From 56fa033fd378f71687d2f53fbef90c4082188f5a Mon Sep 17 00:00:00 2001 From: Paul McCarthy <pauldmccarthy@gmail.com> Date: Fri, 6 Oct 2017 12:33:45 +0100 Subject: [PATCH] Resample method now has a smoothing option, because otherwise interpolation has no effect when downsampling to a new shape where voxel centres are aligned. --- fsl/data/image.py | 71 +++++++++++++++++++++++++++++++++-------------- 1 file changed, 50 insertions(+), 21 deletions(-) diff --git a/fsl/data/image.py b/fsl/data/image.py index 7a1000540..f914e1094 100644 --- a/fsl/data/image.py +++ b/fsl/data/image.py @@ -1131,21 +1131,37 @@ class Image(Nifti): self.notify(topic='saveState') - def resample(self, shape, sliceobj=None, dtype=None, **kwargs): + def resample(self, + newShape, + sliceobj=None, + dtype=None, + order=1, + smooth=True): """Returns a copy of the data in this ``Image``, resampled to the specified ``shape``. - :arg shape: Desired shape - - :arg dtype: ``numpy`` data type of the resampled data. If ``None``, - the :meth:`dtype` of this ``Image`` is used. + :arg newShape: Desired shape. May containg floating point values, + in which case the resampled image will have shape + ``round(newShape)``, but the voxel sizes will + have scales ``self.shape / newShape``. :arg sliceobj: Slice into this ``Image``. If ``None``, the whole image is resampled, and it is assumed that it has the same number of dimensions as ``shape``. - All other arguments are passed through to the ``scipy.ndimage.zoom`` - function. + :arg dtype: ``numpy`` data type of the resampled data. If ``None``, + the :meth:`dtype` of this ``Image`` is used. + + :arg order: Spline interpolation order, passed through to the + ``scipy.ndimage.affine_transform`` function - ``0`` + corresponds to nearest neighbour interpolation, ``1`` + (the default) to linear interpolation, and ``3`` to + cubic interpolation. + + :arg smooth: If ``True`` (the default), the data is smoothed before + being resampled, but only along axes which are being + down-sampled (i.e. where + ``newShape[i] < self.shape[i]``). :returns: A tuple containing: @@ -1160,29 +1176,42 @@ class Image(Nifti): if sliceobj is None: sliceobj = slice(None) if dtype is None: dtype = self.dtype - ndims = len(shape) - data = self[sliceobj] - data = np.array(data, dtype=dtype, copy=False) + data = self[sliceobj] + data = np.array(data, dtype=dtype, copy=False) + + oldShape = np.array(data.shape) + newShape = np.array(newShape) + + if not np.all(np.isclose(oldShape, newShape)): - if tuple(data.shape) != tuple(shape): + ratio = oldShape / newShape + newShape = np.array(np.round(newShape), dtype=np.int) + scale = transform.scaleOffsetXform(ratio, 0) - oldShape = data.shape - zooms = [float(data.shape[i]) / shape[i] for i in range(ndims)] - zooms = np.diag(zooms) + # If interpolating and smoothing, we apply a + # gaussian filter along axes with a resampling + # ratio greater than 1.1. We do this so that + # interpolation has an effect when down-sampling + # to a resolution where the voxel centres are + # aligned (as otherwise any interpolation regime + # will be equivalent to nearest neighbour). This + # more-or-less mimics the behaviour of FLIRT. + if order > 0 and smooth: + sigma = np.array(ratio) + sigma[ratio < 1.1] = 0 + sigma[ratio >= 1.1] *= 0.425 + data = ndimage.gaussian_filter(data, sigma) data = ndimage.affine_transform(data, - zooms, - output_shape=shape, - **kwargs) + scale[:3, :3], + output_shape=newShape, + order=order) # Construct an affine transform which # puts the resampled image into the # same world coordinate system as this # image. - newShape = data.shape - scale = [os / float(ns) for os, ns in zip(oldShape, newShape)] - scale = transform.scaleOffsetXform(scale, 0) - xform = transform.concat(self.voxToWorldMat, scale) + xform = transform.concat(self.voxToWorldMat, scale) else: xform = self.voxToWorldMat -- GitLab