{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import glob\n", "import random\n", "import nibabel as nb\n", "import numpy as np\n", "from scipy.sparse.linalg import svds, eigs\n", "import matplotlib.pyplot as plt\n", "from nilearn import plotting\n", "from nilearn import image" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "in_list = [nb.load(f) for f in glob.glob('data/cobre/fmri_*.nii.gz')]\n", "in_mask = nb.load('data/brain_mask.nii.gz')\n", "go = '3DMIGP'\n", "dPCA_int = 550\n", "dPCA_out = 100" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "random.shuffle(in_list)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mask = in_mask.get_fdata().ravel()\n", "\n", "def demean(x):\n", " return x - np.mean(x, axis=0)\n", "\n", "for i, f in enumerate(in_list):\n", " \n", " print(i, end=' ')\n", " \n", " # read data\n", " grot = f.get_fdata()\n", " grot = np.reshape(grot, [-1, grot.shape[-1]])\n", " grot = grot[mask!=0, :].T\n", " grot = demean(grot)\n", " \n", " # var-norm\n", " [uu, ss, vt] = svds(grot, k=30)\n", " vt[np.abs(vt) < (2.3 * np.std(vt))] = 0;\n", " stddevs = np.maximum(np.std(grot - (uu @ np.diag(ss) @ vt), axis=0), 0.001)\n", " grot = grot/stddevs\n", " \n", " if i == 0:\n", " W = demean(grot)\n", " else:\n", " # concat\n", " W = np.concatenate((W, demean(grot)), axis=0)\n", " \n", " # reduce W to dPCA_int eigenvectors\n", " if W.shape[0]-10 > dPCA_int:\n", " uu = eigs(W@W.T, dPCA_int)[1]\n", " uu = np.real(uu)\n", " W = uu.T @ W\n", " \n", " f.uncache()\n", " \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "grot = np.zeros([mask.shape[0], dPCA_out])\n", "grot[mask!=0, :] = W[:dPCA_out, :].T\n", "grot = np.reshape(grot, in_list[0].shape[:3] + (dPCA_out,))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nb.Nifti1Image(grot, affine=in_list[0].affine, header=in_list[0].header).to_filename('pyMIGP.nii.gz')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "\n", "melodic -i pyMIGP.nii.gz \\\n", "\t--mask=data/brain_mask.nii.gz \\\n", "\t-d 20 \\\n", "\t-v \\\n", "\t--nobet \\\n", "\t--disableMigp \\\n", "\t--varnorm \\\n", "\t-o pymigp_dim20.ica" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ics = nb.load('pymigp_dim20.ica/melodic_IC.nii.gz')\n", "\n", "N = ics.shape[-1]\n", "\n", "fig, ax = plt.subplots(int(np.ceil((N/2))),2, figsize=(12, N))\n", "\n", "for img, ax0 in zip(image.iter_img(ics), ax.ravel()):\n", " coord = plotting.find_xyz_cut_coords(img, activation_threshold=1.5)\n", " plotting.plot_stat_map(img, cut_coords=coord, vmax=5, axes=ax0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }