From 9924ee86aace336452543ca6faddd92ebc3ff110 Mon Sep 17 00:00:00 2001 From: Paul McCarthy <pauldmccarthy@gmail.com> Date: Tue, 9 Apr 2019 12:33:41 +0100 Subject: [PATCH] RF: Changed shape.affine generation methods to be staticmethods, as they may be useful outside of the Nifti class (for testing, at least) --- fsl/data/image.py | 36 +++++++++++++++++++++++++----------- 1 file changed, 25 insertions(+), 11 deletions(-) diff --git a/fsl/data/image.py b/fsl/data/image.py index 6832e560f..5570be15f 100644 --- a/fsl/data/image.py +++ b/fsl/data/image.py @@ -244,7 +244,7 @@ class Nifti(notifier.Notifier, meta.Meta): raise ValueError('Unrecognised header: {}'.format(header)) header = header - origShape, shape, pixdim = self.__determineShape(header) + origShape, shape, pixdim = Nifti.determineShape(header) self.header = header self.__shape = shape @@ -253,14 +253,15 @@ class Nifti(notifier.Notifier, meta.Meta): self.__intent = header.get('intent_code', constants.NIFTI_INTENT_NONE) - voxToWorldMat = self.__determineAffine(header) - affines, isneuro = self.__generateAffines(voxToWorldMat) + voxToWorldMat = Nifti.determineAffine(header) + affines, isneuro = Nifti.generateAffines(voxToWorldMat, shape, pixdim) self.__affines = affines self.__isNeurological = isneuro - def __determineShape(self, header): + @staticmethod + def determineShape(header): """This method is called by :meth:`__init__`. It figures out the actual shape of the image data, and the zooms/pixdims for each data axis. Any empty trailing dimensions are squeezed, but the returned shape is @@ -287,10 +288,17 @@ class Nifti(notifier.Notifier, meta.Meta): pixdims = pixdims[:len(shape)] + # should never happen, but if we only + # have zoom values for the original + # (< 3D) shape, pad them with 1s. + if len(pixdims) < len(shape): + pixdims = pixdims + [1] * (len(shape) - len(pixdims)) + return origShape, shape, pixdims - def __determineAffine(self, header): + @staticmethod + def determineAffine(header): """Called by :meth:`__init__`. Figures out the voxel-to-world coordinate transformation matrix that is associated with this ``Nifti`` instance. @@ -333,7 +341,8 @@ class Nifti(notifier.Notifier, meta.Meta): return voxToWorldMat - def __generateAffines(self, voxToWorldMat): + @staticmethod + def generateAffines(voxToWorldMat, shape, pixdim): """Called by :meth:`__init__`, and the :meth:`voxToWorldMat` setter. Generates and returns a dictionary containing affine transformations between the ``voxel``, ``fsl``, and ``world`` coordinate @@ -341,6 +350,9 @@ class Nifti(notifier.Notifier, meta.Meta): method. :arg voxToWorldMat: The voxel-to-world affine transformation + :arg shape: Image shape (number of voxels along each dimension + :arg pixdim: Image pixdims (size of one voxel along each + dimension) :returns: A tuple containing: - a dictionary of affine transformations between @@ -353,8 +365,8 @@ class Nifti(notifier.Notifier, meta.Meta): import numpy.linalg as npla affines = {} - shape = list(self.shape[ :3]) - pixdim = list(self.pixdim[:3]) + shape = list(shape[ :3]) + pixdim = list(pixdim[:3]) voxToScaledVoxMat = np.diag(pixdim + [1.0]) isneuro = npla.det(voxToWorldMat) > 0 @@ -370,8 +382,8 @@ class Nifti(notifier.Notifier, meta.Meta): affines['fsl', 'voxel'] = transform.invert(voxToScaledVoxMat) affines['fsl', 'world'] = transform.concat(affines['voxel', 'world'], affines['fsl', 'voxel']) - affines['world', 'fsl'] = transform.concat(affines['fsl', 'voxel'], - affines['voxel', 'world']) + affines['world', 'fsl'] = transform.concat(affines['voxel', 'fsl'], + affines['world', 'voxel']) return affines, isneuro @@ -546,7 +558,9 @@ class Nifti(notifier.Notifier, meta.Meta): header.set_sform(xform, code=sformCode) - affines, isneuro = self.__generateAffines(xform) + affines, isneuro = Nifti.generateAffines(xform, + self.shape, + self.pixdim) self.__affines = affines self.__isNeurological = isneuro -- GitLab