second to last lambda
+  double       l1 = *lambda; // Last lambda
+  Matrix       X(2,2);
+  ColumnVector y(2);       
+  
+  for (int iter=0; iter<maxiter; iter++) {
+    // See if present lambda might be too small
+    if (*lambda < almin) {*of = f1; return(LM_LAMBDA_NILL);}
+    // See if present value is acceptable
+    if (f1 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f1; return(LM_CONV);}
+    // Find parameter values for cubic and square on lambda
+    X << pow(l1,3) << pow(l1,2) << pow(l2,3) << pow(l2,2);
+    y << f1-fp0*l1-f0 << f2-fp0*l2-f0;
+    ColumnVector b = X.i()*y;
+    // Find value for lambda that yield minimum of cubic
+    *lambda = (-b.element(1) + sqrt(pow(b.element(1),2) - 3.0*b.element(0)*fp0)) / (3.0*b.element(0));
+    // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l
+    *lambda = max(lmin*l1,*lambda);
+    *lambda = min(lmax*l1,*lambda);
+    // Get new function value and update parameters
+    f2 = f1;
+    (*np) = p0 + (*lambda)*pdir;
+    f1 = sf * cfo.cf(*np);
+    l2 = l1;
+    l1 = *lambda;
+  }
+
+  // If we are here we have exceeded # of iterations
+  
+  *of = f1;
+  return(LM_MAXITER);
+}
+
+// Will try and find a scale factor for the cost-function such that
+// the step length (lambda) for the first iteration of the variable-
+// metric method is ~0.25. Empricially I have found that such a scaling
+// that yields a first step length in the range 0.1 -- 0.5 will yield 
+// robust and fast convergence. N.B. though that I have only tested that
+// for non-linear reg, and it is concievable that it is different for
+// other applications with fewer parameters.
+ 
+double scale_factor(const ColumnVector&  p,       // Current parameter values
+                    const ColumnVector&  pdir,    // Search direction
+                    const NonlinCF&      cfo,     // Cost-function object
+                    int                  maxiter, // Max # of iterations
+                    double               sf)      // Scale factor.
+{
+  const double        dl = 0.25;   // Desired Lambda
+  const double        ftol = 0.01; // Fractional tolerance for minimum
+
+  // Start out by finding an upper bound for lambda such that
+  // a minimum is guaranteed to be between 0 and rp
+  
+  pair<double,double> lp;
+  pair<double,double> mp;
+  pair<double,double> rp = bracket(p,pdir,cfo,ftol,sf,&lp,&mp);
+  if (rp == mp) { // If there is no minimum in the indicated direction
+    return(0.0);
+  }
+
+  // Now find a minimum with a fractional accuracy of ~1%
+
+  pair<double,double> minpoint;
+  
+  if (linmin(p,pdir,cfo,sf,lp,mp,rp,ftol,maxiter,&minpoint) == LM_MAXITER) {
+    throw NonlinException("Failed to find minimum along search direction");
+  }
+
+  sf *= minpoint.first/dl;
+  return(sf);
+}
+
+// Will find the minimum of the cost-function as a function of 
+// lambda. This routine will find the minimum to a fractional
+// tolerance of lambda. This is NOT practical to use for the
+// Variable Metric minimisation (too slow), but is used for
+// the conjugate-gradient method and for finding the initial 
+// scaling between parameters and cost-function for the 
+// variable metric method.
+
+LinOut linmin(// Input
+              const ColumnVector&   p,      // Current parameter values
+              const ColumnVector&   pdir,   // Search direction
+              const NonlinCF&       cfo,    // Cost-function object
+              double                sf,     // Scale factor for cost-function
+              pair<double,double>   lp,     // Left point
+              pair<double,double>   mp,     // Point somewhere in interval
+              pair<double,double>   rp,     // Right point
+              double                ftol,   // Fractional tolerance
+              int                   maxiter,// Max # of iterations
+              // Output
+              pair<double,double>   *x)     // Best point
+{
+  const double         gold = 0.382;// Golden section
+  pair<double,double>  test;        // New point to test
+  pair<double,double>  w = mp;      // Second best point
+  pair<double,double>  v = mp;      // Last value of second best point
+  double               step = 0.0;
+  double               ostep = 0.0; // Length of 2nd to last step taken
+  double               d = 0.0;     // Length of last step taken
+  ColumnVector         y(3);        // Used for fitting parabolic
+  Matrix               X(3,3);      // Used for fitting parabolic
+  *x = mp;                          // Initialise "best" point
+
+  for (int i=0; i<maxiter; i++) {
+    double midp = (rp.first+lp.first)/2.0;                       // Midpoint of bracketing points
+    double tol = 2.0*ftol*abs(x->first)+MISCMATHS::EPS;          // Absolute tolerance
+    if  (abs(x->first-midp) <= (tol-0.5*(rp.first-lp.first))) {  // Convergence check
+      return(LM_CONV);
+    }
+    // Try parabolic fit, but not before third iteration
+    double tmp = 10.0*sqrt(MISCMATHS::EPS);
+    if (abs(ostep) > tol/2.0 &&           // If second to last step big enough
+        abs(x->first-w.first) > tmp && 
+        abs(x->first-v.first) > tmp && 
+        abs(w.first-v.first) > tmp) {     // And points not degenerate
+      step = ostep;
+      ostep = d;
+      y << x->second << w.second << v.second;
+      X << pow(x->first,2.0) << x->first << 1.0 <<
+	   pow(w.first,2.0) << w.first << 1.0 <<
+	   pow(v.first,2.0) << v.first << 1.0;
+      ColumnVector b = X.i() * y;
+      if (b.element(0) < 4*MISCMATHS::EPS ||                   // If on line or going for maximum
+          (test.first = -b.element(1)/(2.0*b.element(0))) <= lp.first 
+          || test.first >= rp.first ||                         // If outside bracketed interval
+          abs(test.first-x->first) > 0.5*step) {               // Or if step too big (indicates oscillation)
+        // Take golden step into larger interval
+        if (rp.first-x->first > x->first-lp.first) {           // If right interval larger
+          test.first = x->first + gold * (rp.first - x->first);
+        }
+        else {
+          test.first = x->first - gold * (x->first - lp.first); 
+        }
+      }
+    }
+    else { // Take golden step into larger interval   
+      if (x->first < midp) {            // If right interval larger
+        ostep = rp.first - x->first;
+        test.first = x->first + gold * (rp.first - x->first);
+      }
+      else {
+        ostep = x->first - lp.first;
+        test.first = x->first - gold * (x->first - lp.first); 
+      }
+    }
+    d = test.first - x->first;                              // Signed length of step
+    test.second = sf*cfo.cf(p+test.first*pdir);                // Evaluate cf at new point
+    // Now we have a new point, and we need to figure out what to do with it
+    if (test.second <= x->second) {  // If it beats the best step
+      if (test.first > x->first) {lp = *x;}
+      else {rp = *x;}
+      v = w; w = *x; *x = test;
+    }
+    else {
+      if (test.first < x->first) {lp = test;}
+      else {rp = test;}
+      if (test.second <= w.second || w.first == x->first) {
+        v = w; w = test;
+      }
+      else if (test.second <= v.second || v.first == x->first || v.first == w.first) {
+        v = test;
+      }
+    }
+  }
+  // If we are here we have used too many iterations
+  return(LM_MAXITER); // Error status    
+}
+              
+// Will return a value lambda such that a function minimum is guaranteed to
+// lie somewhere in the interval between p and p+lambda*pdir. The second value
+// of the returned pair is the cost-function value at the point.
+
+pair<double,double> bracket(// Input 
+                            const ColumnVector& p,      // Current parameter values
+                            const ColumnVector& pdir,   // Search direction
+                            const NonlinCF&     cfo,    // Cost-function object
+                            double              ptol,   // Relative tolerance for parameter values
+                            double              sf,     // Scale factor of cost-function
+                            // Output
+                            pair<double,double> *p_0,   // Cost-function value at p
+                            pair<double,double> *p_m)   // Point between p_0 and p_l
+{
+  pair<double,double>  p_l;
+  const double gr = 0.618034;
+  const double maxstep = 100.0;
+  p_0->first = 0.0;
+  double cf0 = sf*cfo.cf(p);
+  double l1 = 1.0;
+  double cf1 = sf*cfo.cf(p+l1*pdir);
+
+  // Find maximum relative component of search direction
+
+  double test = 0.0;
+  for (int i=0; i<pdir.Nrows(); i++) {test = max(test,abs(pdir.element(i))/max(p.element(i),1.0));}
+
+  // Do a crude initial search for order of magnitude
+
+  while (!isfinite(cf1)) {
+    l1 *= 0.1;
+    cf1 = sf*cfo.cf(p+l1*pdir);
+  }
+
+  // Get third point to get us started
+  double l2 = 0.0;
+  double cf2 = 0.0;
+  if (cf1 < cf0) {l2 = (2.0 + gr)*l1; cf2 = sf*cfo.cf(p+l2*pdir);}
+  else {l2 = l1; cf2 = cf1; l1 = gr * l2; cf1 = sf*cfo.cf(p+l1*pdir);}
+  // Check if we already have a bracket
+  if (cf1 < cf0 && cf1 < cf2) {
+    p_l.first = l2; p_l.second = cf2;
+    p_m->first = l1; p_m->second = cf1;
+    p_0->second = cf0; 
+    return(p_l);
+  }
+
+  Matrix        X(2,2);
+  ColumnVector  y(2);
+  double        lt = 0.0;
+  double        cft = 0.0;
+
+  while (!(cf1 < cf0 && cf1 < cf2)) {  // If minimum still not bracketed
+    if (l2*test < ptol) {              // If interval ridicously small
+      p_l = *p_0;
+      *p_m = *p_0;
+      return(p_l);
+    }
+    // Let's see if a parabolic might help us
+    if (abs(l2-l1) > 10.0*sqrt(MISCMATHS::EPS)) {
+      X << pow(l1,2.0) << l1 << pow(l2,2.0) << l2;
+      y << cf1 << cf2;
+      ColumnVector b = X.i()*y;
+      if (b.element(0) > 4.0*MISCMATHS::EPS) {           // Check they are not on a line and not for maximum
+        lt = - (b.element(1) / (2.0 * b.element(0))); // Tentative point
+        if (lt > 0 && lt < l2) {                      // If in range of previous points
+          cft = sf*cfo.cf(p+lt*pdir);
+          if (cft < cf0 && cft < cf2) {l1=lt; cf1=cft; continue;}
+          else if (cft > cf0 && lt < l1 && cft < cf1) {l2=l1; cf2=cf1; l1=lt; cf1=cft; continue;}
+          else if (cft > cf0 && lt > l1 && cft < cf2) {l2=lt; cf2=cft; continue;}
+        }
+        else if (lt > 0 && lt < maxstep*l2) {       // If expansion in allowed range
+          cft = sf*cfo.cf(p+lt*pdir);
+          l1 = l2; cf1 = cf2; 
+          l2 = lt; cf2 = cft;
+          continue;
+        }
+      }
+    }
+    // If we are here the parabolic was of no use
+    if (cf2 < cf0) { // We need to expand
+      lt = (2.0 + gr)*l2;
+      cft = sf*cfo.cf(p+lt*pdir);
+      l1 = l2; cf1 = cf2;
+      l2 = lt; cf2 = cft;
+    }
+    else { // We need to contract
+      lt = gr * l1;
+      cft = sf*cfo.cf(p+lt*pdir);
+      l2 = l1; cf2 = cf1;
+      l1 = lt; cf1 = cft;
+    }     
+  }  
+
+  // If we are here we know that there is a minimum
+  // somewhere between 0 and l2;
+
+  p_0->second = cf0;
+  p_m->first = l1;
+  p_m->second = cf1;
+  p_l.first = l2;
+  p_l.second = cf2;
+  return(p_l);   
+}  
+
+// Utility routines that checks for convergence based on various criteria
+
+// Based on zero (neglible) gradient
+
+bool zero_grad_conv(const ColumnVector&   par,
+                    const ColumnVector&   grad,
+                    double                cf,
+                    double                gtol)
+{
+  double test = 0.0;     // test will be largest relative component of gradient
+  for (int i=0; i<par.Nrows(); i++) {
+    test = max(test,abs(grad.element(i))*max(abs(par.element(i)),1.0));
+  }
+  test /= max(cf,1.0);   // Protect against near-zero values for cost-function
+
+  return(test < gtol);
+}
+
+// Based on zero (neglible) decrease in cost-function
+
+bool zero_cf_diff_conv(double cfo,
+                       double cfn,
+                       double cftol)
+{
+  return(2.0*abs(cfo-cfn) <= cftol*(abs(cfo)+abs(cfn)+MISCMATHS::EPS));
+}
+
+// Based on zero (neglible) step in parameter space
+
+bool zero_par_step_conv(const ColumnVector&   par,
+                        const ColumnVector&   step,
+                        double                ptol)
+{
+  double test = 0.0;
+  for (int i=0; i<par.Nrows(); i++) {
+    test = max(test,abs(step.element(i))/max(abs(par.element(i)),1.0));
+  }
+  return(test < ptol);
+}
+
+// Utility routines that allow the user to check accuracy of their own grad and hess functions
+
+pair<ColumnVector,ColumnVector> check_grad(const ColumnVector&  par,
+                                           const NonlinCF&      cfo)
+{
+  pair<ColumnVector,ColumnVector> rv;
+  
+  rv.first = cfo.NonlinCF::grad(par);
+  rv.second = cfo.grad(par);
+
+  return(rv);
+}
+
+pair<boost::shared_ptr<BFMatrix>,boost::shared_ptr<BFMatrix> > check_hess(const ColumnVector& par,
+                                                                          const NonlinCF&     cfo)
+{
+  pair<boost::shared_ptr<BFMatrix>,boost::shared_ptr<BFMatrix> > rv;
+  
+  rv.first = cfo.NonlinCF::hess(par);
+  rv.second = cfo.hess(par);
+
+  return(rv);
+}     
+           
+
+void print_newmat(const NEWMAT::GeneralMatrix&  m,
+                  std::string                   fname)
+{
+  if (!fname.length()) {
+    cout << endl << m << endl;
+  }
+  else {
+    try {
+      std::ofstream  fout(fname.c_str());
+      fout << setprecision(10) << m;
+    }
+    catch(...) {
+      std::string  errmsg("print_newmat: Failed to write to file " + fname);
+      throw NonlinException(errmsg);
+    }
+  }
+}
+  
+} // End namespace MISCMATHS
diff --git a/nonlin.h b/nonlin.h
new file mode 100644
index 0000000000000000000000000000000000000000..6f6edcc3ce30116c0bb2e4667adbfed262c60621
--- /dev/null
+++ b/nonlin.h
@@ -0,0 +1,364 @@
+// Declarations for nonlinear optimisation
+
+#ifndef nonlin_h
+#define nonlin_h
+
+#include <string>
+#include <vector>
+#include <boost/shared_ptr.hpp>
+#include "bfmatrix.h"
+#include "newmat.h"
+
+namespace MISCMATHS {
+
+enum NLMethod {NL_VM,                               // Variable-Metric (see NRinC)
+               NL_CG,                               // Conjugate-Gradient (see NRinC)
+               NL_SCG,                              // Scaled Conjugate-Gradient (See Moller 1993).
+               NL_LM};                              // Levenberg-Marquardt (see NRinC)
+
+enum LMType {LM_L, LM_LM};                          // Levenberg or Levenberg-Marquardt
+
+enum VMUpdateType {VM_DFP, VM_BFGS};                // See NRinC chapter 10.
+
+enum CGUpdateType {CG_FR, CG_PR};                   // Fletcher-Reeves, Polak-Ribiere
+
+enum VMMatrixType {VM_OPT,                          // 
+                   VM_COL,                          // Store all rank-one updates as column-vectors
+                   VM_FULL};                        // Store full estimate of inverse Hessian
+
+enum LinOut {LM_MAXITER,                            // Too many iterations in line-minimisation
+             LM_LAMBDA_NILL,                        // Could not find a minima along this direction
+             LM_CONV};                              // Line-minimisation converged.
+
+enum NonlinOut {NL_UNDEFINED,                       // Initial value before minimisation
+                NL_MAXITER,                         // Too many iterations
+                NL_LM_MAXITER,                      // To many iterations during a line-minimisation
+                NL_PARCONV,                         // Convergence. Step in parameter space small
+                NL_GRADCONV,                        // Convergence. Gradient small
+                NL_CFCONV,                          // Convergence. Change in cost-function small
+                NL_LCONV};                          // Convergence, lambda very large
+
+const double EPS = 2.0e-16;                         // Losely based on NRinC 20.1
+
+class NonlinException: public std::exception
+{
+private:
+  std::string m_msg;
+public:
+  NonlinException(const std::string& msg) throw(): m_msg(msg) {}
+
+  virtual const char * what() const throw() {
+    return string("Nonlin: msg=" + m_msg).c_str();
+  }
+
+  ~NonlinException() throw() {}
+};
+
+// NonlinParam is a struct that contains the
+// information about "how" the 
+// minisation should be performed. I.e. it
+// contains things like choice of minimisation
+// algorithm, # of parameters, converegence 
+// criteria etc
+
+class NonlinParam
+{
+public:
+
+  NonlinParam(int                   pnpar,
+              NLMethod              pmtd,
+              NEWMAT::ColumnVector  ppar=NEWMAT::ColumnVector(),
+              bool                  plogcf=false,
+              bool                  ploglambda=false,
+              bool                  plogpar=false, 
+              int                   pmaxiter=200,
+              double                pcftol=1.0e-8,
+              double                pgtol=1.0e-8,
+              double                pptol=4.0*EPS,
+              VMUpdateType          pvmut=VM_BFGS,
+              double                palpha=1.0e-4,
+              double                pstepmax=10,
+              int                   plm_maxiter=50,
+              int                   pmaxrestart=0,
+              bool                  pautoscale=true,
+              CGUpdateType          pcgut=CG_PR,
+              double                plm_ftol=1.0e-3,
+              LMType                plmtype=LM_LM,
+              double                pltol=1.0e20,
+	      int                   pcg_maxiter=200,
+	      double                pcg_tol=1.0e-6,
+              double                plambda=0.1)
+    : npar(pnpar), mtd(pmtd), logcf(plogcf), 
+    loglambda(ploglambda), logpar(plogpar), maxiter(pmaxiter), 
+    cftol(pcftol), gtol(pgtol), ptol(pptol), vmut(pvmut), 
+    alpha(palpha), stepmax(pstepmax), lm_maxiter(plm_maxiter),
+    maxrestart(pmaxrestart), autoscale(pautoscale), cgut(pcgut), 
+    lm_ftol(plm_ftol), lmtype(plmtype), ltol(pltol), cg_maxiter(pcg_maxiter), 
+    cg_tol(pcg_tol), lambda(), cf(), par(), niter(0), nrestart(0), status(NL_UNDEFINED)
+  {
+    lambda.push_back(plambda);
+    if (ppar.Nrows()) SetStartingEstimate(ppar);
+    else {
+      NEWMAT::ColumnVector  tmp(npar);
+      tmp = 0.0;
+      SetStartingEstimate(tmp);
+    }
+  }
+  ~NonlinParam() {}                  
+
+  // Routines to check values
+
+  int NPar() const {return(npar);}
+  NLMethod Method() const {return(mtd);}
+  int MaxIter() const {return(maxiter);}
+  int NIter() const {return(niter);}
+  double FractionalCFTolerance() const {return(cftol);}
+  double FractionalGradientTolerance() const {return(gtol);}
+  double FractionalParameterTolerance() const {return(ptol);}
+  VMUpdateType VariableMetricUpdate() const {return(vmut);}
+  double VariableMetricAlpha() const {return(alpha);}
+  int MaxVariableMetricRestarts() const {return(maxrestart);}
+  int VariableMetricRestarts() const {return(nrestart);}
+  bool VariableMetricAutoScale() const {return(autoscale);}
+  double LineSearchMaxStep() const {return(stepmax);}
+  int LineSearchMaxIterations() const {return(lm_maxiter);}
+  CGUpdateType ConjugateGradientUpdate() const {return(cgut);}
+  double LineSearchFractionalParameterTolerance() const {return(lm_ftol);}
+  LMType GaussNewtonType() const {return(lmtype);}
+  double LambdaConvergenceCriterion() const {return(ltol);}
+  int EquationSolverMaxIter() const {return(cg_maxiter);}
+  double EquationSolverTol() const {return(cg_tol);}
+  bool LoggingParameters() const {return(logpar);}
+  bool LoggingCostFunction() const {return(logcf);}
+  bool LoggingLambda() const {return(loglambda);}
+
+  // Routines to get output
+
+  double Lambda() const {return(lambda.back());}
+  double InitialLambda() const {if (loglambda) return(lambda[0]); else {throw NonlinException("InitialLabda: Lambda not logged"); return(0.0);}}
+  const std::vector<double>& LambdaHistory() const {if (loglambda) return(lambda); else {throw NonlinException("InitialLabda: Lambda not logged"); return(lambda);}}
+  const NEWMAT::ColumnVector& Par() const {return(par.back());}
+  const NEWMAT::ColumnVector& InitialPar() const {if (logpar) return(par[0]); else {throw NonlinException("InitialPar: Parameters not logged"); return(par[0]);}}
+  const std::vector<NEWMAT::ColumnVector>& ParHistory() const {if (logpar) return(par); else {throw NonlinException("ParHistory: Parameters not logged"); return(par);}}
+  double CF() const {return(cf.back());}
+  double InitialCF() const {if (logcf) return(cf[0]); else {throw NonlinException("InitialCF: Cost-function not logged"); return(cf[0]);}}
+  const std::vector<double> CFHistory() const {if (logcf) return(cf); else {throw NonlinException("CFHistory: Cost-function not logged"); return(cf);}}
+  NonlinOut Status() const {return(status);}
+      
+  // Routines to set values of steering parameters
+  void SetMethod(NLMethod pmtd) {mtd = pmtd;}
+  void LogCF(bool flag=true) {logcf = flag;}
+  void LogPar(bool flag=true) {logpar = flag;}
+  void LogLambda(bool flag=true) {loglambda = flag;}
+  void SetStartingEstimate(NEWMAT::ColumnVector& sp) {
+    if (niter) throw NonlinException("SetStartingEstimates: Object has to be reset before setting new starting parameters");
+    SetPar(sp);
+  }
+  void SetMaxIter(unsigned int pmiter) {maxiter = pmiter;}
+  void SetFractionalCFTolerance(double pcftol) {
+    if (pcftol>0.5) throw NonlinException("SetFractionalCFTolerance: Nonsensically large tolerance");
+    else if (pcftol <= 0.0) NonlinException("SetFractionalCFTolerance: Tolerance must be non-zero and positive");
+    cftol = pcftol;
+  }
+  void SetFractionalGradientTolerance(double pgtol) {
+    if (pgtol>0.5) throw NonlinException("SetFractionalGradientTolerance: Nonsensically large tolerance");
+    else if (pgtol <= 0.0) NonlinException("SetFractionalGradientTolerance: Tolerance must be non-zero and positive");
+    gtol = pgtol;
+  }
+  void SetFractionalParameterTolerance(double pptol) {
+    if (pptol>0.5) throw NonlinException("SetFractionalParameterTolerance: Nonsensically large tolerance");
+    else if (pptol <= 0.0) NonlinException("SetFractionalParameterTolerance: Tolerance must be non-zero and positive");
+    ptol = pptol;
+  }
+  void SetVariableMetricUpdate(VMUpdateType pvmut) {vmut = pvmut;}
+  void SetVariableMetricAlpha(double palpha) {
+    if (palpha>=1.0 || palpha<=0.0) throw NonlinException("SetVariableMetricAlpha: Alpha must be between 0 and 1");
+    alpha = palpha;
+  }
+  void SetMaxVariableMetricRestarts(unsigned int pmaxrestart) {maxrestart = pmaxrestart;}
+  void SetVariableMetricAutoScale(bool flag=true) {autoscale = flag;}
+  void SetLineSearchMaxStep(double pstepmax) {
+    if (pstepmax<=0) throw NonlinException("SetLineSearchMaxStep: maxstep must be non-zero and positive");
+    stepmax = pstepmax;
+  }
+  void SetLineMinimisationMaxIterations(unsigned int plm_maxiter) {lm_maxiter = plm_maxiter;}
+  void SetConjugateGradientUpdate(CGUpdateType pcgut) {cgut = pcgut;}
+  void SetLineMinimisationFractionalParameterTolerance(double plm_ftol) {
+    if (plm_ftol>0.5) throw NonlinException("SetLineMinimisationFractionalParameterTolerance: Nonsensically large tolerance");
+    else if (plm_ftol <= 0.0) NonlinException("SetLineMinimisationFractionalParameterTolerance: Tolerance must be non-zero and positive");
+    lm_ftol = plm_ftol;
+  }
+  void SetGaussNewtonType(LMType plmtype) {lmtype = plmtype;}
+  void SetLambdaConvergenceCriterion(double pltol) {
+    if (pltol<1.0) throw NonlinException("SetLambdaConvergenceCriterion: Nonsensically small tolerance");
+    ltol = pltol;
+  }
+  void SetEquationSolverMaxIter(int pcg_maxiter) {cg_maxiter = pcg_maxiter;}
+  void SetEquationSolverTol(double pcg_tol) {cg_tol = pcg_tol;}
+
+  
+  // Reset is used to reset a NonlinParam object after it has run to convergence, thereby allowing it
+  // to be reused with a different CF object. This is to avoid the cost of creating the object many
+  // times when fitting for example multiple voxels.
+  void Reset() {}
+  // Routines used by the (global) non-linear fitting routines. Note that these can
+  // all be called for const objects.
+  void SetPar(const NEWMAT::ColumnVector& p) const {
+    if (p.Nrows() != npar) throw NonlinException("SetPar: Mismatch between starting vector and # of parameters");
+    if (logpar || !par.size()) par.push_back(p); 
+    else par[0] = p;
+  }
+  void SetCF(double pcf) const {
+    if (logcf || !cf.size()) cf.push_back(pcf); 
+    else cf[0] = pcf;
+  }
+  void SetLambda(double pl) const {
+    if (loglambda || !lambda.size()) lambda.push_back(pl); 
+    else lambda[0] = pl;
+  }
+  bool NextIter(bool success=true) const {if (success && niter++ >= maxiter) return(false); else return(true);}
+  bool NextRestart() const {if (nrestart++ >= maxrestart) return(false); else return(true);}
+  void SetStatus(NonlinOut  pstatus) const {status = pstatus;}
+private:
+
+  //         INPUT PARAMETERS
+  //
+  //         Paramaters that apply to all algorithms
+
+  const int                  npar;       // # of parameters
+  NLMethod                   mtd;        // Minimisation method
+  bool                       logcf;      // If true, history of cost-function is logged
+  bool                       loglambda;  // If true, history of lambda is logged
+  bool                       logpar;     // If true history of parameters is logged
+  int                        maxiter;    // Maximum # of iterations allowed
+  double                     cftol;      // Tolerance for cost-function gonvergence criterion
+  double                     gtol;       // Tolerance for gradient convergence criterion
+  double                     ptol;       // Tolerance for parameter convergence criterion
+
+  //         Parameters that apply to Variable-Metric Algorithm
+
+  VMUpdateType               vmut;       // DFP or BFGS
+  double                     alpha;      // Criterion for convergence in line minimisation
+  double                     stepmax;    // Maximum step length for line minimisation
+  int                        lm_maxiter; // Maximum # of iterations for line minimisation
+  int                        maxrestart; // Maximum # of restarts that should be done.      
+  bool                       autoscale;  // "Automatic" search for optimal scaling
+
+  //         Parameters that apply to CG algorithm
+
+  CGUpdateType               cgut;       // Fletcher-Reeves or Polak-Ribiere
+  double                     lm_ftol;    // Convergence criterion for line-search
+
+  //         Parameters that apply to LM algorithm
+
+  LMType                     lmtype;     // Levenberg or Levenberg-Marquardt
+  double                     ltol;       // Convergence criterion based on large lambda
+  int                        cg_maxiter; // Maximum # of iterations for iterative "inverse" of Hessian
+  double                     cg_tol;     // Tolerance for iterative "inverse" of Hessian
+
+  //
+  //         OUTPUT PARAMETERS
+  //
+  mutable std::vector<double>                        lambda;     // (History of) lambda (LM and SCG type minimisation)
+  mutable std::vector<double>                        cf;         // (History of) cost-function
+  mutable std::vector<NEWMAT::ColumnVector>          par;        // (History of) Parameter estimates
+  mutable int                                        niter;      // Number of iterations
+  mutable int                                        nrestart;   // Number of restarts
+  mutable NonlinOut                                  status;     // Output status  
+  
+  NonlinParam& operator=(const NonlinParam& rhs); // Hide assignment
+
+};
+  
+// NonlinCF (Cost Function) is a virtual
+// class that defines a minimal interface.
+// By subclassing NonlinCF the "user" can
+// create a class that allows him/her to
+// use NONLIN to minimise his/her function.
+class NonlinCF
+{
+private:
+  NonlinCF& operator=(const NonlinCF& rhs); // Hide assignment
+public:
+  NonlinCF() {}
+  virtual ~NonlinCF() {}
+  virtual double sf() const {return(1.0);}
+  virtual NEWMAT::ReturnMatrix grad(const NEWMAT::ColumnVector& p) const;  
+  virtual boost::shared_ptr<BFMatrix> hess(const NEWMAT::ColumnVector& p,
+                                           boost::shared_ptr<BFMatrix> iptr=boost::shared_ptr<BFMatrix>()) const;  
+  virtual double cf(const NEWMAT::ColumnVector& p) const = 0;              
+};
+
+// Varmet matrix is a "helper" class
+// that makes it a little easier to
+// implement variable-metric minimisation.
+class VarmetMatrix
+{
+private:
+  int                                 sz;
+  VMMatrixType                        mtp;
+  VMUpdateType                        utp;
+  NEWMAT::Matrix                      mat;
+  std::vector<double>                 sf;
+  std::vector<NEWMAT::ColumnVector>   vec;
+
+  VarmetMatrix& operator=(const VarmetMatrix& rhs);  // Hide assignment
+
+public:
+  explicit VarmetMatrix(int psz, VMMatrixType pmtp, VMUpdateType putp) 
+  : sz(psz), mtp(pmtp), utp(putp)
+  {
+    if (sz > 0 && mtp == VM_OPT) {
+      if (sz < 100) {
+        mtp = VM_FULL;
+	NEWMAT::IdentityMatrix  tmp(sz);
+        mat = tmp;
+      }
+      else {
+        mtp = VM_COL;
+      }
+    }
+  }
+
+  ~VarmetMatrix() {}
+
+  int size() {return(sz);}
+  VMUpdateType updatetype() {return(utp);}
+  VMMatrixType matrixtype() {return(mtp);}
+  void print() const;
+
+  void reset()
+  {
+    if (sz > 0) {
+      if (mtp == VM_FULL) {
+	NEWMAT::IdentityMatrix  tmp(sz);
+        mat = tmp;
+      }
+      else if (mtp == VM_COL) {
+        sf.clear();
+        vec.clear();
+      }
+    }
+  }
+
+  void update(const NEWMAT::ColumnVector& pdiff,  // x_{i+1} - x_i
+              const NEWMAT::ColumnVector& gdiff); // \nabla f_{i+1} - \nabla f_i
+  friend NEWMAT::ColumnVector operator*(const VarmetMatrix&          m,
+                                        const NEWMAT::ColumnVector&  v); 
+};
+
+// Declaration of (global) main function for minimisation
+
+NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo);
+
+// Declaration of global utility functions
+
+pair<NEWMAT::ColumnVector,NEWMAT::ColumnVector> check_grad(const NEWMAT::ColumnVector&  par,
+                                                           const NonlinCF&                     cfo);
+
+pair<boost::shared_ptr<BFMatrix>,boost::shared_ptr<BFMatrix> > check_hess(const NEWMAT::ColumnVector& par,
+                                                                          const NonlinCF&     cfo);
+
+} // End namespace MISCMATHS
+
+#endif // end #ifndef nonlin_h