diff --git a/fsl/data/featimage.py b/fsl/data/featimage.py index fa7c4681de4bd4da1d2a0295eccc2e21f65ceca6..e8e95b6f89ec2294db471e6b538388c9c072f831 100644 --- a/fsl/data/featimage.py +++ b/fsl/data/featimage.py @@ -6,6 +6,7 @@ # """This module provides the :class:`FEATImage` class, a subclass of :class:`.Image` designed to encapsulate data from a FEAT analysis. +This module also provides the :func:`modelFit` function. """ @@ -291,7 +292,7 @@ class FEATImage(fslimage.Image): def fit(self, contrast, xyz): """Calculates the model fit for the given contrast vector - at the given voxel. + at the given voxel. See the :func:`modelFit` function. :arg contrast: The contrast vector (pass all 1s for a full model fit). @@ -310,48 +311,11 @@ class FEATImage(fslimage.Image): if len(contrast) != numEVs: raise ValueError('Contrast is wrong length') - # Here we are basically trying to - # replicate the behaviour of tsplot. - # There are some differences though - - # by default, tsplot weights the - # data by Z statistics. We're not - # doing that here. - - # Normalise the contrast vector. - # The scaling factor is arbitrary, - # but should result in a visually - # sensible scaling of the model fit. - # For a vector of all 1's (i.e. a - # full model fit) this is a no-op. - # - # We also take the absolute value - # of the values in the contrast - # vector, as the parameter estimates - # should be appropriately signed, - # so we don't negative contrast - # vector values to invert them. - contrast = np.array(contrast) - nonzero = sum(~np.isclose(contrast, 0)) - contrast = contrast / np.sqrt((contrast ** 2).sum()) - contrast = np.abs(contrast * np.sqrt(nonzero)) - - X = self.__design.getDesign(xyz) - data = self[x, y, z, :] - modelfit = np.zeros(len(data)) - - for i in range(numEVs): - - ev = X[:, i] - pe = self.getPE(i)[x, y, z] - modelfit += ev * pe * contrast[i] - - # Make sure the model fit has an - # appropriate mean. The data in - # first level analyses is demeaned - # before model fitting, so we need - # to add it back in. - if firstLevel: return modelfit + data.mean() - else: return modelfit + design = self.getDesign(xyz) + data = self[x, y, z, :] + pes = [self.getPE(i)[x, y, z] for i in range(numEVs)] + + return modelFit(data, design, contrast, pes, firstLevel) def partialFit(self, contrast, xyz): @@ -366,3 +330,65 @@ class FEATImage(fslimage.Image): modelfit = self.fit(contrast, xyz) return residuals + modelfit + + +def modelFit(data, design, contrast, pes, firstLevel=True): + """Calculates the model fit to the given data for the given contrast + vector. + + :arg data: The input data + + :arg design: The design matrix + + :arg contrast: The contrast vector (pass all 1s for a full model + fit) + + :arg pes: Parameter estimates for each EV in the design matrix + + :arg firstLevel: If ``True`` (the default), the mean of the input + data is added to the result. + + :returns: The best fit of the model to the data. + """ + + # Here we are basically trying to + # replicate the behaviour of tsplot. + # There are some differences though - + # by default, tsplot weights the + # data by Z statistics. We're not + # doing that here. + + # Normalise the contrast vector. + # The scaling factor is arbitrary, + # but should result in a visually + # sensible scaling of the model fit. + # For a vector of all 1's (i.e. a + # full model fit) this is a no-op. + # + # We also take the absolute value + # of the values in the contrast + # vector, as the parameter estimates + # should be appropriately signed, + # so we don't want negative contrast + # vector values to invert them. + contrast = np.array(contrast) + nevs = len(contrast) + nonzero = sum(~np.isclose(contrast, 0)) + contrast = contrast / np.sqrt((contrast ** 2).sum()) + contrast = np.abs(contrast * np.sqrt(nonzero)) + + modelfit = np.zeros(len(data)) + + for i in range(nevs): + + ev = design[:, i] + pe = pes[i] + modelfit += ev * pe * contrast[i] + + # Make sure the model fit has an + # appropriate mean. The data in + # first level analyses is demeaned + # before model fitting, so we need + # to add it back in. + if firstLevel: return modelfit + data.mean() + else: return modelfit