intro.ipynb 38.3 KB
Newer Older
Paul McCarthy's avatar
Paul McCarthy committed
1
2
3
4
5
6
7
8
9
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Welcome to the WIN Virtual Mini PyTreat 2020!\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
10
    "This notebook is available at:\n",
Paul McCarthy's avatar
Paul McCarthy committed
11
12
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
13
14
15
16
17
18
19
20
21
    "https://git.fmrib.ox.ac.uk/fsl/pytreat-practicals-2020/-/tree/master/talks%2Fvirtual_intro/intro.ipynb\n",
    "\n",
    "\n",
    "If you have FSL installed and you'd like to follow along *interactively*,\n",
    "follow the instructions for attendees in the `README.md` file of the above\n",
    "repository, and then open the `talks/virtual_intro/intro.ipynb` notebook.\n",
    "\n",
    "\n",
    "# Contents\n",
Paul McCarthy's avatar
Paul McCarthy committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    "\n",
    "\n",
    "* [Introduction](#introduction)\n",
    "  * [Python in a nutshell](#python-in-a-nutshell)\n",
    "  * [Different ways of running Python](#different-ways-of-running-python)\n",
    "* [Variables and basic types](#variables-and-basic-types)\n",
    "  * [Integer and floating point scalars](#integer-and-floating-point-scalars)\n",
    "  * [Strings](#strings)\n",
    "  * [Lists and tuples](#lists-and-tuples)\n",
    "  * [Dictionaries](#dictionaries)\n",
    "  * [A note on mutablility](#a-note-on-mutablility)\n",
    "* [Flow control](#flow-control)\n",
    "  * [List comprehensions](#list-comprehensions)\n",
    "* [Reading and writing text files](#reading-and-writing-text-files)\n",
    "  * [Example: processing lesion counts](#example-processing-lesion-counts)\n",
    "* [Functions](#functions)\n",
    "* [Working with `numpy`](#working-with-numpy)\n",
    "  * [The Python list versus the `numpy` array](#the-python-list-versus-the-numpy-array)\n",
    "  * [Creating arrays](#creating-arrays)\n",
    "  * [Example: reading arrays from text files](#example-reading-arrays-from-text-files)\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"introduction\"></a>\n",
    "# Introduction\n",
    "\n",
    "\n",
    "This talk is an attempt to give a whirlwind overview of the Python programming\n",
    "language.  It is assumed that you have experience with another programming\n",
    "language (e.g. MATLAB).\n",
    "\n",
    "\n",
    "This talk is presented as an interactive [Jupyter\n",
    "Notebook](https://jupyter.org/) - you can run all of the code on your own\n",
    "machine - click on a code block, and press **SHIFT+ENTER**. You can also \"run\"\n",
    "the text sections, so you can just move down the document by pressing\n",
    "**SHIFT+ENTER**.\n",
    "\n",
    "\n",
    "It is also possible to *change* the contents of each code block (these pages\n",
    "are completely interactive) so do experiment with the code you see and try\n",
    "some variations!\n",
    "\n",
    "\n",
    "You can get help on any Python object, function, or method by putting a `?`\n",
    "before or after the thing you want help on:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 'hello!'\n",
    "?a.upper"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And you can explore the available methods on a Python object by using the\n",
    "**TAB** key:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Put the cursor after the dot, and press the TAB key...\n",
    "a."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"python-in-a-nutshell\"></a>\n",
    "## Python in a nutshell\n",
    "\n",
    "\n",
    "**Pros**\n",
    "\n",
    "\n",
    "* _Flexible_ Feel free to use functions, classes, objects, modules and\n",
    "  packages. Or don't - it's up to you!\n",
    "\n",
    "* _Fast_ If you do things right (in other words, if you use `numpy`)\n",
    "\n",
    "* _Dynamically typed_ No need to declare your variables, or specify their\n",
    "  types.\n",
    "\n",
    "* _Intuitive syntax_ How do I run some code for each of the elements in my\n",
    "  list?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
126
    "mylist = [1, 2, 3, 4, 5]\n",
Paul McCarthy's avatar
Paul McCarthy committed
127
    "\n",
128
129
    "for element in mylist:\n",
    "    print(element)"
Paul McCarthy's avatar
Paul McCarthy committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Cons**\n",
    "\n",
    "\n",
    "* _Dynamically typed_ Easier to make mistakes, harder to catch them\n",
    "\n",
    "* _No compiler_ See above\n",
    "\n",
    "* _Slow_ if you don't do things the right way\n",
    "\n",
    "* _Python 2 is not the same as Python 3_ But there's an easy solution: Forget\n",
    "  that Python 2 exists.\n",
    "\n",
    "* _Hard to manage different versions of python_ But we have a solution for\n",
    "  you: `fslpython`.\n",
    "\n",
    "\n",
    "Python is a widely used language, so you can get lots of help through google\n",
    "and [stackoverflow](https://stackoverflow.com). But make sure that the\n",
    "information you find is for **Python 3**, and **not** for **Python 2**!\n",
    "Python 2 is obsolete, but is still used by many organisations, so you will\n",
    "inevitably come across many Python 2 resources.\n",
    "\n",
    "\n",
    "The differences between Python 2 and 3 are small, but important. The most\n",
    "visible difference is in the `print` function: in Python 3, we write\n",
    "`print('hello!')`, but in Python 2, we would write `print 'hello!'`.\n",
    "\n",
    "\n",
    "FSL 5.0.10 and newer comes with its own version of Python, bundled with nearly\n",
    "all of the scientific libraries that you are likely to need.\n",
    "\n",
    "\n",
    "So if you use `fslpython` for all of your development, you can be sure that it\n",
    "will work in FSL!\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"different-ways-of-running-python\"></a>\n",
    "## Different ways of running Python\n",
    "\n",
    "\n",
    "Many of the Pytreat talks and practicals are presented as *Jupyter notebooks*,\n",
    "which is a way of running python code in a web browser.\n",
    "\n",
    "\n",
    "Jupyter notebooks are good for presentations and practicals, and some people\n",
    "find them very useful for exploratory data analysis. But they're not the only\n",
    "way of running Python code.\n",
    "\n",
    "\n",
    "**Run Python from a file**\n",
    "\n",
    "\n",
    "This works just like it does in MATLAB:\n",
    "\n",
    "\n",
    "1. Put your code in a `.py` file (e.g. `mycode.py`).\n",
    "2. Run `fslpython mycode.py` in a terminal.\n",
    "3. ??\n",
    "4. Profit.\n",
    "\n",
    "\n",
    "**Run python in an interpreter**\n",
    "\n",
    "\n",
    "Python is an [*interpreted\n",
    "language*](https://en.wikipedia.org/wiki/Interpreted_language), like MATLAB.\n",
    "So you can either write your code into a file, and then run that file, or you\n",
    "can type code directly into a Python interpreter.\n",
    "\n",
    "\n",
    "Python has a standard interpreter built-in - run `fslpython` in a terminal,\n",
    "and see what happens (use CTRL+D to exit).\n",
    "\n",
    "\n",
    "**But** there is another interpreter called [IPython](https://ipython.org/)\n",
    "which is vastly superior to the standard Python interpreter. Use IPython\n",
    "instead! It is already installed in `fslpython`, so if you want to do some\n",
    "interactive work, you can use `fslipython` in a terminal.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"variables-and-basic-types\"></a>\n",
    "# Variables and basic types\n",
    "\n",
    "\n",
    "There are many different types of values in Python. Python *variables* do not\n",
    "have a type though - a variable can refer to values of any type, and a\n",
    "variable can be updated to refer to different values (of different\n",
    "types). This is just like how things work in MATLAB.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"integer-and-floating-point-scalars\"></a>\n",
    "## Integer and floating point scalars"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 7\n",
    "b = 1 / 3\n",
    "c = a + b\n",
    "print('a:    ', a)\n",
    "print('b:    ', b)\n",
    "print('c:    ', c)\n",
    "print('b:     {:0.4f}'.format(b))\n",
    "print('a + b:', a + b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"strings)\"></a>\n",
    "## Strings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 'Hello'\n",
    "b = \"Kitty\"\n",
    "c = '''\n",
    "Magic\n",
    "multi-line\n",
    "strings!\n",
    "'''\n",
    "\n",
    "print(a, b)\n",
    "print(a + b)\n",
    "print('{}, {}!'.format(a, b))\n",
    "print(c)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "String objects have a number of useful methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "s = 'This is a Test String'\n",
    "print(s.upper())\n",
    "print(s.lower())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Another useful method is:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "s = 'This is a Test String'\n",
    "s2 = s.replace('Test', 'Better')\n",
    "print(s2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Two common and convenient string methods are `strip()` and `split()`.  The\n",
    "first will remove any whitespace at the beginning and end of a string:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "s2 = '   A very    spacy   string       '\n",
    "print('*' + s2 + '*')\n",
    "print('*' + s2.strip() + '*')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "With `split()` we can tokenize a string (to turn it into a list of strings)\n",
    "like this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(s.split())\n",
    "print(s2.split())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also use the `join` method to re-construct a new string. Imagine that\n",
    "we need to reformat some data from being comma-separated to being\n",
    "space-separated:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = ' 1,2,3,4,5,6,7  '"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`strip`, `split` and `join` makes this job trivial:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('Original:               {}'.format(data))\n",
    "print('Strip, split, and join: {}'.format(' '.join(data.strip().split(','))))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"lists-and-tuples\"></a>\n",
    "## Lists and tuples\n",
    "\n",
    "\n",
    "Both tuples and lists are built-in Python types and are like cell-arrays in\n",
    "MATLAB. For numerical vectors and arrays it is much better to use *numpy*\n",
    "arrays, which are covered later.\n",
    "\n",
    "\n",
    "Tuples are defined using round brackets and lists are defined using square\n",
    "brackets. For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "t = (3, 7.6, 'str')\n",
    "l = [1, 'mj', -5.4]\n",
    "print(t)\n",
    "print(l)\n",
    "\n",
    "t2 = (t, l)\n",
    "l2 = [t, l]\n",
    "print('t2 is: ', t2)\n",
Paul McCarthy's avatar
Paul McCarthy committed
413
414
415
    "print('l3 is: ', l2)\n",
    "print(len(t2))\n",
    "print(len(l2))"
Paul McCarthy's avatar
Paul McCarthy committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The key difference between lists and tuples is that tuples are *immutable*\n",
    "(once created, they cannot be changed), whereas lists are *mutable*:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = [10, 20, 30]\n",
433
    "a[2] = 999\n",
Paul McCarthy's avatar
Paul McCarthy committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    "print(a)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Square brackets are used to index tuples, lists, strings, dictionaries, etc.\n",
    "For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "d = [10, 20, 30]\n",
    "print(d[1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> **MATLAB pitfall:** Python uses zero-based indexing, unlike MATLAB, where\n",
    "> indices start from 1."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = [10, 20, 30, 40, 50, 60]\n",
    "print(a[0])\n",
    "print(a[2])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A range of values for the indices can be specified to extract values from a\n",
    "list or tuple using the `:` character.  For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(a[0:3])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> **MATLAB pitfall:** Note that Python's slicing syntax is different from\n",
    "> MATLAB in that the second number is *exclusive*, i.e. `a[0:3]` gives us the\n",
    "> elements of `a` at positions `0`, `1` and `2` , but *not* at position `3`.\n",
    "\n",
    "\n",
    "When slicing a list or tuple, you can leave the start and end values out -\n",
    "when you do this, Python will assume that you want to start slicing from the\n",
    "beginning or the end of the list.  For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(a[:3])\n",
    "print(a[1:])\n",
    "print(a[:])\n",
    "print(a[:-1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also change the step size, which is specified by the third value (not\n",
    "the second one, as in MATLAB).  For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(a[0:4:2])\n",
    "print(a[::2])\n",
    "print(a[::-1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Some methods are available on `list` objects for adding and removing items:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(d)\n",
    "d.append(40)\n",
    "print(d)\n",
    "d.extend([50, 60])\n",
    "print(d)\n",
    "d = d + [70, 80]\n",
    "print(d)\n",
    "d.remove(20)\n",
    "print(d)\n",
    "d.pop(0)\n",
    "print(d)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What will `d.append([50,60])` do, and how is it different from\n",
    "`d.extend([50,60])`?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "d.append([50, 60])\n",
    "print(d)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"dictionaries\"></a>\n",
    "## Dictionaries\n",
    "\n",
    "\n",
    "Dictionaries (or *dicts*) can be used to store key-value pairs. Almost\n",
    "anything can used as a key, and anything can be stored as a value; it is\n",
    "common to use strings as keys:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "e = {'a' : 10, 'b': 20}\n",
    "print(len(e))\n",
    "print(e.keys())\n",
    "print(e.values())\n",
    "print(e['a'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Like lists (and unlike tuples), dicts are mutable, and have a number of\n",
    "methods for manipulating them:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "e['c'] = 30\n",
    "e.pop('a')\n",
    "e.update({'a' : 100, 'd' : 400})\n",
    "print(e)\n",
    "e.clear()\n",
    "print(e)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"a-note-on-mutability\"></a>\n",
    "## A note on mutablility\n",
    "\n",
    "\n",
    "Python variables can refer to values which are either mutable, or\n",
    "immutable. Examples of immutable values are strings, tuples, and integer and\n",
    "floating point scalars. Examples of mutable values are lists, dicts, and most\n",
    "user-defined types.\n",
    "\n",
    "\n",
    "When you pass an immutable value around (e.g. into a function, or to another\n",
    "variable), it works the same as if you were to copy the value and pass in the\n",
    "copy - the original value is not changed:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 'abcde'\n",
    "b = a\n",
    "b = b.upper()\n",
    "print('a:', a)\n",
    "print('b:', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In contrast, when you pass a mutable value around, you are passing a\n",
    "*reference* to that value - there is only ever one value in existence, but\n",
    "multiple variables refer to it. You can manipulate the value through any of\n",
    "the variables that refer to it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = [1, 2, 3, 4, 5]\n",
    "b = a\n",
    "\n",
    "a[3] = 999\n",
    "b.append(6)\n",
    "\n",
    "print('a', a)\n",
    "print('b', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"flow-control\"></a>\n",
    "# Flow control\n",
    "\n",
    "\n",
    "Python also has a boolean type which can be either `True` or `False`. Most\n",
    "Python types can be implicitly converted into booleans when used in a\n",
    "conditional expression.\n",
    "\n",
    "\n",
    "Relevant boolean and comparison operators include: `not`, `and`, `or`, `==`\n",
    "and `!=`\n",
    "\n",
    "\n",
    "For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = True\n",
    "b = False\n",
    "print('Not a is:', not a)\n",
    "print('a or b is:', a or b)\n",
    "print('a and b is:', a and b)\n",
    "print('Not 1 is:', not 1)\n",
    "print('Not 0 is:', not 0)\n",
    "print('Not {} is:', not {})\n",
    "print('{}==0 is:', {}==0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is also the `in` test for strings, lists, etc:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('the' in 'a number of words')\n",
    "print('of' in 'a number of words')\n",
    "print(3 in [1, 2, 3, 4])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can use boolean values in `if`-`else` conditional expressions:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = [1, 2, 3, 4]\n",
    "val = 3\n",
    "if val in a:\n",
    "    print('Found {}!'.format(val))\n",
    "else:\n",
    "    print('{} not found :('.format(val))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that the indentation in the `if`-`else` statement is **crucial**.\n",
    "**All** python control blocks are delineated purely by indentation. We\n",
    "recommend using **four spaces** and no tabs, as this is a standard practice\n",
    "and will help a lot when collaborating with others.\n",
    "\n",
    "\n",
    "You can use the `for` statement to loop over elements in a list:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "d = [10, 20, 30]\n",
    "for x in d:\n",
    "    print(x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also loop over the key-value pairs in a dict:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = {'a' : 10, 'b' : 20, 'c' : 30}\n",
    "print('a.items()')\n",
    "for key, val in a.items():\n",
    "    print(key, val)\n",
    "print('a.keys()')\n",
    "for key in a.keys():\n",
    "    print(key, a[key])\n",
    "print('a.values()')\n",
    "for val in a.values():\n",
    "    print(val)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> In older versions of Python 3, there was no guarantee of ordering when using dictionaries.\n",
    "> However, a of Python 3.7, dictionaries will remember the order in which items are inserted,\n",
    "> and the `keys()`, `values()`, and `items()` methods will return elements in that order.\n",
    ">\n",
    "\n",
    "> If you want a dictionary with ordering, *and* you want your code to work with\n",
    "> Python versions older than 3.7, you can use the\n",
    "> [`OrderedDict`](https://docs.python.org/3/library/collections.html#collections.OrderedDict)\n",
    "> class.\n",
    "\n",
    "\n",
    "There are some handy built-in functions that you can use with `for` loops:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "d = [10, 20, 30]\n",
    "print('Using the range function')\n",
    "for i in range(len(d)):\n",
    "    print('element at position {}: {}'.format(i, d[i]))\n",
    "\n",
    "print('Using the enumerate function')\n",
    "for i, elem in enumerate(d):\n",
    "    print('element at position {}: {}'.format(i, elem))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\" list-comprehensions\"></a>\n",
    "## List comprehensions\n",
    "\n",
    "\n",
    "Python has a really neat way to create lists (and dicts), called\n",
    "*comprehensions*. Let's say we have some strings, and we want to count the\n",
    "number of characters in each of them:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "strings = ['hello', 'howdy', 'hi', 'hey']\n",
    "nchars = [len(s) for s in strings]\n",
    "for s, c in zip(strings, nchars):\n",
    "    print('{}: {}'.format(s, c))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `zip` function \"zips\" two or more sequences, so you can loop over them\n",
    "> together.\n",
    "\n",
    "\n",
    "Or we could store the character counts in a dict:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nchars = { s : len(s) for s in strings }\n",
    "\n",
    "for s, c in nchars.items():\n",
    "    print('{}: {}'.format(s, c))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
897
    "<a class=\"anchor\" id=\"reading-and-writing-text-files\"></a>\n",
Paul McCarthy's avatar
Paul McCarthy committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    "# Reading and writing text files\n",
    "\n",
    "\n",
    "The syntax to open a file in python is\n",
    "`with open(<filename>, <mode>) as <file_object>: <block of code>`, where\n",
    "\n",
    "\n",
    "* `filename` is a string with the name of the file\n",
    "* `mode` is one of 'r' (for read-only access), 'w' (for writing a file, this\n",
    "  wipes out any existing content), 'a' (for appending to an existing file).\n",
    "* `file_object` is a variable name which will be used within the `block of\n",
    "  code` to access the opened file.\n",
    "\n",
    "\n",
    "For example the following will read all the text in `data/file.txt` and print\n",
    "it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('data/file.txt', 'r') as f:\n",
    "    print(f.read())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A very similar syntax is used to write files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('new_file.txt', 'w') as f:\n",
    "    f.write('This is my first line\\n')\n",
    "    f.writelines(['Second line\\n', 'and the third\\n'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"example-processing-lesion-counts\"></a>\n",
    "## Example: processing lesion counts\n",
    "\n",
    "\n",
    "Imagine that we have written an amazing algorithm in Python which\n",
    "automatically counts the number of lesions in an individual's structural MRI\n",
    "image."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "subject_ids   = ['01', '07', '21', '32']\n",
    "lesion_counts = [  4,    9,   13,    2]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We may wish to process this data in another application (e.g. Excel or SPSS).\n",
    "Let's save the results out to a CSV (comma-separated value) file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('lesion_counts.csv', 'w') as f:\n",
    "    f.write('Subject ID, Lesion count\\n')\n",
    "    for subj_id, count in zip(subject_ids, lesion_counts):\n",
    "        f.write('{}, {}\\n'.format(subj_id, count))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can now load the `lesion_counts.csv` file into our analysis software of\n",
    "choice. Or we could load it back into another Python session, and store\n",
    "the data in a dict:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "lesion_counts = {}\n",
    "\n",
    "with open('lesion_counts.csv', 'r') as f:\n",
    "    # skip the header\n",
    "    f.readline()\n",
    "    for line in f.readlines():\n",
    "        subj_id, count = line.split(',')\n",
    "        lesion_counts[subj_id] = int(count)\n",
    "\n",
    "print('Loaded lesion counts:')\n",
    "for subj, count in lesion_counts.items():\n",
    "    print('{}: {}'.format(subj, count))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"functions\"></a>\n",
    "## Functions\n",
    "\n",
    "\n",
    "You will find functions pretty familiar in python to start with, although they\n",
    "have a few options which are really handy and different from C++ or matlab (to\n",
    "be covered in a later practical).  To start with we'll look at a simple\n",
    "function but note a few key points:\n",
    "\n",
    "\n",
    "* you *must* indent everything inside the function (it is a code block and\n",
    " indentation is the only way of determining this - just like for the guts of a\n",
    " loop)\n",
    "* you can return *whatever you want* from a python function, but only a single\n",
    " object - it is usual to package up multiple things in a tuple or list, which\n",
    " is easily unpacked by the calling invocation: e.g., `a, b, c = myfunc(x)`\n",
    "* parameters are passed by *reference* (more on this below)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def myfunc(x, y, z=0):\n",
    "    r2 = x*x + y*y + z*z\n",
    "    r = r2**0.5\n",
    "    return r,  r2\n",
    "\n",
    "rad = myfunc(10, 20)\n",
    "print(rad)\n",
    "rad, dummy = myfunc(10, 20, 30)\n",
    "print(rad)\n",
    "rad, _ = myfunc(10,20,30)\n",
    "print(rad)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> Note that the `_` is used as shorthand here for a dummy variable\n",
    "> that you want to throw away.\n",
    ">\n",
    "> The return statement implicitly creates a tuple to return and is equivalent\n",
    "> to `return (r, r2)`\n",
    "\n",
    "\n",
    "One nice feature of python functions is that you can name the arguments when\n",
    "you call them, rather than only doing it by position.  For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def myfunc(x, y, z=0, flag=''):\n",
    "    if flag=='L1':\n",
    "        r = abs(x) + abs(y) + abs(z)\n",
    "    else:\n",
    "        r = (x*x + y*y + z*z)**0.5\n",
    "    return r\n",
    "\n",
    "rA = myfunc(10, 20)\n",
    "rB = myfunc(10, 20, flag='L1')\n",
    "rC = myfunc(10, 20, flag='L1', z=30)\n",
    "print(rA, rB, rC)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You will often see python functions called with these named arguments. In\n",
    "fact, for functions with more than 2 or 3 variables this naming of arguments\n",
    "is recommended, because it clarifies what each of the arguments does for\n",
    "anyone reading the code.\n",
    "\n",
    "\n",
    "Arguments passed into a python function are *passed by reference* - this is\n",
    "where the difference between *mutable* and *immutable* types becomes\n",
    "important - if you pass a mutable object into a function, the function\n",
    "might change it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1114
    "def changelist(l):\n",
Paul McCarthy's avatar
Paul McCarthy committed
1115
1116
1117
1118
1119
1120
    "   l[0] = 'mwahahaha!'\n",
    "\n",
    "mylist = [1,2,3,4,5]\n",
    "\n",
    "print('before:', mylist)\n",
    "changelist(mylist)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1121
1122
1123
1124
    "print('after:', mylist)\n",
    "\n",
    "mytup = [1,2,3,4,5]\n",
    "changelist(mytup)"
Paul McCarthy's avatar
Paul McCarthy committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"working-with-numpy\"></a>\n",
    "# Working with `numpy`\n",
    "\n",
    "\n",
    "This section introduces you to [`numpy`](http://www.numpy.org/), Python's\n",
    "numerical computing library. Numpy adds a new data type to the Python\n",
    "language - the `array` (more specifically, the `ndarray`). A Numpy `array`\n",
    "is a N-dimensional array of homogeneously-typed numerical data.\n",
    "\n",
    "\n",
    "Pretty much every scientific computing library in Python is built on top of\n",
    "Numpy - whenever you want to access some data, you will be accessing it in the\n",
    "form of a Numpy array. So it is worth getting to know the basics.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"the-python-list-versus-the-numpy-array\"></a>\n",
    "## The Python list versus the `numpy` array\n",
    "\n",
    "\n",
    "You have already been introduced to the Python `list`, which you can easily\n",
    "use to store a handful of numbers (or anything else):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = [10, 8, 12, 14, 7, 6, 11]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You could also emulate a 2D or ND matrix by using lists of lists, for example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "xyz_coords = [[-11.4,   1.0,  22.6],\n",
    "              [ 22.7, -32.8,  19.1],\n",
    "              [ 62.8, -18.2, -34.5]]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For simple tasks, you could stick with processing your data using python\n",
    "lists, and the built-in\n",
    "[`math`](https://docs.python.org/3.5/library/math.html) library. And this\n",
    "might be tempting, because it does look quite a lot like what you might type\n",
    "into Matlab.\n",
    "\n",
    "\n",
    "But **BEWARE!** A Python list is a terrible data structure for scientific\n",
    "computing!\n",
    "\n",
    "\n",
    "This is a major source of confusion for people who are learning Python, and\n",
    "are trying to write efficient code. It is _crucial_ to be able to distinguish\n",
    "between a Python list and a Numpy array.\n",
    "\n",
    "\n",
    "**Python list == Matlab cell array:** A list in Python is akin to a cell\n",
    "array in Matlab - they can store anything, but are extremely inefficient, and\n",
    "unwieldy when you have more than a couple of dimensions.\n",
    "\n",
    "\n",
    "**Numpy array == Matlab matrix:** These are in contrast to the Numpy array\n",
    "and Matlab matrix, which are both thin wrappers around a contiguous chunk of\n",
    "memory, and which provide blazing-fast performance (because behind the scenes\n",
    "in both Numpy and Matlab, it's C, C++ and FORTRAN all the way down).\n",
    "\n",
    "\n",
    "So you should strongly consider turning those lists into Numpy arrays:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "data = np.array([10, 8, 12, 14, 7, 6, 11])\n",
    "\n",
    "xyz_coords = np.array([[-11.4,   1.0,  22.6],\n",
    "                       [ 22.7, -32.8,  19.1],\n",
    "                       [ 62.8, -18.2, -34.5]])\n",
Paul McCarthy's avatar
Paul McCarthy committed
1228
1229
1230
1231
    "print('data:            ', data)\n",
    "print('xyz_coords:      ', xyz_coords)\n",
    "print('data.shape:      ', data.shape)\n",
    "print('xyz_coords.shape:', xyz_coords.shape)"
Paul McCarthy's avatar
Paul McCarthy committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> Numpy is not a \"built-in\" library, so we have to import it. The statement\n",
    "> `import numpy as np` tells Python to *Import the `numpy` library, and make\n",
    "> it available as a variable called `np`.*\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"creating-arrays\"></a>\n",
    "## Creating arrays\n",
    "\n",
    "\n",
    "Numpy has quite a few functions which behave similarly to their equivalents in\n",
    "Matlab:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('np.zeros gives us zeros:                       ', np.zeros(5))\n",
    "print('np.ones gives us ones:                         ', np.ones(5))\n",
    "print('np.arange gives us a range:                    ', np.arange(5))\n",
    "print('np.linspace gives us N linearly spaced numbers:', np.linspace(0, 1, 5))\n",
    "print('np.random.random gives us random numbers [0-1]:', np.random.random(5))\n",
    "print('np.random.randint gives us random integers:    ', np.random.randint(1, 10, 5))\n",
    "print('np.eye gives us an identity matrix:')\n",
    "print(np.eye(4))\n",
    "print('np.diag gives us a diagonal matrix:')\n",
    "print(np.diag([1, 2, 3, 4]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `zeros` and `ones` functions can also be used to generate N-dimensional\n",
    "arrays:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "z = np.zeros((3, 4))\n",
    "o = np.ones((2, 10))\n",
    "print(z)\n",
    "print(o)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> Note that, in a 2D Numpy array, the first axis corresponds to rows, and the\n",
    "> second to columns - just like in Matlab.\n",
    "\n",
    "\n",
    "\n",
    "> **MATLAB pitfall:** Arithmetic operations on arrays in Numpy work on an\n",
    "> *elementwise* basis. In particular, if you multiply two arrays together,\n",
    "> you will get the elementwise product. You **won't** get the dot product,\n",
    "> like you would in MATLAB. You can, however, use the `@` operator to perform\n",
    "> matrix multiplication on numpy arrays.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"example-reading-arrays-from-text-files\"></a>\n",
    "## Example: reading arrays from text files\n",
    "\n",
    "\n",
    "The `numpy.loadtxt` function is capable of loading numerical data from\n",
    "plain-text files. By default it expects space-separated data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.loadtxt('data/space_separated.txt')\n",
    "print('data in data/space_separated.txt:')\n",
    "print(data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But you can also specify the delimiter to expect<sup>1</sup>:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.loadtxt('data/comma_separated.txt', delimiter=',')\n",
    "print('data in data/comma_separated.txt:')\n",
    "print(data)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> <sup>1</sup> And many other things such as file headers, footers, comments,\n",
    "> and newline characters - see the\n",
    "> [docs](https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html)\n",
    "> for more information.\n",
    "\n",
    "\n",
    "Of course you can also save data out to a text file just as easily, with\n",
    "[`numpy.savetxt`](https://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.random.randint(1, 10, (10, 10))\n",
    "np.savetxt('mydata.txt', data, delimiter=',', fmt='%i')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Jupyter notebooks have a special feature - if you start a line with a `!`\n",
    "character, you can run a `bash` command. Let's look at the file we just\n",
    "generated:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!cat mydata.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `!` feature won't work in regular Python scripts.\n",
    "\n",
    "\n",
    "Here's how we can load a 2D array fom a file, and calculate the mean of each\n",
    "column:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data     = np.loadtxt('data/2d_array.txt', comments='%')\n",
    "colmeans = data.mean(axis=0)\n",
    "\n",
    "print('Column means')\n",
    "print('\\n'.join(['{}: {:0.2f}'.format(i, m) for i, m in enumerate(colmeans)]))"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}