From 5870a4f6407a3b6083ec0eaedbbf8a23598045a5 Mon Sep 17 00:00:00 2001
From: Paul McCarthy <pauld.mccarthy@gmail.com>
Date: Sun, 16 Apr 2017 13:27:03 +0100
Subject: [PATCH] featimage module unit tests. Needs more.

---
 tests/__init__.py        |  99 +++++++++++++++++++++++---
 tests/test_featdesign.py |  30 +++-----
 tests/test_featimage.py  | 150 +++++++++++++++++++++++++++++++++++++++
 3 files changed, 252 insertions(+), 27 deletions(-)
 create mode 100644 tests/test_featimage.py

diff --git a/tests/__init__.py b/tests/__init__.py
index 3b89f3a30..c35bd760b 100644
--- a/tests/__init__.py
+++ b/tests/__init__.py
@@ -7,12 +7,14 @@
 """Unit tests for ``fslpy``. """
 
 
-import            os
-import            shutil
-import            tempfile
-import os.path as op
-import numpy   as np
-import nibabel as nib
+import              os
+import              glob
+import              shutil
+import              tempfile
+import itertools as it
+import os.path   as op
+import numpy     as np
+import nibabel   as nib
 
 
 def testdir(contents=None):
@@ -102,14 +104,95 @@ def cleardir(dir):
         elif op.isdir(f):  shutil.rmtree(f)
 
 
-def make_random_image(filename, dims=(10, 10, 10)):
+def make_random_image(filename, dims=(10, 10, 10), xform=None):
     """Creates a NIFTI1 image with random data, saves and
     returns it.
     """
 
+    if xform is None:
+        xform = np.eye(4)
+
     data = np.array(np.random.random(dims) * 100, dtype=np.float32)
-    img  = nib.Nifti1Image(data, np.eye(4))
+    img  = nib.Nifti1Image(data, xform)
 
     nib.save(img, filename)
 
     return img
+
+def make_mock_feat_analysis(featdir,
+                            testdir,
+                            shape4D,
+                            xform=None,
+                            indata=True,
+                            voxEVs=True,
+                            pes=True,
+                            copes=True,
+                            zstats=True,
+                            residuals=True,
+                            clustMasks=True):
+
+    if xform is None:
+        xform = np.eye(4)
+
+    timepoints = shape4D[ 3]
+    shape      = shape4D[:3]
+
+    src     = featdir
+    dest    = op.join(testdir, op.basename(featdir))
+    featdir = dest 
+    
+    shutil.copytree(src, dest)
+
+    if indata:
+        filtfunc = op.join(featdir, 'filtered_func_data.nii.gz')
+        make_random_image(filtfunc, shape4D, xform)
+
+    # and some dummy voxelwise EV files
+    if voxEVs:
+        voxFiles = list(it.chain(
+            glob.glob(op.join(featdir, 'designVoxelwiseEV*nii.gz')),
+            glob.glob(op.join(featdir, 'InputConfoundEV*nii.gz'))))
+
+        for i, vf in enumerate(voxFiles):
+
+            # Each voxel contains range(i, i + timepoints),
+            # offset by the flattened voxel index
+            data = np.meshgrid(*[range(s) for s in shape], indexing='ij')
+            data = np.ravel_multi_index(data, shape)
+            data = data.reshape(list(shape) + [1]).repeat(timepoints, axis=3)
+            data[..., :] += range(i, i + timepoints)
+
+            nib.save(nib.nifti1.Nifti1Image(data, xform), vf)
+
+    otherFiles  = []
+    otherShapes = []
+
+    if pes:
+        files = glob.glob(op.join(featdir, 'stats', 'pe*nii.gz'))
+        otherFiles .extend(files)
+        otherShapes.extend([shape] * len(files))
+
+    if copes:
+        files = glob.glob(op.join(featdir, 'stats', 'cope*nii.gz'))
+        otherFiles .extend(files)
+        otherShapes.extend([shape] * len(files)) 
+
+    if zstats:
+        files = glob.glob(op.join(featdir, 'stats', 'zstat*nii.gz'))
+        otherFiles .extend(files)
+        otherShapes.extend([shape] * len(files)) 
+    
+    if residuals:
+        files = glob.glob(op.join(featdir, 'stats', 'res4d.nii.gz'))
+        otherFiles .extend(files)
+        otherShapes.extend([shape4D]) 
+    
+    if clustMasks:
+        files = glob.glob(op.join(featdir, 'cluster_mask*nii.gz'))
+        otherFiles .extend(files)
+        otherShapes.extend([shape] * len(files))
+
+    for f, s in zip(otherFiles, otherShapes):
+        make_random_image(f, s, xform)
+
+    return featdir
diff --git a/tests/test_featdesign.py b/tests/test_featdesign.py
index 5b392bd2e..412503e55 100644
--- a/tests/test_featdesign.py
+++ b/tests/test_featdesign.py
@@ -136,25 +136,17 @@ def test_FEATFSFDesign_firstLevelVoxelwiseEV(seed):
         # and generate some dummy data for
         # the voxelwise EVs.
         featdir    = op.join(testdir, '1stlevel_2.feat')
-        shape      = (64, 64, 5)
-        timepoints = 45
-        
-        shutil.copytree(template, featdir)
- 
-        voxFiles = list(it.chain(
-            glob.glob(op.join(featdir, 'designVoxelwiseEV*nii.gz')),
-            glob.glob(op.join(featdir, 'InputConfoundEV*nii.gz'))))
-
-        for i, vf in enumerate(voxFiles):
-
-            # Each voxel contains range(i, i + timepoints),
-            # offset by the flattened voxel index
-            data = np.meshgrid(*[range(s) for s in shape], indexing='ij')
-            data = np.ravel_multi_index(data, shape)
-            data = data.reshape(list(shape) + [1]).repeat(timepoints, axis=3)
-            data[..., :] += range(i, i + timepoints)
-            
-            fslimage.Image(data).save(vf)
+        shape4D    = (64, 64, 5, 45)
+        shape      = shape4D[:3]
+
+        featdir = tests.make_mock_feat_analysis(
+            template, testdir, shape4D,
+            indata=False,
+            pes=False,
+            copes=False,
+            zstats=False,
+            residuals=False,
+            clusterMasks=False)
 
         # Now load the design, and make sure that
         # the voxel EVs are filled correctly
diff --git a/tests/test_featimage.py b/tests/test_featimage.py
new file mode 100644
index 000000000..edcc5a187
--- /dev/null
+++ b/tests/test_featimage.py
@@ -0,0 +1,150 @@
+#!/usr/bin/env python
+#
+# test_featimage.py -
+#
+# Author: Paul McCarthy <pauldmccarthy@gmail.com>
+#
+
+
+import os.path   as op
+import              os
+import itertools as it
+import              glob
+import              shutil
+
+import numpy   as np
+
+import pytest
+
+import tests
+import fsl.data.featimage    as featimage
+import fsl.data.featdesign   as featdesign
+import fsl.data.featanalysis as featanalysis
+
+
+datadir    = op.join(op.dirname(__file__), 'testdata', 'test_feat')
+featdirs   = ['1stlevel_1.feat', '1stlevel_2.feat', '1stlevel_2.feat',
+              '2ndlevel_1.gfeat/cope1.feat', '2ndlevel_1.gfeat/cope2.feat',
+              '2ndlevel_2.gfeat/cope1.feat', '2ndlevel_2.gfeat/cope2.feat']
+shapes = [(64,  64,  5, 45),
+          (64,  64,  5, 45),
+          (64,  64,  5, 45),
+          (91, 109, 91,  3),
+          (91, 109, 91,  3),
+          (91, 109, 91,  3),
+          (91, 109, 91,  3)]
+xforms = [[[-4, 0, 0,    0],
+           [ 0, 4, 0,    0],
+           [ 0, 0, 6,    0],
+           [ 0, 0, 0,    1]]] * 3 + \
+         [[[-2, 0, 0,   90],
+           [ 0, 2, 0, -126],
+           [ 0, 0, 2,  -72],
+           [ 0, 0, 0,    1]]] * 4
+xforms = [np.array(xf) for xf in xforms]
+              
+TEST_ANALYSES = list(zip(
+    featdirs,
+    shapes,
+    xforms))
+
+
+def test_FEATImage_attributes():
+
+    for i, featdir in enumerate(featdirs):
+        with tests.testdir() as testdir:
+
+            featdir = tests.make_mock_feat_analysis(
+                op.join(datadir, featdir),
+                testdir,
+                shapes[i],
+                xforms[i],
+                pes=False,
+                copes=False,
+                zstats=False,
+                residuals=False,
+                clustMasks=False)
+
+            # Now create a FEATImage. We validate its
+            # attributes against the values returned by
+            # the functions in featdesign/featanalysis.
+            fi       = featimage.FEATImage(featdir)
+            settings = featanalysis.loadSettings(featdir)
+            design   = featdesign.FEATFSFDesign(featdir, settings)
+            desmat   = design.getDesign()
+            evnames  = [ev.title for ev in design.getEVs()]
+            contrastnames, contrasts = featanalysis.loadContrasts(featdir)
+
+            assert fi.getFEATDir()             == featdir
+            assert fi.getAnalysisName()        == op.splitext(op.basename(featdir))[0]
+            assert fi.isFirstLevelAnalysis()   == featanalysis.isFirstLevelAnalysis(settings)
+            assert fi.getTopLevelAnalysisDir() == featanalysis.getTopLevelAnalysisDir(featdir)
+            assert fi.getReportFile()          == featanalysis.getReportFile(featdir)
+            assert fi.hasStats()               == featanalysis.hasStats(featdir)
+            assert fi.numPoints()              == desmat.shape[0]
+            assert fi.numEVs()                 == desmat.shape[1]
+            assert fi.evNames()                == evnames
+            assert fi.numContrasts()           == len(contrasts)
+            assert fi.contrastNames()          == contrastnames
+            assert fi.contrasts()              == contrasts
+            assert np.all(np.isclose(fi.getDesign(), desmat))
+
+            assert fi.thresholds() == featanalysis.getThresholds(settings)
+
+            for ci in range(len(contrasts)):
+                result = fi.clusterResults(ci)
+                expect = featanalysis.loadClusterResults(featdir, settings, ci)
+                assert len(result) == len(expect)
+                assert all([rc.nvoxels == ec.nvoxels for rc, ec in zip(result, expect)])
+
+
+def test_FEATImage_imageAccessors():
+
+    for i, featdir in enumerate(featdirs):
+        with tests.testdir() as testdir:
+            featdir = tests.make_mock_feat_analysis(
+                op.join(datadir, featdir),
+                testdir,
+                shapes[i],
+                xforms[i])
+
+            shape4D    = shapes[  i]
+            shape      = shape4D[:3]
+
+            fi    = featimage.FEATImage(featdir)
+            nevs  = fi.numEVs()
+            ncons = fi.numContrasts()
+
+            # Testing the FEATImage intenral cache
+            for i in range(2):
+                assert fi.getResiduals().shape == shape4D
+
+                for ev in range(nevs):
+                    assert fi.getPE(ev).shape == shape
+                for con in range(ncons):
+                    assert fi.getCOPE(       con).shape == shape
+                    assert fi.getZStats(     con).shape == shape
+                    assert fi.getClusterMask(con).shape == shape
+            
+
+
+def test_FEATImage_fit_firstLevel():
+    featdir = ''
+    fi      = featimage.FEATImage(featdir) 
+    fi.fit(0, (0, 0, 0))
+
+
+def test_FEATImage_fit_higherLevel():
+    featdir = ''
+    fi      = featimage.FEATImage(featdir) 
+    fi.fit(0, (0, 0, 0)) 
+
+
+def test_FEATImage_partialFit():
+    featdir = ''
+    fi      = featimage.FEATImage(featdir) 
+    fi.fit(0, (0, 0, 0))
+
+
+def test_FEATImage_nostats():
+    pass 
-- 
GitLab