From ec3c6f65e9e8f36d56dcced6d3e8ca1c32830519 Mon Sep 17 00:00:00 2001
From: Michiel Cottaar <MichielCottaar@gmail.com>
Date: Fri, 16 Feb 2018 14:16:19 +0000
Subject: [PATCH] BUG: updated the ipython notebook files

---
 talks/nibabel_cifti/nibabel_cifti.ipynb | 183 ++++--------------------
 talks/packages/packages.ipynb           |  90 +-----------
 2 files changed, 29 insertions(+), 244 deletions(-)

diff --git a/talks/nibabel_cifti/nibabel_cifti.ipynb b/talks/nibabel_cifti/nibabel_cifti.ipynb
index a98c7aa..890f974 100644
--- a/talks/nibabel_cifti/nibabel_cifti.ipynb
+++ b/talks/nibabel_cifti/nibabel_cifti.ipynb
@@ -2,18 +2,9 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/Users/ndcn0236/miniconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
-      "  from ._conv import register_converters as _register_converters\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "%matplotlib nbagg\n",
     "import numpy as np\n",
@@ -50,9 +41,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "img = nib.load('100307/T1w.nii.gz')\n",
@@ -74,9 +63,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "img = nib.load('100307/fsaverage_LR32k/100307.L.white.32k_fs_LR.surf.gii')\n",
@@ -87,9 +74,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "from nibabel import freesurfer\n",
@@ -98,21 +83,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "array([2.9977965, 2.7661548, 3.0803757, ..., 2.47089  , 2.2333388,\n",
-       "       2.363499 ], dtype=float32)"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "thickness = nib.load('100307/fsaverage_LR32k/100307.L.thickness.32k_fs_LR.shape.gii').darrays[0].data\n",
     "thickness"
@@ -153,9 +126,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "!pip install git+https://github.com/MichielCottaar/cifti.git"
@@ -172,7 +143,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -188,9 +159,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii random_ctx.dscalar.nii"
@@ -198,26 +167,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
-    "img = ni.load('100307/aparc+aseg.nii.gz')\n",
+    "img = nib.load('100307/aparc+aseg.nii.gz')\n",
     "cerebellum = img.get_data() == 8\n",
     "\n",
     "bm_cerebellum = cifti.BrainModel.from_mask(cerebellum, name='CerebellumLeft', affine=img.affine)\n",
     "bm = bm_ctx + bm_cerebellum\n",
-    "sc = cifti.Scalar.from_names(['random'])\n",
-    "arr = np.random.rand(len(bm))\n",
-    "cifti.write('random_ctx_cerebellum.dscalar.nii', arr[None, :], (sc, bm))"
+    "sc = cifti.Scalar.from_names(['random1', 'random2'])\n",
+    "arr = np.random.rand(2, len(bm))\n",
+    "cifti.write('random_ctx_cerebellum.dscalar.nii', arr, (sc, bm))"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii 100307/T1w.nii.gz random_ctx_cerebellum.dscalar.nii"
@@ -226,9 +193,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "arr = abs(thickness[ctx, None] - thickness[None, ctx])\n",
@@ -238,9 +203,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii diff_thickness.dconn.nii"
@@ -255,10 +218,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "collapsed": true
-   },
+   "execution_count": null,
+   "metadata": {},
    "outputs": [],
    "source": [
     "parcels = cifti.Parcels.from_brain_models([('thin', bm_ctx[thickness[ctx] < 2]),\n",
@@ -266,7 +227,9 @@
     "                                           ('thick', bm_ctx[thickness[ctx] > 3]),\n",
     "                                          ])\n",
     "scl = cifti.Scalar.from_names(['rgb'])\n",
-    "label = scl.to_label([{1: ('red', (1, 0, 0, 1)), 2: ('green', (0, 1, 0, 1)), 3: ('blue', (0, 0, 1, 1))}])\n",
+    "label = scl.to_label([{1: ('red', (1, 0, 0, 1)),\n",
+    "                       2: ('green', (0, 1, 0, 1)),\n",
+    "                       3: ('blue', (0, 0, 1, 1))}])\n",
     "arr = np.array([[1, 2, 3]])\n",
     "cifti.write('labels.plabel.nii', arr, (label, parcels))"
    ]
@@ -275,109 +238,13 @@
    "cell_type": "code",
    "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\n",
-      "Info: Resources loaded:\n",
-      "   :/About   :/Cursor   :/Fonts   :/HelpFiles   :/LayersPanel   :/PaletteSettings   :/resources.qrc   :/SpecFileDialog   :/Splash   :/ToolBar   :/trolltech   :/update_resources.sh\n",
-      "\n",
-      "\n",
-      "Info: Time to color volume data is 0.581 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/T1w.nii.gz was 1.06257 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.L.inflated.32k_fs_LR.surf.gii was 0.111264 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.L.midthickness.32k_fs_LR.surf.gii was 0.019432 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.L.pial.32k_fs_LR.surf.gii was 0.019506 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.L.very_inflated.32k_fs_LR.surf.gii was 0.019134 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.L.white.32k_fs_LR.surf.gii was 0.018743 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.R.inflated.32k_fs_LR.surf.gii was 0.087767 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.R.midthickness.32k_fs_LR.surf.gii was 0.019677 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.R.pial.32k_fs_LR.surf.gii was 0.019088 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.R.very_inflated.32k_fs_LR.surf.gii was 0.019656 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/100307/fsaverage_LR32k/100307.R.white.32k_fs_LR.surf.gii was 0.018397 seconds.\n",
-      "\n",
-      "\n",
-      "Info: Time to read /Users/ndcn0236/Work/projects/pytreat-2018-practicals/talks/nibabel_cifti/labels.plabel.nii was 0.651135 seconds.\n",
-      "\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii 100307/T1w.nii.gz labels.plabel.nii"
    ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
-   "outputs": [],
-   "source": []
   }
  ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.2"
-  },
-  "toc": {
-   "colors": {
-    "hover_highlight": "#DAA520",
-    "running_highlight": "#FF0000",
-    "selected_highlight": "#FFD700"
-   },
-   "moveMenuLeft": true,
-   "nav_menu": {
-    "height": "176px",
-    "width": "252px"
-   },
-   "navigate_menu": true,
-   "number_sections": true,
-   "sideBar": true,
-   "threshold": 4,
-   "toc_cell": false,
-   "toc_section_display": "block",
-   "toc_window_display": false
-  }
- },
+ "metadata": {},
  "nbformat": 4,
  "nbformat_minor": 2
 }
diff --git a/talks/packages/packages.ipynb b/talks/packages/packages.ipynb
index 0c2b66f..84bc379 100644
--- a/talks/packages/packages.ipynb
+++ b/talks/packages/packages.ipynb
@@ -32,7 +32,10 @@
    "source": [
     "Numpy includes support for:\n",
     "- N-dimensional arrays with various datatypes\n",
-    "- basic functions (e.g., polynomials)\n",
+    "  - masked arrays\n",
+    "  - matrices\n",
+    "  - structured/record array\n",
+    "- basic functions (e.g., sin, log, arctan, polynomials)\n",
     "- basic linear algebra\n",
     "- random number generation\n",
     "\n",
@@ -513,91 +516,6 @@
     "## Neuroimage packages\n",
     "The [nipy](http://nipy.org/) ecosystem covers most of these.\n",
     "\n",
-    "### [CIFTI](https://github.com/MichielCottaar/cifti): easy creation/manipulation"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import nibabel\n",
-    "thickness = nibabel.load('100307/fsaverage_LR32k/100307.L.thickness.32k_fs_LR.shape.gii').darrays[0].data\n",
-    "thickness"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import cifti\n",
-    "ctx = thickness != 0\n",
-    "arr = np.random.rand(ctx.sum())\n",
-    "\n",
-    "bm_ctx = cifti.BrainModel.from_mask(ctx, name='CortexLeft')\n",
-    "sc = cifti.Scalar.from_names(['random'])\n",
-    "cifti.write('random_ctx.dscalar.nii', arr[None, :], (sc, bm_ctx))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii random_ctx.dscalar.nii"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "img = nibabel.load('100307/aparc+aseg.nii.gz')\n",
-    "cerebellum = img.get_data() == 8\n",
-    "\n",
-    "bm = bm_ctx + cifti.BrainModel.from_mask(cerebellum, name='CerebellumLeft', affine=img.affine)\n",
-    "sc = cifti.Scalar.from_names(['random'])\n",
-    "arr = np.random.rand(len(bm))\n",
-    "cifti.write('random_ctx_cerebellum.dscalar.nii', arr[None, :], (sc, bm))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii 100307/aparc+aseg.nii.gz random_ctx_cerebellum.dscalar.nii"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "arr = abs(thickness[ctx, None] - thickness[None, ctx])\n",
-    "cifti.write('diff_thickness.dconn.nii', arr, (bm_ctx, bm_ctx))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "!wb_view 100307/fsaverage_LR32k/100307.*.32k_fs_LR.surf.gii diff_thickness.dconn.nii"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
     "## [networkx](https://networkx.github.io/): graph theory\n",
     "\n",
     "## GUI\n",
-- 
GitLab