diff --git a/fsl/data/featresults.py b/fsl/data/featresults.py index 9901e55e51a118b9d82347bf86421c019a7bec7e..4d3ae675f55fd62f516e0d0ede4e28b7a3537223 100644 --- a/fsl/data/featresults.py +++ b/fsl/data/featresults.py @@ -10,10 +10,13 @@ contents of a FEAT analysis directory. """ -import logging -import glob -import os.path as op -import numpy as np +import logging +import glob +import os.path as op +import numpy as np + +import fsl.data.image as fslimage +import fsl.utils.transform as transform log = logging.getLogger(__name__) @@ -197,12 +200,59 @@ def loadClusterResults(featdir, settings, contrast): An error will be raised if the cluster file cannot be parsed. """ + # Cluster files are named like + # 'cluster_zstatX.txt', where + # X is the COPE number. And + # the ZMax/COG etc coordinates + # are usually in voxel coordinates + coordXform = np.eye(4) + clusterFile = op.join( + featdir, 'cluster_zstat{}.txt'.format(contrast + 1)) + + + if not op.exists(clusterFile): + + # If the analysis was performed in standard + # space (e.g. a higher level group analysis), + # the cluster file will instead be called + # 'cluster_zstatX_std.txt', so we'd better + # check for that too. + clusterFile = op.join( + featdir, 'cluster_zstat{}_std.txt'.format(contrast + 1)) + + # In higher levle analysis run in some standard + # space, the cluster coordinates are in standard + # space. We transform them to voxel coordinates. + # later on. + coordXform = fslimage.Image( + getDataFile(featdir), + loadData=False).worldToVoxMat.T + + if not op.exists(clusterFile): + return None + + log.debug('Loading cluster results for contrast {} from {}'.format( + contrast, clusterFile)) + + # The cluster.txt file is converted + # into a list of Cluster objects, + # each of which encapsulates + # information about one cluster. + class Cluster(object): + def __init__(self, **kwargs): + for name, val in kwargs.items(): + + attrName, atype = colmap[name] + if val is not None: + val = atype(val) + + setattr(self, attrName, val) + # This dict provides a mapping between - # Cluster object (see below) attribute - # names, and the corresponding column - # name in the cluster.txt file. And the - # value type is thrown in as well, for - # good measure. + # Cluster object attribute names, and + # the corresponding column name in the + # cluster.txt file. And the value type + # is thrown in as well, for good measure. colmap = { 'Cluster Index' : ('index', int), 'Voxels' : ('nvoxels', int), @@ -230,51 +280,6 @@ def loadClusterResults(featdir, settings, contrast): 'COPE-MAX Z (mm)' : ('copemaxz', int), 'COPE-MEAN' : ('copemean', float)} - # The cluster.txt file is converted - # into a list of Cluster objects, - # each of which encapsulates - # information about one cluster. - # - # TODO The coordinates (e.g. 'ZMAX X (mm)') - # for standard space results (in e.g. - # 'cluster_zstatX_std.txt') are in MNI152 - # space coordinates, and need to be - # transformed into voxel coordinates. Or a - # flag needs to be set on the Cluster object - # so users know that the coordinates are in - # standard space. - class Cluster(object): - def __init__(self, **kwargs): - for name, val in kwargs.items(): - - attrName, atype = colmap[name] - if val is not None: - val = atype(val) - - setattr(self, attrName, val) - - # Cluster files are named like - # 'cluster_zstatX.txt', where - # X is the COPE number - clusterFile = op.join( - featdir, 'cluster_zstat{}.txt'.format(contrast + 1)) - - if not op.exists(clusterFile): - - # If the analysis was performed in standard - # space (e.g. a higher level group analysis), - # the cluster file will instead be called - # cluster_zstatX_std.txt', so we'd better - # check for that too. - clusterFile = op.join( - featdir, 'cluster_zstat{}_std.txt'.format(contrast + 1)) - - if not op.exists(clusterFile): - return None - - log.debug('Loading cluster results for contrast {} from {}'.format( - contrast, clusterFile)) - # An error will be raised if the # cluster file does not exist (e.g. # if the specified contrast index @@ -309,7 +314,23 @@ def loadClusterResults(featdir, settings, contrast): # are unrecognised (i.e. not in # the colmap above), or if the # file is poorly formed. - return [Cluster(**dict(zip(colNames, cl))) for cl in clusterLines] + clusters = [Cluster(**dict(zip(colNames, cl))) for cl in clusterLines] + + # Make sure all coordinates are in voxels - + # for first level analyses, the coordXform + # will be an identity transform (the coords + # are already in voxels). But for higher + # level, the coords are in mm, and need to + # be transformed to voxels. + for c in clusters: + c.zmaxx, c.zmaxy, c.zmaxz = transform.transform( + [[c.zmaxx, c.zmaxy, c.zmaxz]], coordXform)[0] + c.zcogx, c.zcogy, c.zcogz = transform.transform( + [[c.zcogx, c.zcogy, c.zcogz]], coordXform)[0] + c.copemaxx, c.copemaxy, c.copemaxz = transform.transform( + [[c.copemaxx, c.copemaxy, c.copemaxz]], coordXform)[0] + + return clusters def getDataFile(featdir): diff --git a/fsl/fslview/views/canvaspanel.py b/fsl/fslview/views/canvaspanel.py index 6c308e74f5a356dea0b732ba3e930eaa7d6319bb..d275473600c47c61ead4332997c0d820e8336fbd 100644 --- a/fsl/fslview/views/canvaspanel.py +++ b/fsl/fslview/views/canvaspanel.py @@ -169,7 +169,7 @@ class CanvasPanel(viewpanel.ViewPanel): syncOverlayDisplay = props.Boolean(default=True) movieMode = props.Boolean(default=False) movieRate = props.Int(minval=100, - maxval=2000, + maxval=1000, default=250, clamped=True)