""" Defines the functions that can be called on parts of an MRI sequence to query or constrain any variables. In addition this defines: - [`variables`](@ref): dictionary containing all variables. - [`VariableType`](@ref): parent type for any variables (whether number or JuMP variable). - [`get_free_variable`](@ref): helper function to create new JuMP variables. - [`VariableNotAvailable`](@ref): error raised if variable is not defined for specific [`AbstractBlock`](@ref). - [`set_simple_constraints`](@ref): call [`apply_simple_constraint`](@ref) for each keyword argument. - [`apply_simple_constraint`](@ref): set a simple equality constraint. - [`get_pulse`](@ref)/[`get_gradient`](@ref)/[`get_readout`](@ref): Used to get the pulse/gradient/readout part of a building block - [`gradient_orientation`](@ref): returns the gradient orientation of a waveform if fixed. """ module Variables import JuMP: @constraint, @variable, Model, @objective, objective_function, AbstractJuMPScalar import StaticArrays: SVector import ..Scanners: gradient_strength, slew_rate, Scanner import ..BuildSequences: global_model, global_scanner, fixed """ Parent type of all components, building block, and sequences that form an MRI sequence. """ abstract type AbstractBlock end function fixed(ab::AbstractBlock) params = [] for prop_name in propertynames(ab) push!(params, fixed(getproperty(ab, prop_name))) end return typeof(ab)(params...) end all_variables_symbols = [ :block => [ :duration => "duration of the building block in ms.", ], :sequence => [ :TR => "Time on which an MRI sequence repeats itself in ms. Defaults to the result of [`repetition_time`](@ref).", :repetition_time => "Time on which an MRI sequence repeats itself in ms.", :TE => "Echo time of the sequence in ms. Defaults to the result of [`echo_time`](@ref).", :echo_time => "Echo time of the sequence in ms.", :diffusion_time => "Diffusion time in ms (i.e., time between start of the diffusion-weighted gradients).", :Δ => "Diffusion time in ms (i.e., time between start of the diffusion-weighted gradients). Defaults to the result of [`diffusion_time`](@ref).", :qvec => "Net dephasing due to gradients in rad/um.", :area_under_curve => "Net dephasing due to gradients in rad/um (same as [`qvec`](@ref)).", :bmat => "Full 3x3 diffusion-weighting matrix in ms/um^2.", :bval => "Size of diffusion-weighting in ms/um^2 (trace of [`bmat`](@ref)).", :duration_dephase => "Net T2' dephasing experienced over a sequence (in ms).", :duration_transverse => "Net T2 signal loss experienced over a sequence (in ms). This is the total duration spins spent in the transverse plane.", :delay => "Delay between readout and spin echo in an asymmetric spin echo in ms.", ], :pulse => [ :flip_angle => "The flip angle of the RF pulse in degrees", :amplitude => "The maximum amplitude of an RF pulse in kHz", :phase => "The angle of the phase of an RF pulse in KHz", :frequency => "The off-resonance frequency of an RF pulse (relative to the Larmor frequency of water) in KHz", :bandwidth => "Bandwidth of the RF pulse in kHz. To set constraints it is often better to use [`inverse_bandwidth`](@ref).", :inverse_bandwidth => "Inverse of bandwidth of the RF pulse in 1/kHz. Also see [`bandwidth`](@ref).", :N_left => "The number of zero crossings of the RF pulse before the main peak", :N_right => "The number of zero crossings of the RF pulse after the main peak", :slice_thickness => "Slice thickness of an RF pulse that is active during a gradient in mm. To set constraints it is often better to use [`inverse_slice_thickness`](@ref).", :inverse_slice_thickness => "Inverse of slice thickness of an RF pulse that is active during a gradient in 1/mm. Also, see [`slice_thickness`](@ref).", ], :gradient => [ :qval3 => "The spatial range with orientation on which the displacements can be detected due to this gradient in rad/um (also see [`qval`](@ref)).", :qval => "The spatial range on which the displacements can be detected due to this gradient in rad/um. This will be a scalar if the orientation is fixed and a scalar otherwise. If you always want a vector, use [`qvec`](@ref).", :qval_square => "Square of [`qval`](@ref) in rad^2/um^2.", :δ => "Effective duration of a gradient pulse ([`rise_time`](@ref) + [`flat_time`](@ref)) in ms.", :rise_time => "Time for gradient pulse to reach its maximum value in ms.", :flat_time => "Time of gradient pulse at maximum value in ms.", :gradient_strength => "Vector with maximum strength of a gradient along each dimension (kHz/um)", :slew_rate => "Vector with maximum slew rate of a gradient along each dimension (kHz/um/ms)", :spoiler_scale => "Length-scale on which spins will be dephased by exactly 2π in mm.", ], :readout => [ :dwell_time => "Time between two samples in an `ADC` in ms.", :nsamples => "Number of samples during a readout. During the optimisation this might produce non-integer values.", :fov => "Size of the field of view in mm. To set constraints it is often better to use [`inverse_fov`](@ref).", :inverse_fov => "Inverse of size of the field of view in 1/mm. Also see [`fov`](@ref).", :voxel_size => "Size of each voxel in mm. To set constraints it is often better to use [`inverse_voxel_size`](@ref).", :inverse_voxel_size => "Inverse of voxel size in 1/mm. Also see [`voxel_size`](@ref).", :resolution => "Number of voxels in the final readout. During the optimisation this might produce non-integer values, but this will be fixed after optimsation.", :oversample => "How much to oversample with ([`nsamples`](@ref) / [`resolution`](@ref))", :ramp_overlap => "Fraction of overlap between ADC event and underlying gradient pulse ramp (between 0 and 1)." ], ] """ Collection of all functions that return variables that can be used to query or constrain their values. """ variables = Dict{Symbol, Function}() for (block_symbol, all_functions) in all_variables_symbols for (func_symbol, description) in all_functions as_string = " $func_symbol($block_symbol)\n\n$description\n\nThis represents a variable within the sequence. Variables can be set during the construction of a [`AbstractBlock`](@ref) or used to create constraints after the fact." new_func = @eval begin function $func_symbol end @doc $as_string $func_symbol $func_symbol end variables[func_symbol] = new_func end end TE(ab::AbstractBlock) = echo_time(ab) TR(ab::AbstractBlock) = repetition_time(ab) Δ(ab::AbstractBlock) = diffusion_time(ab) """ Dictionary with alternative versions of specific function. Setting constraints on these alternative functions can be helpful as it avoids some operations, which the optimiser might struggle with. """ alternative_variables = Dict( qval => (qval_square, n->n^2, sqrt, false), slice_thickness => (inverse_slice_thickness, inv, inv, true), spoiler_scale => (qval, q->1e-3 * 2π/q, l->1e-3 * 2π/l, true), bandwidth => (inverse_bandwidth, inv, inv, true), fov => (inverse_fov, inv, inv, true), voxel_size => (inverse_voxel_size, inv, inv, true), ) """ Parent type for any variable in the MRI sequence. Each variable can be one of: - a new JuMP variable - an expression linking this variable to other JuMP variable - a number Create these using [`get_free_variable`](@ref). """ const VariableType = Union{Number, AbstractJuMPScalar} """ get_free_variable(value; integer=false, start=0.01) Get a representation of a given `variable` given a user-defined constraint. The result is guaranteed to be a [`VariableType`](@ref). """ get_free_variable(value::Number; integer=false, kwargs...) = integer ? Int(value) : Float64(value) get_free_variable(value::VariableType; kwargs...) = value get_free_variable(::Nothing; integer=false, start=0.01) = @variable(global_model(), start=start, integer=integer) get_free_variable(value::Symbol; kwargs...) = integer ? error("Cannot maximise or minimise an integer variable") : get_free_variable(Val(value); kwargs...) function get_free_variable(::Val{:min}; kwargs...) var = get_free_variable(nothing; kwargs...) model = global_model() @objective model Min objective_function(model) + var return var end function get_free_variable(::Val{:max}; kwargs...) var = get_free_variable(nothing; kwargs...) model = global_model() @objective model Min objective_function(model) - var return var end """ get_pulse(building_block)] Get the pulse played out during the building block. Any `pulse` variables not explicitly defined for this building block will be passed on to the pulse. """ function get_pulse end """ get_gradient(building_block)] Get the gradient played out during the building block. Any `gradient` variables not explicitly defined for this building block will be passed on to the gradient. """ function get_gradient end """ get_readout(building_block)] Get the readout played out during the building block. Any `readout` variables not explicitly defined for this building block will be passed on to the readout. """ function get_readout end """ bmat_gradient(gradient::GradientBlock, qstart=(0, 0, 0)) Computes the diffusion-weighting matrix due to a single gradient block in rad^2 ms/um^2. This should be defined for every `GradientBlock`, but not be called directly. Instead, the `bmat` and `bval` should be constrained for specific `Pathways` """ function bmat_gradient end """ gradient_orientation(building_block) Returns the gradient orientation. """ function gradient_orientation(bb::AbstractBlock) if hasproperty(bb, :orientation) return bb.orientation else return gradient_orientation(get_gradient(bb)) end end gradient_orientation(nt::NamedTuple) = map(gradient_orientation, nt) function effective_time end """ VariableNotAvailable(building_block, variable, alt_variable) Exception raised when a variable function does not support a specific `AbstractBlock`. """ mutable struct VariableNotAvailable <: Exception bb :: Type{<:AbstractBlock} variable :: Function alt_variable :: Union{Nothing, Function} end VariableNotAvailable(bb::Type{<:AbstractBlock}, variable::Function) = VariableNotAvailable(bb, variable, nothing) function Base.showerror(io::IO, e::VariableNotAvailable) if isnothing(e.alt_variable) print(io, e.variable, " is not available for block of type ", e.bb, ".") else print(io, e.variable, " is not available for block of type ", e.bb, ". Please use ", e.alt_variable, " instead to set any contsraints or objective functions.") end end for (target_name, all_vars) in all_variables_symbols for (variable_func, _) in all_vars if variable_func in [:qval3, :TR, :TE, :Δ] continue end get_func = Symbol("get_" * string(target_name)) use_get_func = target_name in (:pulse, :readout, :gradient) @eval function Variables.$variable_func(bb::AbstractBlock) try if Variables.$variable_func in keys(alternative_variables) alt_var, forward, backward, _ = alternative_variables[Variables.$variable_func] try value = alt_var(bb) if value isa Number return backward(value) elseif value isa AbstractArray{<:Number} return backward.(value) end catch e if e isa VariableNotAvailable throw(VariableNotAvailable(typeof(bb), Variables.$variable_func)) end rethrow() end throw(VariableNotAvailable(typeof(bb), Variables.$variable_func, alt_var)) end throw(VariableNotAvailable(typeof(bb), Variables.$variable_func)) catch e if $use_get_func && e isa VariableNotAvailable && hasmethod($get_func, tuple(typeof(bb))) apply_to = try $(get_func)(bb) catch throw(VariableNotAvailable(typeof(bb), Variables.$variable_func)) end if apply_to isa AbstractBlock return Variables.$variable_func(apply_to) elseif apply_to isa NamedTuple return NamedTuple(k => Variables.$variable_func(v) for (k, v) in pairs(apply_to)) elseif apply_to isa AbstractVector{<:AbstractBlock} || apply_to isa Tuple return Variables.$variable_func.(apply_to) end error("$($(use_get_func)) returned an unexpected type for $(bb).") end rethrow() end end end end for base_fn in [:qval, :gradient_strength, :slew_rate] fn3 = Symbol(String(base_fn) * "3") @eval function $fn3(bb::AbstractBlock, args...; kwargs...) if hasmethod(get_gradient, (typeof(bb), )) return $fn3(get_gradient(bb), args...; kwargs...) else value = $base_fn(bb, args...; kwargs...) if value isa Number && iszero(value) return zero(SVector{3, Float64}) elseif value isa AbstractVector return value else return value .* bb.orientation end end end @eval $fn3(nt::NamedTuple, args...; kwargs...) = map(v -> $fn3(v, args...; kwargs...), nt) end """ set_simple_constraints!(block, kwargs) Add any constraints or objective functions to the variables of a [`AbstractBlock`](@ref). Each keyword argument has to match one of the functions in [`variables`](@ref)(block). If set to a numeric value, a constraint will be added to fix the function value to that numeric value. If set to `:min` or `:max`, minimising or maximising this function will be added to the cost function. """ function set_simple_constraints!(block::AbstractBlock, kwargs) for (key, value) in kwargs if variables[key] in keys(alternative_variables) alt_var, forward, backward, to_invert = alternative_variables[variables[key]] invert_value(value::VariableType) = forward(value) invert_value(value::Symbol) = invert_value(Val(value)) invert_value(::Val{:min}) = to_invert ? Val(:max) : Val(:min) invert_value(::Val{:max}) = to_invert ? Val(:min) : Val(:max) invert_value(value::AbstractVector) = invert_value.(value) invert_value(value) = value try apply_simple_constraint!(alt_var(block), invert_value(value)) continue catch e if !(e isa VariableNotAvailable) rethrow() end end end apply_simple_constraint!(variables[key](block), value) end nothing end """ apply_simple_constraint!(variable, value) Add a single constraint or objective to the `variable`. `value` can be one of: - `nothing`: do nothing - `:min`: minimise the variable - `:max`: maximise the variable - `number`: fix variable to this value - `equation`: fix variable to the result of this equation """ apply_simple_constraint!(variable::VariableType, ::Nothing) = nothing apply_simple_constraint!(variable::AbstractVector, value::Symbol) = apply_simple_constraint!(sum(variable), Val(value)) apply_simple_constraint!(variable::VariableType, value::Symbol) = apply_simple_constraint!(variable, Val(value)) apply_simple_constraint!(variable::VariableType, ::Val{:min}) = @objective global_model() Min objective_function(global_model()) + variable apply_simple_constraint!(variable::VariableType, ::Val{:max}) = @objective global_model() Min objective_function(global_model()) - variable apply_simple_constraint!(variable::VariableType, value::VariableType) = @constraint global_model() variable == value apply_simple_constraint!(variable::AbstractVector, value::AbstractVector) = [apply_simple_constraint!(v1, v2) for (v1, v2) in zip(variable, value)] apply_simple_constraint!(variable::AbstractVector, value::VariableType) = [apply_simple_constraint!(v1, value) for v1 in variable] apply_simple_constraint!(variable::Number, value::Number) = @assert variable ≈ value "Variable set to multiple incompatible values." function apply_simple_constraint!(variable::NamedTuple, value) for sub_var in variable apply_simple_constraint!(sub_var, value) end end function apply_simple_constraint!(variable::NamedTuple, value::NamedTuple) for key in keys(value) apply_simple_constraint!(variable[key], value[key]) end end """ make_generic(sequence/building_block/component) Returns a generic version of the `BaseSequence`, `BaseBuildingBlock`, or `BaseComponent` - Sequences are all flattened and returned as a single `Sequence` containing only `BuildingBlock` objects. - Any `BaseBuildingBlock` is converted into a `BuildingBlock`. - Pulses are replaced with `GenericPulse` (except for instant pulses). - Instant readouts are replaced with `ADC`. """ function make_generic end """ scanner_constraints!(block) Constraints [`gradient_strength`](@ref) and [`slew_rate`](@ref) to be less than the [`global_scanner`](@ref) maximum. """ function scanner_constraints!(bb::AbstractBlock) try global_scanner() catch e return end for f in (slew_rate, gradient_strength) value = nothing try value = f(bb) catch e if e isa VariableNotAvailable continue else rethrow() end end if value isa AbstractVector for v in value @constraint global_model() v <= f(global_scanner()) @constraint global_model() v >= -f(global_scanner()) end else @constraint global_model() value <= f(global_scanner()) @constraint global_model() value >= -f(global_scanner()) end end end end