diff --git a/nonlin.cpp b/nonlin.cpp index e3bd9d80977c658e33ecde51797794b43bb2189d..e13e58bc034e8c2a403c35264a8e2859458f257f 100644 --- a/nonlin.cpp +++ b/nonlin.cpp @@ -111,7 +111,7 @@ ReturnMatrix NonlinCF::grad(const ColumnVector& p) const double tiny = 1e-8; double cf0 = cf(tmpp); for (int i=0; i<p.Nrows(); i++) { - double step = tiny * max(tmpp.element(i),1.0); + double step = tiny * std::max(tmpp.element(i),1.0); tmpp.element(i) += step; gradv.element(i) = (cf(tmpp) - cf0) / step; tmpp.element(i) -= step; @@ -146,7 +146,7 @@ boost::shared_ptr<BFMatrix> NonlinCF::hess(const ColumnVector& p, // First calculate all f(x+dx_i) values for (int i=0; i<p.Nrows(); i++) { - step.element(i) = tiny * max(tmpp.element(i),1.0); + step.element(i) = tiny * std::max(tmpp.element(i),1.0); tmpp.element(i) += step.element(i); fdx.element(i) = cf(tmpp); tmpp.element(i) -= step.element(i); @@ -647,7 +647,7 @@ LinOut linsrch(// Input double almin=0.0; for (int i=0; i<p0.Nrows(); i++) { - almin = max(almin,abs(pdir.element(i))/max(abs(p0.element(i)),1.0)); + almin = std::max(almin,std::abs(pdir.element(i))/std::max(std::abs(p0.element(i)),1.0)); } almin = ptol / almin; @@ -665,8 +665,8 @@ LinOut linsrch(// Input *lambda = - fp0 / (2.0*(f2-f0-fp0)); // Minumum of f(lambda) // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l - *lambda = max(lmin,*lambda); - *lambda = min(lmax,*lambda); + *lambda = std::max(lmin,*lambda); + *lambda = std::min(lmax,*lambda); (*np) = p0 + (*lambda)*pdir; // Second set of new parameters to try double f1 = sf * cfo.cf(*np); // Cost-function value for par @@ -686,14 +686,14 @@ LinOut linsrch(// Input // See if present value is acceptable if (f1 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f1; return(LM_CONV);} // Find parameter values for cubic and square on lambda - X << pow(l1,3) << pow(l1,2) << pow(l2,3) << pow(l2,2); + X << std::pow(l1,3.0) << std::pow(l1,2.0) << std::pow(l2,3.0) << std::pow(l2,2.0); y << f1-fp0*l1-f0 << f2-fp0*l2-f0; ColumnVector b = X.i()*y; // Find value for lambda that yield minimum of cubic - *lambda = (-b.element(1) + sqrt(pow(b.element(1),2) - 3.0*b.element(0)*fp0)) / (3.0*b.element(0)); + *lambda = (-b.element(1) + sqrt(std::pow(b.element(1),2.0) - 3.0*b.element(0)*fp0)) / (3.0*b.element(0)); // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l - *lambda = max(lmin*l1,*lambda); - *lambda = min(lmax*l1,*lambda); + *lambda = std::max(lmin*l1,*lambda); + *lambda = std::min(lmax*l1,*lambda); // Get new function value and update parameters f2 = f1; (*np) = p0 + (*lambda)*pdir; @@ -781,27 +781,27 @@ LinOut linmin(// Input for (int i=0; i<maxiter; i++) { double midp = (rp.first+lp.first)/2.0; // Midpoint of bracketing points - double tol = 2.0*ftol*abs(x->first)+MISCMATHS::EPS; // Absolute tolerance - if (abs(x->first-midp) <= (tol-0.5*(rp.first-lp.first))) { // Convergence check + double tol = 2.0*ftol*std::abs(x->first)+MISCMATHS::EPS; // Std::Absolute tolerance + if (std::abs(x->first-midp) <= (tol-0.5*(rp.first-lp.first))) { // Convergence check return(LM_CONV); } // Try parabolic fit, but not before third iteration double tmp = 10.0*sqrt(MISCMATHS::EPS); - if (abs(ostep) > tol/2.0 && // If second to last step big enough - abs(x->first-w.first) > tmp && - abs(x->first-v.first) > tmp && - abs(w.first-v.first) > tmp) { // And points not degenerate + if (std::abs(ostep) > tol/2.0 && // If second to last step big enough + std::abs(x->first-w.first) > tmp && + std::abs(x->first-v.first) > tmp && + std::abs(w.first-v.first) > tmp) { // And points not degenerate step = ostep; ostep = d; y << x->second << w.second << v.second; - X << pow(x->first,2.0) << x->first << 1.0 << - pow(w.first,2.0) << w.first << 1.0 << - pow(v.first,2.0) << v.first << 1.0; + X << std::pow(x->first,2.0) << x->first << 1.0 << + std::pow(w.first,2.0) << w.first << 1.0 << + std::pow(v.first,2.0) << v.first << 1.0; ColumnVector b = X.i() * y; if (b.element(0) < 4*MISCMATHS::EPS || // If on line or going for maximum (test.first = -b.element(1)/(2.0*b.element(0))) <= lp.first || test.first >= rp.first || // If outside bracketed interval - abs(test.first-x->first) > 0.5*step) { // Or if step too big (indicates oscillation) + std::abs(test.first-x->first) > 0.5*step) { // Or if step too big (indicates oscillation) // Take golden step into larger interval if (rp.first-x->first > x->first-lp.first) { // If right interval larger test.first = x->first + gold * (rp.first - x->first); @@ -869,7 +869,7 @@ pair<double,double> bracket(// Input // Find maximum relative component of search direction double test = 0.0; - for (int i=0; i<pdir.Nrows(); i++) {test = max(test,abs(pdir.element(i))/max(p.element(i),1.0));} + for (int i=0; i<pdir.Nrows(); i++) {test = std::max(test,std::abs(pdir.element(i))/std::max(p.element(i),1.0));} // Do a crude initial search for order of magnitude @@ -903,8 +903,8 @@ pair<double,double> bracket(// Input return(p_l); } // Let's see if a parabolic might help us - if (abs(l2-l1) > 10.0*sqrt(MISCMATHS::EPS)) { - X << pow(l1,2.0) << l1 << pow(l2,2.0) << l2; + if (std::abs(l2-l1) > 10.0*sqrt(MISCMATHS::EPS)) { + X << std::pow(l1,2.0) << l1 << std::pow(l2,2.0) << l2; y << cf1 << cf2; ColumnVector b = X.i()*y; if (b.element(0) > 4.0*MISCMATHS::EPS) { // Check they are not on a line and not for maximum @@ -960,9 +960,9 @@ bool zero_grad_conv(const ColumnVector& par, { double test = 0.0; // test will be largest relative component of gradient for (int i=0; i<par.Nrows(); i++) { - test = max(test,abs(grad.element(i))*max(abs(par.element(i)),1.0)); + test = std::max(test,std::abs(grad.element(i))*std::max(std::abs(par.element(i)),1.0)); } - test /= max(cf,1.0); // Protect against near-zero values for cost-function + test /= std::max(cf,1.0); // Protect against near-zero values for cost-function return(test < gtol); } @@ -973,7 +973,7 @@ bool zero_cf_diff_conv(double cfo, double cfn, double cftol) { - return(2.0*abs(cfo-cfn) <= cftol*(abs(cfo)+abs(cfn)+MISCMATHS::EPS)); + return(2.0*std::abs(cfo-cfn) <= cftol*(std::abs(cfo)+std::abs(cfn)+MISCMATHS::EPS)); } // Based on zero (neglible) step in parameter space @@ -984,7 +984,7 @@ bool zero_par_step_conv(const ColumnVector& par, { double test = 0.0; for (int i=0; i<par.Nrows(); i++) { - test = max(test,abs(step.element(i))/max(abs(par.element(i)),1.0)); + test = std::max(test,std::abs(step.element(i))/std::max(std::abs(par.element(i)),1.0)); } return(test < ptol); }