{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from nilearn import plotting\n", "from nilearn import image\n", "import nibabel as nb\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "\n", "melodic -i matMIGP.nii.gz \\\n", "\t--mask=data/brain_mask.nii.gz \\\n", "\t-d 20 \\\n", "\t-v \\\n", "\t--nobet \\\n", "\t--disableMigp \\\n", "\t--varnorm \\\n", "\t-o matMIGP_dim20.ica" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ics = nb.load('matMIGP_dim20.ica/melodic_IC.nii.gz')\n", "\n", "N = ics.shape[-1]\n", "\n", "fig, ax = plt.subplots(int(np.ceil((N/2))),2, figsize=(12, N))\n", "\n", "for img, ax0 in zip(image.iter_img(ics), ax.ravel()):\n", " coord = plotting.find_xyz_cut_coords(img, activation_threshold=2.3)\n", " plotting.plot_stat_map(img, cut_coords=coord, vmax=5, axes=ax0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }