#!/usr/bin/env python # # featimage.py - An Image subclass which has some FEAT-specific functionality. # # Author: Paul McCarthy <pauldmccarthy@gmail.com> # """This module provides the :class:`FEATImage` class, a subclass of :class:`.Image` designed to encapsulate data from a FEAT analysis. """ import os.path as op import numpy as np import image as fslimage import featresults class FEATImage(fslimage.Image): """An ``Image`` from a FEAT analysis. The :class:`FEATImage` class makes use of the functions defined in the :mod:`.featresults` module. An example of using the ``FEATImage`` class:: import fsl.data.featimage as featimage # You can pass in the name of the # .feat/.gfeat directory, or any # file contained within that directory. img = featimage.FEATImage('myanalysis.feat/filtered_func_data.nii.gz') # Query information about the FEAT analysis print img.numEVs() print img.contrastNames() print img.numPoints() # Get the model fit residuals res4d = img.getResiduals() # Get the full model fit for voxel # [23, 30, 42] (in this example, we # have 4 EVs - the first argument # is a contrast vector). img.fit([1, 1, 1, 1], [23, 30, 42], fullmodel=True) """ def __init__(self, path, **kwargs): """Create a ``FEATImage`` instance. :arg path: A FEAT analysis directory, or an image file contained within such a directory. :arg kwargs: Passed to the :class:`.Image` constructor. .. note:: If a FEAT directory is passed in for the ``path`` argument, this ``FEATImage`` instance will encapsulate the model input data, typically called ``<directory>.feat/filtered_func_data.nii.gz``. """ if op.isdir(path): path = op.join(path, 'filtered_func_data') if not featresults.isFEATImage(path): raise ValueError('{} does not appear to be data ' 'from a FEAT analysis'.format(path)) featDir = op.dirname(path) settings = featresults.loadSettings( featDir) if featresults.hasStats(featDir): design = featresults.loadDesign( featDir) names, cons = featresults.loadContrasts(featDir) else: design = np.zeros((0, 0)) names, cons = [], [] fslimage.Image.__init__(self, path, **kwargs) self.__analysisName = op.splitext(op.basename(featDir))[0] self.__featDir = featDir self.__design = design self.__contrastNames = names self.__contrasts = cons self.__settings = settings self.__evNames = featresults.getEVNames(settings) self.__residuals = None self.__pes = [None] * self.numEVs() self.__copes = [None] * self.numContrasts() self.__zstats = [None] * self.numContrasts() self.__clustMasks = [None] * self.numContrasts() if 'name' not in kwargs: self.name = '{}: {}'.format(self.__analysisName, self.name) def getFEATDir(self): """Returns the FEAT directory this image is contained in.""" return self.__featDir def getAnalysisName(self): """Returns the FEAT analysis name, which is the FEAT directory name, minus the ``.feat`` / ``.gfeat`` suffix. """ return self.__analysisName def getTopLevelAnalysisDir(self): """Returns the path to the higher level analysis directory of which this FEAT analysis is a part, or ``None`` if this analysis is not part of another analysis. """ return featresults.getTopLevelAnalysisDir(self.__featDir) def hasStats(self): """Returns ``True`` if the analysis for this ``FEATImage`` contains a statistical analysis. """ return self.__design.size > 0 def getDesign(self): """Returns the analysis design matrix as a :mod:`numpy` array with shape :math:`numPoints\\times numEVs`. """ return np.array(self.__design) def numPoints(self): """Returns the number of points (e.g. time points, number of subjects, etc) in the analysis. """ return self.__design.shape[0] def numEVs(self): """Returns the number of explanatory variables (EVs) in the analysis. """ return self.__design.shape[1] def evNames(self): """Returns a list containing the name of each EV in the analysis.""" return list(self.__evNames) def numContrasts(self): """Returns the number of contrasts in the analysis.""" return len(self.__contrasts) def contrastNames(self): """Returns a list containing the name of each contrast in the analysis. """ return list(self.__contrastNames) def contrasts(self): """Returns a list containing the analysis contrast vectors. See :func:`.featresults.loadContrasts` """ return [list(c) for c in self.__contrasts] def thresholds(self): """Returns the statistical thresholds used in the analysis. See :func:`.featresults.getThresholds` """ return featresults.getThresholds(self.__settings) def clusterResults(self, contrast): """Returns the clusters found in the analysis. See :func:.featresults.loadClusterResults` """ return featresults.loadClusterResults(self.__featDir, self.__settings, contrast) def getPE(self, ev): """Returns the PE image for the given EV (0-indexed). """ if self.__pes[ev] is None: pefile = featresults.getPEFile(self.__featDir, ev) self.__pes[ev] = fslimage.Image( pefile, name='{}: PE{} ({})'.format( self.__analysisName, ev + 1, self.evNames()[ev])) return self.__pes[ev] def getResiduals(self): """Returns the residuals of the full model fit. """ if self.__residuals is None: resfile = featresults.getResidualFile(self.__featDir) self.__residuals = fslimage.Image( resfile, name='{}: residuals'.format(self.__analysisName)) return self.__residuals def getCOPE(self, con): """Returns the COPE image for the given contrast (0-indexed). """ if self.__copes[con] is None: copefile = featresults.getPEFile(self.__featDir, con) self.__copes[con] = fslimage.Image( copefile, name='{}: COPE{} ({})'.format( self.__analysisName, con + 1, self.contrastNames()[con])) return self.__copes[con] def getZStats(self, con): """Returns the Z statistic image for the given contrast (0-indexed). """ if self.__zstats[con] is None: zfile = featresults.getZStatFile(self.__featDir, con) self.__zstats[con] = fslimage.Image( zfile, name='{}: zstat{} ({})'.format( self.__analysisName, con + 1, self.contrastNames()[con])) return self.__zstats[con] def getClusterMask(self, con): """Returns the cluster mask image for the given contrast (0-indexed). """ if self.__clustMasks[con] is None: mfile = featresults.getClusterMaskFile(self.__featDir, con) self.__clustMasks[con] = fslimage.Image( mfile, name='{}: cluster mask for zstat{} ({})'.format( self.__analysisName, con + 1, self.contrastNames()[con])) return self.__clustMasks[con] def fit(self, contrast, xyz, fullmodel=False): """Calculates the model fit for the given contrast vector at the given voxel. Passing in a contrast of all 1s, and ``fullmodel=True`` will get you the full model fit. Pass in ``fullmodel=False`` for all other contrasts, otherwise the model fit values will not be scaled correctly. :arg contrast: The contrast vector (pass all 1s for a full model fit). :arg xyz: Coordinates of the voxel to calculate the model fit for. :arg fullmodel: Set to ``True`` for a full model fit, ``False`` otherwise. """ if not fullmodel: contrast = np.array(contrast) contrast /= np.sqrt((contrast ** 2).sum()) x, y, z = xyz numEVs = self.numEVs() if len(contrast) != numEVs: raise ValueError('Contrast is wrong length') X = self.__design data = self.data[x, y, z, :] modelfit = np.zeros(len(data)) for i in range(numEVs): pe = self.getPE(i).data[x, y, z] modelfit += X[:, i] * pe * contrast[i] return modelfit + data.mean() def partialFit(self, contrast, xyz, fullmodel=False): """Calculates and returns the partial model fit for the specified contrast vector at the specified voxel. See :meth:`fit` for details on the arguments. """ x, y, z = xyz residuals = self.getResiduals().data[x, y, z, :] modelfit = self.fit(contrast, xyz, fullmodel) return residuals + modelfit