08_fslpy.ipynb 69.5 KB
Newer Older
Paul McCarthy's avatar
Paul McCarthy committed
1
2
3
4
5
6
7
8
9
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# `fslpy`\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
10
11
12
13
    "**Important:** Portions of this practical require `fslpy` 2.9.0, due to be\n",
    "released with FSL 6.0.4, in Spring 2020.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
14
15
    "[`fslpy`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/) is a\n",
    "Python library which is built into FSL, and contains a range of functionality\n",
Paul McCarthy's avatar
Paul McCarthy committed
16
    "for working with FSL and with neuroimaging data from Python.\n",
Paul McCarthy's avatar
Paul McCarthy committed
17
18
19
20
21
22
23
24
25
26
27
    "\n",
    "\n",
    "This practical highlights some of the most useful features provided by\n",
    "`fslpy`. You may find `fslpy` useful if you are writing Python code to\n",
    "perform analyses and image processing in conjunction with FSL.\n",
    "\n",
    "\n",
    "* [The `Image` class, and other data types](#the-image-class-and-other-data-types)\n",
    "  * [Creating images](#creating-images)\n",
    "  * [Working with image data](#working-with-image-data)\n",
    "  * [Loading other file types](#loading-other-file-types)\n",
Paul McCarthy's avatar
Paul McCarthy committed
28
    "  * [NIfTI coordinate systems](#nifti-coordinate-systems)\n",
29
    "  * [Transformations and resampling](#transformations-and-resampling)\n",
Paul McCarthy's avatar
Paul McCarthy committed
30
    "* [FSL wrapper functions](#fsl-wrapper-functions)\n",
Paul McCarthy's avatar
Paul McCarthy committed
31
32
33
    "  * [In-memory images](#in-memory-images)\n",
    "  * [Loading outputs into Python](#loading-outputs-into-python)\n",
    "  * [The `fslmaths` wrapper](#the-fslmaths-wrapper)\n",
Paul McCarthy's avatar
Paul McCarthy committed
34
35
36
37
38
    "* [The `FileTree`](#the-filetree)\n",
    "  * [Describing your data](#describing-your-data)\n",
    "  * [Using the `FileTree`](#using-the-filetree)\n",
    "  * [Building a processing pipeline with `FileTree`](#building-a-processing-pipeline-with-filetree)\n",
    "  * [The `FileTreeQuery`](#the-filetreequery)\n",
Paul McCarthy's avatar
Paul McCarthy committed
39
    "* [Calling shell commands](#calling-shell-commands)\n",
Paul McCarthy's avatar
Paul McCarthy committed
40
41
    "  * [The `runfsl` function](#the-runfsl-function)\n",
    "  * [Submitting to the cluster](#submitting-to-the-cluster)\n",
Paul McCarthy's avatar
Paul McCarthy committed
42
    "  * [Redirecting output](#redirecting-output)\n",
Paul McCarthy's avatar
Paul McCarthy committed
43
44
45
46
47
48
    "* [FSL atlases](#fsl-atlases)\n",
    "  * [Querying atlases](#querying-atlases)\n",
    "  * [Loading atlas images](#loading-atlas-images)\n",
    "  * [Working with atlases](#working-with-atlases)\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
49
50
51
52
53
    "> **Note**: `fslpy` is distinct from `fslpython` - `fslpython` is the Python\n",
    "> environment that is baked into FSL. `fslpy` is a Python library which is\n",
    "> installed into the `fslpython` environment.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    "Let's start with some standard imports and environment set-up:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import os.path as op\n",
    "import nibabel as nib\n",
    "import numpy as np\n",
    "import warnings\n",
Paul McCarthy's avatar
Paul McCarthy committed
70
71
    "warnings.filterwarnings(\"ignore\")\n",
    "np.set_printoptions(suppress=True, precision=4)"
Paul McCarthy's avatar
Paul McCarthy committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And a little function that we can use to generate a simple orthographic plot:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
87
    "def ortho(data, voxel, fig=None, cursor=False, **kwargs):\n",
Paul McCarthy's avatar
Paul McCarthy committed
88
89
    "    \"\"\"Simple orthographic plot of a 3D array using matplotlib.\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
90
91
92
93
    "    :arg data:   3D numpy array\n",
    "    :arg voxel:  XYZ coordinates for each slice\n",
    "    :arg fig:    Existing figure and axes for overlay plotting\n",
    "    :arg cursor: Show a cursor at the `voxel`\n",
Paul McCarthy's avatar
Paul McCarthy committed
94
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
95
    "    All other arguments are passed through to the `imshow` function.\n",
Paul McCarthy's avatar
Paul McCarthy committed
96
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
97
    "    :returns:   The figure and orthogaxes (which can be passed back in as the\n",
Paul McCarthy's avatar
Paul McCarthy committed
98
99
    "                `fig` argument to plot overlays).\n",
    "    \"\"\"\n",
Paul McCarthy's avatar
Paul McCarthy committed
100
    "\n",
101
102
    "    voxel = [int(round(v)) for v in voxel]\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
103
104
105
    "    data            = np.asanyarray(data, dtype=np.float)\n",
    "    data[data <= 0] = np.nan\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    "    x, y, z = voxel\n",
    "    xslice  = np.flipud(data[x, :, :].T)\n",
    "    yslice  = np.flipud(data[:, y, :].T)\n",
    "    zslice  = np.flipud(data[:, :, z].T)\n",
    "\n",
    "    if fig is None:\n",
    "        fig = plt.figure()\n",
    "        xax = fig.add_subplot(1, 3, 1)\n",
    "        yax = fig.add_subplot(1, 3, 2)\n",
    "        zax = fig.add_subplot(1, 3, 3)\n",
    "    else:\n",
    "        fig, xax, yax, zax = fig\n",
    "\n",
    "    xax.imshow(xslice, **kwargs)\n",
    "    yax.imshow(yslice, **kwargs)\n",
    "    zax.imshow(zslice, **kwargs)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
123
124
125
126
127
128
129
130
131
    "    if cursor:\n",
    "        cargs = {'color' : (0, 1, 0), 'linewidth' : 1}\n",
    "        xax.axvline(                y, **cargs)\n",
    "        xax.axhline(data.shape[2] - z, **cargs)\n",
    "        yax.axvline(                x, **cargs)\n",
    "        yax.axhline(data.shape[2] - z, **cargs)\n",
    "        zax.axvline(                x, **cargs)\n",
    "        zax.axhline(data.shape[1] - y, **cargs)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    "    for ax in (xax, yax, zax):\n",
    "        ax.set_xticks([])\n",
    "        ax.set_yticks([])\n",
    "    fig.tight_layout(pad=0)\n",
    "\n",
    "    return (fig, xax, yax, zax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And another function which uses FSLeyes for more complex plots:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def render(cmdline):\n",
Paul McCarthy's avatar
Paul McCarthy committed
154
155
156
157
    "\n",
    "    import shlex\n",
    "    import IPython.display as display\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
158
    "    prefix = '-of screenshot.png -hl -c 2 '\n",
Paul McCarthy's avatar
Paul McCarthy committed
159
160
161
162
163
164
165
166
167
168
169
170
    "\n",
    "    try:\n",
    "        from fsleyes.render import main\n",
    "        main(shlex.split(prefix + cmdline))\n",
    "\n",
    "    except ImportError:\n",
    "        # fall-back for macOS - we have to run\n",
    "        # FSLeyes render in a separate process\n",
    "        from fsl.utils.run import runfsl\n",
    "        prefix = 'render ' + prefix\n",
    "        runfsl(prefix + cmdline, env={})\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
171
172
173
174
175
176
177
    "    return display.Image('screenshot.png')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    "<a class=\"anchor\" id=\"the-image-class-and-other-data-types\"></a>\n",
    "## The `Image` class, and other data types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "module provides the `Image` class, which sits on top of `nibabel` and contains\n",
    "some handy functionality if you need to work with coordinate transformations,\n",
    "or do some FSL-specific processing. The `Image` class provides features such\n",
    "as:\n",
    "\n",
    "- Support for NIFTI1, NIFTI2, and ANALYZE image files\n",
    "- Access to affine transformations between the voxel, FSL and world coordinate\n",
    "  systems\n",
    "- Ability to load metadata from BIDS sidecar files\n",
    "\n",
    "\n",
195
196
197
198
199
200
201
202
    "> The `Image` class behaves differently to the `nibabel.Nifti1Image`. For\n",
    "> example, when you create an `Image` object, the default behaviour is to load\n",
    "> the image data into memory. This is configurable however; take a look at\n",
    "> [the\n",
    "> documentation](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "> to explore all of the options.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    "Some simple image processing routines are also provided - these are covered\n",
    "[below](#image-processing).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"creating-images\"></a>\n",
    "### Creating images\n",
    "\n",
    "\n",
    "It's easy to create an `Image` - you can create one from a file name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.data.image import Image\n",
    "\n",
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "\n",
    "# load a FSL image - the file\n",
    "# suffix is optional, just like\n",
    "# in real FSL-land!\n",
Paul McCarthy's avatar
Paul McCarthy committed
227
228
    "std1mm = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "print(std1mm)"
Paul McCarthy's avatar
Paul McCarthy committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can create an `Image` from an existing `nibabel` image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load a nibabel image, and\n",
    "# convert it into an FSL image\n",
    "nibimg = nib.load(op.join(stddir, 'MNI152_T1_1mm.nii.gz'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
247
    "std1mm = Image(nibimg)"
Paul McCarthy's avatar
Paul McCarthy committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can create an `Image` from a `numpy` array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
263
    "data = np.zeros((182, 218, 182))\n",
Paul McCarthy's avatar
Paul McCarthy committed
264
265
266
    "img = Image(data, xform=np.eye(4))"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you have generated some data from another `Image` (or from a\n",
    "`nibabel.Nifti1Image`) you can use the `header` option to set\n",
    "the header information on the new image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img = Image(data, header=std1mm.header)"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
285
286
287
288
289
290
291
292
293
294
295
296
297
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can save an image to file via the `save` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
298
299
    "img.save('empty')\n",
    "!ls"
Paul McCarthy's avatar
Paul McCarthy committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`Image` objects have all of the attributes you might expect:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std1mm = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "\n",
    "print('name:         ', std1mm.name)\n",
    "print('file:         ', std1mm.dataSource)\n",
    "print('NIfTI version:', std1mm.niftiVersion)\n",
    "print('ndim:         ', std1mm.ndim)\n",
    "print('shape:        ', std1mm.shape)\n",
    "print('dtype:        ', std1mm.dtype)\n",
    "print('nvals:        ', std1mm.nvals)\n",
    "print('pixdim:       ', std1mm.pixdim)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and a number of useful methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "std2mm  = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
342
    "mask2mm = Image(op.join(stddir, 'MNI152_T1_2mm_brain_mask'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    "\n",
    "print(std1mm.sameSpace(std2mm))\n",
    "print(std2mm.sameSpace(mask2mm))\n",
    "print(std2mm.getAffine('voxel', 'world'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An `Image` object is a high-level wrapper around a `nibabel` image object -\n",
    "you can always work directly with the `nibabel` object via the `nibImage`\n",
    "attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(std2mm)\n",
    "print(std2mm.nibImage)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"working-with-image-data\"></a>\n",
    "### Working with image data\n",
    "\n",
    "\n",
    "You can get the image data as a `numpy` array via the `data` attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = std2mm.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
386
387
    "print(data.min(), data.max())\n",
    "ortho(data, (45, 54, 45))"
Paul McCarthy's avatar
Paul McCarthy committed
388
389
390
391
392
393
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
394
395
    "> Note that `Image.data` will give you the data in its underlying type, unlike\n",
    "> the `nibabel.get_fdata` method, which up-casts image data to floating-point.\n",
Paul McCarthy's avatar
Paul McCarthy committed
396
397
398
399
400
401
402
403
404
405
406
407
    "\n",
    "\n",
    "You can also read and write data directly via the `Image` object:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "slc = std2mm[:, :, 45]\n",
Paul McCarthy's avatar
Paul McCarthy committed
408
    "std2mm[0:10, :, :] *= 2"
Paul McCarthy's avatar
Paul McCarthy committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Doing so has some advantages that may or may not be useful, depending on your\n",
    "use-case:\n",
    " - The image data will be kept on disk - only the parts that you access will\n",
    "   be loaded into RAM (you will also need to pass`loadData=False` when creating\n",
    "   the `Image` to achieve this).\n",
    " - The `Image` object will keep track of modifications to the data - this can\n",
    "   be queried via the `saveState` attribute.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"loading-other-file-types\"></a>\n",
    "### Loading other file types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.html#module-fsl.data)\n",
    "package has a number of other classes for working with different types of FSL\n",
    "and neuroimaging data. Most of these are higher-level wrappers around the\n",
    "corresponding `nibabel` types:\n",
    "\n",
    "* The\n",
    "  [`fsl.data.bitmap.Bitmap`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.bitmap.html)\n",
Paul McCarthy's avatar
Paul McCarthy committed
436
    "  class can be used to load a bitmap image (e.g. `jpg`, `png`, etc) and\n",
Paul McCarthy's avatar
Paul McCarthy committed
437
438
439
440
441
442
    "  convert it to a NIfTI image.\n",
    "* The\n",
    "  [`fsl.data.dicom.DicomImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dicom.html)\n",
    "  class uses `dcm2niix` to load NIfTI images contained within a DICOM\n",
    "  directory<sup>*</sup>.\n",
    "* The\n",
Paul McCarthy's avatar
Paul McCarthy committed
443
    "  [`fsl.data.mghimage.MGHImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.mghimage.html)\n",
Paul McCarthy's avatar
Paul McCarthy committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    "  class can be used too load `.mgh`/`.mgz` images (they are converted into\n",
    "  NIfTI images).\n",
    "* The\n",
    "  [`fsl.data.dtifit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dtifit.html)\n",
    "  module contains functions for loading and working with the output of the\n",
    "  FSL `dtifit` tool.\n",
    "* The\n",
    "  [`fsl.data.featanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featanalysis.html),\n",
    "  [`fsl.data.featimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featimage.html),\n",
    "  and\n",
    "  [`fsl.data.featdesign`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featdesign.html)\n",
    "  modules contain classes and functions for loading data from FEAT\n",
    "  directories.\n",
    "* Similarly, the\n",
    "  [`fsl.data.melodicanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicanalysis.html)\n",
    "  and\n",
    "  [`fsl.data.melodicimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicimage.html)\n",
    "  modules contain classes and functions for loading data from MELODIC\n",
    "  directories.\n",
    "* The\n",
    "  [`fsl.data.gifti`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.gifti.html),\n",
    "  [`fsl.data.freesurfer`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.freesurfer.html),\n",
    "  and\n",
    "  [`fsl.data.vtk`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.vtk.html)\n",
    "  modules contain functionality form loading surface data from GIfTI,\n",
Paul McCarthy's avatar
Paul McCarthy committed
469
    "  freesurfer, and ASCII VTK files respectively.\n",
Paul McCarthy's avatar
Paul McCarthy committed
470
471
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
472
473
474
    "> <sup>*</sup>You must make sure that\n",
    "> [`dcm2niix`](https://github.com/rordenlab/dcm2niix/) is installed on your\n",
    "> system in order to use this class.\n",
Paul McCarthy's avatar
Paul McCarthy committed
475
476
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
477
478
    "<a class=\"anchor\" id=\"nifti-coordinate-systems\"></a>\n",
    "### NIfTI coordinate systems\n",
Paul McCarthy's avatar
Paul McCarthy committed
479
480
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    "The `Image.getAffine` method gives you access to affine transformations which\n",
    "can be used to convert coordinates between the different coordinate systems\n",
    "associated with a NIfTI image. Have some MNI coordinates you'd like to convert\n",
    "to voxels? Easy!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "mnicoords = np.array([[0,   0,  0],\n",
    "                      [0, -18, 18]])\n",
Paul McCarthy's avatar
Paul McCarthy committed
498
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
499
500
    "world2vox = std2mm.getAffine('world', 'voxel')\n",
    "vox2world = std2mm.getAffine('voxel', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
501
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
502
503
    "# Apply the world->voxel\n",
    "# affine to the coordinates\n",
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    "voxcoords = (np.dot(world2vox[:3, :3], mnicoords.T)).T + world2vox[:3, 3]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The code above is a bit fiddly, so instead of figuring it out, you can just\n",
    "use the\n",
    "[`affine.transform`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.affine.html#fsl.transform.affine.transform)\n",
    "function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
523
    "from fsl.transform.affine import transform\n",
524
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    "voxcoords = transform(mnicoords, world2vox)\n",
    "\n",
    "# just to double check, let's transform\n",
    "# those voxel coordinates back into world\n",
    "# coordinates\n",
    "backtomni = transform(voxcoords, vox2world)\n",
    "\n",
    "for m, v, b in zip(mnicoords, voxcoords, backtomni):\n",
    "    print(m, '->', v, '->', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `Image.getAffine` method can give you transformation matrices\n",
    "> between any of these coordinate systems:\n",
    ">\n",
    ">  - `'voxel'`: Image data voxel coordinates\n",
    ">  - `'world'`: mm coordinates, defined by the sform/qform of an image\n",
    ">  - `'fsl'`: The FSL coordinate system, used internally by many FSL tools\n",
    ">    (e.g. FLIRT)\n",
    "\n",
    "\n",
    "Oh, that example was too easy I hear you say? Try this one on for size. Let's\n",
    "say we have run FEAT on some task fMRI data, and want to get the MNI\n",
    "coordinates of the voxel with peak activation.\n",
    "\n",
    "\n",
    "> This is what people used to use `Featquery` for, back in the un-enlightened\n",
    "> days.\n",
    "\n",
    "\n",
    "Let's start by identifying the voxel with the biggest t-statistic:"
Paul McCarthy's avatar
Paul McCarthy committed
559
560
561
562
563
564
565
566
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
567
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
Paul McCarthy's avatar
Paul McCarthy committed
568
569
570
571
572
573
574
575
576
577
578
    "\n",
    "tstat1 = Image(op.join(featdir, 'stats', 'tstat1')).data\n",
    "\n",
    "# Recall from the numpy practical that\n",
    "# argmax gives us a 1D index into a\n",
    "# flattened view of the array. We can\n",
    "# use the unravel_index function to\n",
    "# convert it into a 3D index.\n",
    "peakvox = np.abs(tstat1).argmax()\n",
    "peakvox = np.unravel_index(peakvox, tstat1.shape)\n",
    "print('Peak voxel coordinates for tstat1:', peakvox, tstat1[peakvox])"
Paul McCarthy's avatar
Paul McCarthy committed
579
580
581
582
583
584
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
585
586
587
    "Now that we've got the voxel coordinates in functional space, we need to\n",
    "transform them into MNI space. FEAT provides a transformation which goes\n",
    "directly from functional to standard space, in the `reg` directory:"
Paul McCarthy's avatar
Paul McCarthy committed
588
589
590
591
592
593
594
595
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
596
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))"
Paul McCarthy's avatar
Paul McCarthy committed
597
598
599
600
601
602
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
603
604
605
606
607
608
    "But ... wait a minute ... this is a FLIRT matrix! We can't just plug voxel\n",
    "coordinates into a FLIRT matrix and expect to get sensible results, because\n",
    "FLIRT works in an internal FSL coordinate system, which is not quite\n",
    "`'voxel'`, and not quite `'world'`. So we need to do a little more work.\n",
    "Let's start by loading our functional image, and the MNI152 template (the\n",
    "source and reference images of our FLIRT matrix):"
Paul McCarthy's avatar
Paul McCarthy committed
609
610
611
612
613
614
615
616
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
617
618
    "func = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "std  = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
Paul McCarthy's avatar
Paul McCarthy committed
619
620
621
622
623
624
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
625
626
627
628
629
630
631
    "Now we can use them to get affines which convert between all of the different\n",
    "coordinate systems - we're going to combine them into a single uber-affine,\n",
    "which transforms our functional-space voxels into MNI world coordinates via:\n",
    "\n",
    "   1. functional voxels -> FLIRT source space\n",
    "   2. FLIRT source space -> FLIRT reference space\n",
    "   3. FLIRT referece space -> MNI world coordinates"
Paul McCarthy's avatar
Paul McCarthy committed
632
633
634
635
636
637
638
639
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
640
641
    "vox2fsl = func.getAffine('voxel', 'fsl')\n",
    "fsl2mni = std .getAffine('fsl',   'world')"
Paul McCarthy's avatar
Paul McCarthy committed
642
643
644
645
646
647
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
648
649
    "Combining two affines into one is just a simple dot-product. There is a\n",
    "`concat()` function which does this for us, for any number of affines:"
Paul McCarthy's avatar
Paul McCarthy committed
650
651
652
653
654
655
656
657
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
658
    "from fsl.transform.affine import concat\n",
Paul McCarthy's avatar
Paul McCarthy committed
659
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
660
661
662
    "# To combine affines together, we\n",
    "# have to list them in reverse -\n",
    "# linear algebra is *weird*.\n",
Paul McCarthy's avatar
Paul McCarthy committed
663
664
    "funcvox2mni = concat(fsl2mni, func2std, vox2fsl)\n",
    "print(funcvox2mni)"
Paul McCarthy's avatar
Paul McCarthy committed
665
666
667
668
669
670
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
671
    "> In the next section we will use the\n",
Paul McCarthy's avatar
Paul McCarthy committed
672
673
674
675
    "> [`fsl.transform.flirt.fromFlirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html#fsl.transform.flirt.fromFlirt)\n",
    "> function, which does all of the above for us.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
676
677
    "So we've now got some voxel coordinates from our functional data, and an\n",
    "affine to transform into MNI world coordinates. The rest is easy:"
Paul McCarthy's avatar
Paul McCarthy committed
678
679
680
681
682
683
684
685
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
686
687
688
689
690
    "mnicoords = transform(peakvox, funcvox2mni)\n",
    "mnivoxels = transform(mnicoords, std.getAffine('world', 'voxel'))\n",
    "mnivoxels = [int(round(v)) for v in mnivoxels]\n",
    "print('Peak activation (MNI coordinates):', mnicoords)\n",
    "print('Peak activation (MNI voxels):     ', mnivoxels)"
Paul McCarthy's avatar
Paul McCarthy committed
691
692
693
694
695
696
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
697
698
699
700
    "Note that in the above example we are only applying a linear transformation\n",
    "into MNI space - in reality you would also want to apply your non-linear\n",
    "structural-to-standard transformation too. This is covered in the next\n",
    "section.\n",
Paul McCarthy's avatar
Paul McCarthy committed
701
702
    "\n",
    "\n",
703
704
    "<a class=\"anchor\" id=\"transformations-and-resampling\"></a>\n",
    "### Transformations and resampling\n",
Paul McCarthy's avatar
Paul McCarthy committed
705
706
707
708
709
710
711
712
    "\n",
    "\n",
    "Now, it's all well and good to look at t-statistic values and voxel\n",
    "coordinates and so on and so forth, but let's spice things up a bit and look\n",
    "at some images. Let's display our peak activation location in MNI space. To do\n",
    "this, we're going to resample our functional image into MNI space, so we can\n",
    "overlay it on the MNI template. This can be done using some handy functions\n",
    "from the\n",
713
714
    "[`fsl.transform.flirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html)\n",
    "and\n",
Paul McCarthy's avatar
Paul McCarthy committed
715
    "[`fsl.utils.image.resample`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.resample.html)\n",
716
717
718
719
    "modules.\n",
    "\n",
    "\n",
    "Let's make sure we've got our source and reference images loaded:"
Paul McCarthy's avatar
Paul McCarthy committed
720
721
722
723
724
725
726
727
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
728
729
    "featdir = op.join(op.join('08_fslpy', 'fmri.feat'))\n",
    "tstat1  = Image(op.join(featdir, 'stats', 'tstat1'))\n",
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we'll load the `example_func2standard` FLIRT matrix, and adjust it so that\n",
    "it transforms from functional *world* coordinates into standard *world*\n",
    "coordinates - this is what is expected by the `resampleToReference` function,\n",
    "used below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.flirt import fromFlirt\n",
Paul McCarthy's avatar
Paul McCarthy committed
750
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
751
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))\n",
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    "func2std = fromFlirt(func2std, tstat1, std, 'world', 'world')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can use `resampleToReference` to resample our functional data into\n",
    "MNI152 space. This function returns a `numpy` array containing the resampled\n",
    "data, and an adjusted voxel-to-world affine transformation. But in this case,\n",
    "we know that the data will be aligned to MNI152, so we can ignore the affine:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.image.resample import resampleToReference\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
773
774
    "std_tstat1 = resampleToReference(tstat1, std, func2std)[0]\n",
    "std_tstat1 = Image(std_tstat1, header=std.header)"
Paul McCarthy's avatar
Paul McCarthy committed
775
776
777
778
779
780
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
781
782
    "Now that we have our t-statistic image in MNI152 space, we can plot it in\n",
    "standard space using `matplotlib`:"
Paul McCarthy's avatar
Paul McCarthy committed
783
784
785
786
787
788
789
790
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
791
792
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
793
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
794
795
    "std_tstat1                 = std_tstat1.data\n",
    "std_tstat1[std_tstat1 < 3] = 0\n",
Paul McCarthy's avatar
Paul McCarthy committed
796
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
797
    "fig = ortho(std2mm.data, mnivoxels, cmap=plt.cm.gray)\n",
Paul McCarthy's avatar
Paul McCarthy committed
798
    "fig = ortho(std_tstat1,  mnivoxels, cmap=plt.cm.inferno, fig=fig, cursor=True)"
Paul McCarthy's avatar
Paul McCarthy committed
799
800
   ]
  },
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the example above, we resampled some data from functional space into\n",
    "standard space using a linear transformation. But we all know that this is not\n",
    "how things work in the real world - linear transformations are for kids. The\n",
    "real world is full of lions and tigers and bears and warp fields.\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.transform.fnirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.fnirt.html#fsl.transform.fnirt.fromFnirt)\n",
    "and\n",
    "[`fsl.transform.nonlinear`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.nonlinear.html)\n",
    "modules contain classes and functions for working with FNIRT-style warp fields\n",
    "(modules for working with lions, tigers, and bears are still under\n",
    "development).\n",
    "\n",
    "\n",
    "Let's imagine that we have defined an ROI in MNI152 space, and we want to\n",
    "project it into the space of our functional data.  We can do this by combining\n",
    "the nonlinear structural to standard registration produced by FNIRT with the\n",
    "linear functional to structural registration generated by FLIRT.  First of\n",
    "all, we'll load images from each of the functional, structural, and standard\n",
    "spaces:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
    "func    = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "struc   = Image(op.join(featdir, 'reg', 'highres'))\n",
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, let's say we have obtained our seed location in MNI152 coordinates. Let's\n",
    "convert them to MNI152 voxels just to double check:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "seedmni    = [-48, -74, -9]\n",
    "seedmnivox = transform(seedmni, std.getAffine('world', 'voxel'))\n",
    "ortho(std.data, seedmnivox, cursor=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we'll load the FNIRT warp field, which encodes a nonlinear transformation\n",
    "from structural space to standard space. FNIRT warp fields are often stored as\n",
    "*coefficient* fields to reduce the file size, but in order to use it, we must\n",
    "convert the coefficient field into a *deformation* (a.k.a. *displacement*)\n",
    "field. This takes a few seconds:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.fnirt     import readFnirt\n",
    "from fsl.transform.nonlinear import coefficientFieldToDeformationField\n",
    "\n",
    "struc2std = readFnirt(op.join(featdir, 'reg', 'highres2standard_warp'), struc, std)\n",
    "struc2std = coefficientFieldToDeformationField(struc2std)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll also load our FLIRT functional to structural transformation, adjust it\n",
    "so that it transforms between voxel coordinate systems instead of the FSL\n",
    "coordinate system, and invert so it can transform from structural voxels to\n",
    "functional voxels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.affine import invert\n",
    "func2struc = np.loadtxt(op.join(featdir, 'reg', 'example_func2highres.mat'))\n",
    "func2struc = fromFlirt(func2struc, func, struc, 'voxel', 'voxel')\n",
    "struc2func = invert(func2struc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can transform our seed coordinates from MNI152 space into functional\n",
    "space in two stages. First, we'll use our deformation field to transform from\n",
    "MNI152 space into structural space:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
920
    "seedstruc = struc2std.transform(seedmni, 'world', 'voxel')\n",
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
    "seedfunc  = transform(seedstruc, struc2func)\n",
    "\n",
    "print('Seed location in MNI coordinates:  ', seedmni)\n",
    "print('Seed location in functional voxels:', seedfunc)\n",
    "ortho(func.data, seedfunc, cursor=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> FNIRT warp fields kind of work backwards - we can use them to transform\n",
    "> reference coordinates into source coordinates, but would need to invert the\n",
    "> warp field using `invwarp` if we wanted to transform from source coordinates\n",
    "> into referemce coordinates.\n",
    "\n",
    "\n",
    "Of course, we can also use our deformation field to resample an image from\n",
    "structural space into MNI152 space. The `applyDeformation` function takes an\n",
    "`Image` and a `DeformationField`, and returns a `numpy` array containing the\n",
    "resampled data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.nonlinear import applyDeformation\n",
    "\n",
    "strucmni = applyDeformation(struc, struc2std)\n",
    "\n",
    "# remove low-valued voxels,\n",
    "# just for visualisation below\n",
    "strucmni[strucmni < 1] = 0\n",
    "\n",
    "fig = ortho(std.data, [45, 54, 45], cmap=plt.cm.gray)\n",
    "fig = ortho(strucmni, [45, 54, 45], fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `premat` option to `applyDeformation` can be used to specify our linear\n",
    "functional to structural transformation, and hence resample a functional image\n",
    "into MNI152 space:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tstatmni = applyDeformation(tstat1, struc2std, premat=func2struc)\n",
    "tstatmni[tstatmni < 3] = 0\n",
    "\n",
    "fig = ortho(std.data, [45, 54, 45], cmap=plt.cm.gray)\n",
    "fig = ortho(tstatmni, [45, 54, 45], fig=fig)"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
984
985
986
987
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
988
    "There are a few other useful functions tucked away in the\n",
989
990
991
992
    "[`fsl.utils.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.html)\n",
    "and\n",
    "[`fsl.transform`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.html)\n",
    "packages, with more to be added in the future.\n",
Paul McCarthy's avatar
Paul McCarthy committed
993
994
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
995
996
997
998
    "<a class=\"anchor\" id=\"fsl-wrapper-functions\"></a>\n",
    "## FSL wrapper functions\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
999
1000
1001
1002
1003
    "The\n",
    "[fsl.wrappers](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.wrappers.html)\n",
    "package is the home of \"wrapper\" functions for a range of FSL tools. You can\n",
    "use them to call an FSL tool from Python code, without having to worry about\n",
    "constructing a command-line, or saving/loading input/output images.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1004
1005
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1006
1007
1008
1009
    "> The `fsl.wrappers` functions also allow you to submit jobs to be run on the\n",
    "> cluster - this is described [below](#submitting-to-the-cluster).\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1010
1011
    "You can use the FSL wrapper functions with file names, similar to calling the\n",
    "corresponding tool via the command-line:"
Paul McCarthy's avatar
Paul McCarthy committed
1012
1013
1014
1015
1016
1017
1018
1019
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1020
    "from fsl.wrappers import robustfov\n",
Paul McCarthy's avatar
Paul McCarthy committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    "\n",
    "robustfov('08_fslpy/bighead', 'bighead_cropped')\n",
    "\n",
    "render('08_fslpy/bighead bighead_cropped -cm blue')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1031
    "The `fsl.wrappers` functions strive to provide an interface which is as close\n",
Paul McCarthy's avatar
Paul McCarthy committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
    "as possible to the command-line tool - most functions use positional arguments\n",
    "for required options, and keyword arguments for all other options, with\n",
    "argument names equivalent to command line option names. For example, the usage\n",
    "for the command-line `bet` tool is as follows:\n",
    "\n",
    "\n",
    "> ```\n",
    "> Usage:    bet <input> <output> [options]\n",
    ">\n",
    "> Main bet2 options:\n",
    ">   -o          generate brain surface outline overlaid onto original image\n",
    ">   -m          generate binary brain mask\n",
    ">   -s          generate approximate skull image\n",
    ">   -n          don't generate segmented brain image output\n",
    ">   -f <f>      fractional intensity threshold (0->1); default=0.5; smaller values give larger brain outline estimates\n",
    ">   -g <g>      vertical gradient in fractional intensity threshold (-1->1); default=0; positive values give larger brain outline at bottom, smaller at top\n",
    ">   -r <r>      head radius (mm not voxels); initial surface sphere is set to half of this\n",
    ">   -c <x y z>  centre-of-gravity (voxels not mm) of initial mesh surface.\n",
    "> ...\n",
    "> ```\n",
    "\n",
    "\n",
    "So to use the `bet()` wrapper function, pass `<input>` and `<output>` as\n",
    "positional arguments, and pass the additional options as keyword arguments:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1064
1065
    "from fsl.wrappers import bet\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1066
1067
1068
1069
1070
1071
    "bet('bighead_cropped', 'bighead_cropped_brain', f=0.3, m=True, s=True)\n",
    "\n",
    "render('bighead_cropped             -b 40 '\n",
    "       'bighead_cropped_brain       -cm hot '\n",
    "       'bighead_cropped_brain_skull -ot mask -mc 0.4 0.4 1 '\n",
    "       'bighead_cropped_brain_mask  -ot mask -mc 0   1   0 -o -w 5')"
Paul McCarthy's avatar
Paul McCarthy committed
1072
1073
1074
1075
1076
1077
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
    "> Some FSL commands accept arguments which cannot be used as Python\n",
    "> identifiers - for example, the `-2D` option to `flirt` cannot be used as an\n",
    "> identifier in Python, because it begins with a number. In situations like\n",
    "> this, an alias is used. So to set the `-2D` option to `flirt`, you can do this:\n",
    ">\n",
    "> ```\n",
    "> # \"twod\" applies the -2D flag\n",
    "> flirt('source.nii.gz', 'ref.nii.gz', omat='src2ref.mat', twod=True)\n",
    "> ```\n",
Paul McCarthy's avatar
Paul McCarthy committed
1087
1088
1089
1090
    ">\n",
    "> Some of the `fsl.wrappers` functions also support aliases which may make\n",
    "> your code more readable. For example, when calling `bet`, you can use either\n",
    "> `m=True` or `mask=True` to apply the `-m` command line flag.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1091
1092
1093
1094
1095
1096
1097
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"in-memory-images\"></a>\n",
    "### In-memory images\n",
    "\n",
    "\n",
    "It can be quite awkward to combine image processing with FSL tools and image\n",
Paul McCarthy's avatar
Paul McCarthy committed
1098
    "processing in Python. The `fsl.wrappers` package tries to make this a little\n",
Paul McCarthy's avatar
Paul McCarthy committed
1099
    "easier for you - if you are working with image data in Python, you can pass\n",
Paul McCarthy's avatar
Paul McCarthy committed
1100
    "`Image` or `nibabel` objects directly into `fsl.wrappers` functions - they will\n",
Paul McCarthy's avatar
Paul McCarthy committed
1101
1102
    "be automatically saved to temporary files and passed to the underlying FSL\n",
    "command:"
Paul McCarthy's avatar
Paul McCarthy committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1112
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    "bet(cropped, 'bighead_cropped_brain')\n",
    "\n",
    "betted = Image('bighead_cropped_brain')\n",
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"loading-outputs-into-python\"></a>\n",
    "### Loading outputs into Python\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1129
    "By using the special `fsl.wrappers.LOAD` symbol, you can also have any output\n",
Paul McCarthy's avatar
Paul McCarthy committed
1130
    "files produced by the tool automatically loaded into memory for you:"
Paul McCarthy's avatar
Paul McCarthy committed
1131
1132
1133
1134
1135
1136
1137
1138
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1139
1140
    "from fsl.wrappers import LOAD\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1141
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1142
1143
1144
1145
1146
    "\n",
    "# The loaded result is called \"output\",\n",
    "# because that is the name of the\n",
    "# argument in the bet wrapper function.\n",
    "betted  = bet(cropped, LOAD).output\n",
Paul McCarthy's avatar
Paul McCarthy committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `LOAD` symbol for any output argument - any output files which\n",
Paul McCarthy's avatar
Paul McCarthy committed
1157
    "are loaded will be available through the return value of the wrapper function:"
Paul McCarthy's avatar
Paul McCarthy committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import flirt\n",
    "\n",
    "std2mm   = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))\n",
    "tstat1   = Image(op.join('08_fslpy', 'fmri.feat', 'stats', 'tstat1'))\n",
    "func2std = np.loadtxt(op.join('08_fslpy', 'fmri.feat', 'reg', 'example_func2standard.mat'))\n",
    "\n",
    "aligned = flirt(tstat1, std2mm, applyxfm=True, init=func2std, out=LOAD)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1174
1175
1176
1177
    "# Here the resampled tstat image\n",
    "# is called \"out\", because that\n",
    "# is the name of the flirt argument.\n",
    "aligned = aligned.out.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
1178
1179
    "aligned[aligned < 1] = 0\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1180
1181
1182
1183
1184
    "peakvox = np.abs(aligned).argmax()\n",
    "peakvox = np.unravel_index(peakvox, aligned.shape)\n",
    "\n",
    "fig = ortho(std2mm .data, peakvox, cmap=plt.cm.gray)\n",
    "fig = ortho(aligned.data, peakvox, cmap=plt.cm.inferno, fig=fig, cursor=True)"
Paul McCarthy's avatar
Paul McCarthy committed
1185
1186
1187
1188
1189
1190
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1191
1192
    "For tools like `bet` and `fast`, which expect an output *prefix* or\n",
    "*basename*, you can just set the prefix to `LOAD` - all output files with that\n",
Paul McCarthy's avatar
Paul McCarthy committed
1193
    "prefix will be available in the object that is returned:"
Paul McCarthy's avatar
Paul McCarthy committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img    = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1203
    "betted = bet(img, LOAD, f=0.3, mask=True)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1204
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1205
1206
1207
    "fig = ortho(img               .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted.output     .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)\n",
    "fig = ortho(betted.output_mask.data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig, alpha=0.5)"
Paul McCarthy's avatar
Paul McCarthy committed
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-fslmaths-wrapper\"></a>\n",
    "### The `fslmaths` wrapper\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1218
    "*Most* of the `fsl.wrappers` functions aim to provide an interface which is as\n",
Paul McCarthy's avatar
Paul McCarthy committed
1219
1220
1221
1222
1223
1224
1225
    "close as possible to the underlying FSL tool. Ideally, if you read the\n",
    "command-line help for a tool, you should be able to figure out how to use the\n",
    "corresponding wrapper function. The wrapper for the `fslmaths` command is a\n",
    "little different, however. It provides more of an object-oriented interface,\n",
    "which is hopefully a little easier to use from within Python.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1226
1227
1228
    "You can apply an `fslmaths` operation by specifying the input image,\n",
    "*chaining* method calls together, and finally calling the `run()` method. For\n",
    "example:"
Paul McCarthy's avatar
Paul McCarthy committed
1229
1230
1231
1232
1233
1234
1235
1236
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1237
    "from fsl.wrappers import fslmaths\n",
Paul McCarthy's avatar
Paul McCarthy committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
    "fslmaths('bighead_cropped')            \\\n",
    "  .mas(  'bighead_cropped_brain_mask') \\\n",
    "  .run(  'bighead_cropped_brain')\n",
    "\n",
    "render('bighead_cropped bighead_cropped_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Of course, you can also use the `fslmaths` wrapper with in-memory images:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "wholehead   = Image('bighead_cropped')\n",
    "brainmask   = Image('bighead_cropped_brain_mask')\n",
    "\n",
    "eroded      = fslmaths(brainmask).ero().ero().run()\n",
    "erodedbrain = fslmaths(wholehead).mas(eroded).run()\n",
    "\n",
    "fig = ortho(wholehead  .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(brainmask  .data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig)\n",
    "fig = ortho(erodedbrain.data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
1267
1268
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
1269
1270
1271
1272
1273
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-filetree\"></a>\n",
Paul McCarthy's avatar
Paul McCarthy committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    "## The `FileTree`\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.filetree`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html)\n",
    "library provides functionality which allows you to work with *structured data\n",
    "directories*, such as HCP or BIDS datasets. You can use `filetree` for both\n",
    "reading and for creating datasets.\n",
    "\n",
    "\n",
    "This practical gives a very brief introduction to the `filetree` library -\n",
    "refer to the [full\n",
    "documentation](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html)\n",
    "to get a feel for how powerful it can be.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"describing-your-data\"></a>\n",
    "### Describing your data\n",
    "\n",
    "\n",
    "To introduce `filetree`, we'll begin with a small example. Imagine that we\n",
    "have a dataset which looks like this:\n",
    "\n",
    "\n",
    "> ```\n",
    "> mydata\n",
    "> ├── sub_A\n",
    "> │   ├── ses_1\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   ├── ses_2\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   └── T2w.nii.gz\n",
    "> ├── sub_B\n",
    "> │   ├── ses_1\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   ├── ses_2\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   └── T2w.nii.gz\n",
    "> └── sub_C\n",
    ">     ├── ses_1\n",
    ">     │   └── T1w.nii.gz\n",
    ">     ├── ses_2\n",
    ">     │   └── T1w.nii.gz\n",
    ">     └── T2w.nii.gz\n",
    "> ```\n",
    "\n",
    "\n",
    "(Run the code cell below to create a dummy data set with the above structure):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%bash\n",
    "for sub in A B C; do\n",
    "  subdir=mydata/sub_$sub/\n",
    "  mkdir -p $subdir\n",
    "  cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $subdir/T2w.nii.gz\n",
    "  for ses in 1 2; do\n",
    "    sesdir=$subdir/ses_$ses/\n",
    "    mkdir $sesdir\n",
    "    cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $sesdir/T1w.nii.gz\n",
    "  done\n",
    "done"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To use `filetree` with this dataset, we must first describe its structure - we\n",
    "do this by creating a `.tree` file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mydata.tree\n",
    "sub_{subject}\n",
    "  T2w.nii.gz\n",
    "  ses_{session}\n",
    "    T1w.nii.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A `.tree` file is simply a description of the structure of your data\n",
    "directory - it describes the *file types* (also known as *templates*) which\n",
    "are present in the dataset (`T1w` and `T2w`), and the *variables* which are\n",
    "implicitly present in the structure of the dataset (`subject` and `session`).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"using-the-filetree\"></a>\n",
    "### Using the `FileTree`\n",
    "\n",
    "\n",
    "Now that we have a `.tree` file which describe our data, we can create a\n",
    "`FileTree` to work with it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.filetree import FileTree\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1390
1391
1392
    "# Create a FileTree, giving\n",
    "# it our tree specification,\n",
    "# and the path to our data.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
    "tree = FileTree.read('mydata.tree', 'mydata')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can list all of the T1 images via the `FileTree.get_all` method. The\n",
    "`glob_vars='all'` option tells the `FileTree` to fill in the `T1w` template\n",
Paul McCarthy's avatar
Paul McCarthy committed
1402
1403
1404
    "with all possible combinations of variables. The `FileTree.extract_variables`\n",
    "method accepts a file path, and gives you back the variable values contained\n",
    "within:"
Paul McCarthy's avatar
Paul McCarthy committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for t1file in tree.get_all('T1w', glob_vars='all'):\n",
    "    fvars = tree.extract_variables('T1w', t1file)\n",
    "    print(t1file, fvars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `FileTree.update` method allows you to \"fill in\" variable values; it\n",
    "returns a new `FileTree` object which can be used on a selection of the\n",
    "data set:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "treeA = tree.update(subject='A')\n",
    "for t1file in treeA.get_all('T1w', glob_vars='all'):\n",
    "    fvars = treeA.extract_variables('T1w', t1file)\n",
    "    print(t1file, fvars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"building-a-processing-pipeline-with-filetree\"></a>\n",
    "### Building a processing pipeline with `FileTree`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1445
1446
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    "Let's say we want to run BET on all of our T1 images. Let's start by modifying\n",
    "our `.tree` definition to include the BET outputs:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mydata.tree\n",
    "sub_{subject}\n",
    "  T2w.nii.gz\n",
    "  ses_{session}\n",
    "    T1w.nii.gz\n",
    "    T1w_brain.nii.gz\n",
    "    T1w_brain_mask.nii.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1470
1471
1472
    "Now we can use the `FileTree` to generate the relevant file names for us,\n",
    "which we can then pass on to BET.  Here we'll use the `FileTree.get_all_trees`\n",
    "method to create a sub-tree for each subject and each session:"
Paul McCarthy's avatar
Paul McCarthy committed
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import bet\n",
    "tree = FileTree.read('mydata.tree', 'mydata')\n",
    "for subtree in tree.get_all_trees('T1w', glob_vars='all'):\n",
    "    t1file  = subtree.get('T1w')\n",
    "    t1brain = subtree.get('T1w_brain')\n",
    "    print('Running BET: {} -> {} ...'.format(t1file, t1brain))\n",
    "    bet(t1file, t1brain, mask=True)\n",
    "print('Done!')\n",
    "\n",
    "example = tree.update(subject='A', session='1')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1491
    "render('{} {} -ot mask -o -w 2 -mc 0 1 0'.format(\n",
Paul McCarthy's avatar
Paul McCarthy committed
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
    "    example.get('T1w'),\n",
    "    example.get('T1w_brain_mask')))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-filetreequery\"></a>\n",
    "### The `FileTreeQuery`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1502
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1503
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
    "The `filetree` module contains another class called the\n",
    "[`FileTreeQuery`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.query.html),\n",
    "which provides an interface that is more convenient if you are reading data\n",
    "from large datasets with many different file types and variables.\n",
    "\n",
    "\n",
    "When you create a `FileTreeQuery`, it scans the entire data directory and\n",
    "identifies all of the values that are present for each variable defined in the\n",
    "`.tree` file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.filetree import FileTreeQuery\n",
    "tree = FileTree.read('mydata.tree', 'mydata')\n",
    "query = FileTreeQuery(tree)\n",
    "print('T1w variables:', query.variables('T1w'))\n",
    "print('T2w variables:', query.variables('T2w'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `FileTreeQuery.query` method will return the paths to all existing files\n",
    "which match a set of variable values:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1542
    "print('All files for subject A')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1543
    "for template in query.templates:\n",
Paul McCarthy's avatar
Paul McCarthy committed
1544
1545
1546
    "    print('  {} files:'.format(template))\n",
    "    for match in query.query(template, subject='A'):\n",
    "        print('   ', match.filename)"
Paul McCarthy's avatar
Paul McCarthy committed
1547
1548
1549
1550
1551
1552
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
    "<a class=\"anchor\" id=\"calling-shell-commands\"></a>\n",
    "## Calling shell commands\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.run`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.run.html)\n",
    "module provides the `run` and `runfsl` functions, which are wrappers around\n",
    "the built-in [`subprocess`\n",
    "library](https://docs.python.org/3/library/subprocess.html).\n",
    "\n",
    "\n",
    "The default behaviour of `run` is to return the standard output of the\n",
    "command:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import run\n",
    "\n",
    "# You can pass the command\n",
    "# and its arguments as a single\n",
    "# string, or as a sequence\n",
    "print('Lines in this notebook:', run('wc -l 08_fslpy.md').strip())\n",
    "print('Words in this notebook:', run(['wc', '-w', '08_fslpy.md']).strip())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But you can control what `run` returns, depending on your needs. Let's create\n",
    "a little script to demonstrate the options:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mycmd\n",
    "#!/usr/bin/env bash\n",
    "exitcode=$1\n",
    "\n",
    "echo \"Standard output!\"\n",
    "echo \"Standard error :(\" >&2\n",
    "\n",
    "exit $exitcode"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And let's not forget to make it executable:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!chmod a+x mycmd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `stdout`, `stderr` and `exitcode` arguments to control the\n",
    "return value:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('run(\"./mycmd 0\"):                                          ',\n",
    "       run(\"./mycmd 0\").strip())\n",
    "print('run(\"./mycmd 0\", stdout=False):                            ',\n",
    "       run(\"./mycmd 0\", stdout=False))\n",
    "print('run(\"./mycmd 0\",                            exitcode=True):',\n",
    "       run(\"./mycmd 0\",                            exitcode=True))\n",
    "print('run(\"./mycmd 0\", stdout=False,              exitcode=True):',\n",
    "       run(\"./mycmd 0\", stdout=False,              exitcode=True))\n",
    "print('run(\"./mycmd 0\",               stderr=True):               ',\n",
    "       run(\"./mycmd 0\",               stderr=True))\n",
    "print('run(\"./mycmd 0\", stdout=False, stderr=True):               ',\n",
    "       run(\"./mycmd 0\", stdout=False, stderr=True).strip())\n",
    "print('run(\"./mycmd 0\",               stderr=True, exitcode=True):',\n",
    "       run(\"./mycmd 0\",               stderr=True, exitcode=True))\n",
    "\n",
    "print('run(\"./mycmd 1\",                            exitcode=True):',\n",
    "       run(\"./mycmd 1\",                            exitcode=True))\n",
    "print('run(\"./mycmd 1\", stdout=False,              exitcode=True):',\n",
    "       run(\"./mycmd 1\", stdout=False,              exitcode=True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "So if only one of `stdout`, `stderr`, or `exitcode` is `True`, `run` will only\n",
    "return the corresponding value. Otherwise `run` will return a tuple which\n",
    "contains the requested outputs.\n",
    "\n",
    "\n",
    "If you run a command which returns a non-0 exit code, the default behaviour\n",
    "(if you don't set `exitcode=True`) is for a `RuntimeError` to be raised:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "run(\"./mycmd 99\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1684
1685
    "<a class=\"anchor\" id=\"the-runfsl-function\"></a>\n",
    "### The `runfsl` function\n",
Paul McCarthy's avatar
Paul McCarthy committed
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
    "\n",
    "\n",
    "The `runfsl` function is a wrapper around `run` which simply makes sure that\n",
    "the command you are calling is inside the `$FSLDIR/bin/` directory. It has the\n",
    "same usage as the `run` function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import runfsl\n",
Paul McCarthy's avatar
Paul McCarthy committed
1700
    "runfsl('bet bighead_cropped bighead_cropped_brain')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1701
1702
1703
1704
    "runfsl('fslroi bighead_cropped_brain bighead_slices 0 -1 0 -1 90 3')\n",
    "runfsl('fast -o bighead_fast bighead_slices')\n",
    "\n",
    "render('-vl 80 112 91 -xh -yh '\n",
Paul McCarthy's avatar
Paul McCarthy committed
1705
    "       'bighead_cropped '\n",
Paul McCarthy's avatar
Paul McCarthy committed
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
    "       'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 '\n",
    "       'bighead_fast_seg.nii.gz -ot label -o')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"submitting-to-the-cluster\"></a>\n",
    "### Submitting to the cluster\n",
    "\n",
    "\n",
    "Both the `run` and `runfsl` accept an argument called `submit`, which allows\n",
    "you to submit jobs to be executed on the cluster via the FSL `fsl_sub`\n",
    "command.\n",
    "\n",
    "\n",
    "> Cluster submission is handled by the\n",
    "> [`fsl.utils.fslsub`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html)\n",
    "> module - it contains lower level functions for managing and querying jobs\n",
    "> that have been submitted to the cluster. The functions defined in this\n",
    "> module can be used directly if you have more complicated requirements.\n",
    "\n",
    "\n",
    "The semantics of the `run` and `runfsl` functions are slightly different when\n",
Paul McCarthy's avatar
Paul McCarthy committed
1731
1732
1733
    "you use the `submit` option - when you submit a job, the `run`/`runfsl`\n",
    "functions will return immediately, and will return a string containing the job\n",
    "ID:"
Paul McCarthy's avatar
Paul McCarthy committed
1734
1735
1736
1737
1738
1739
1740
1741
1742
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobid  = run('ls', submit=True)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1743
1744
1745
1746
1747
1748
1749
    "print('Job ID:', jobid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1750
    "Once the job finishes, we should be able to read the usual `.o` and `.e`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1751
1752
1753
1754
1755
1756
1757
1758
1759
    "files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
    "stdout = f'ls.o{jobid}'\n",
    "print('Job output')\n",
    "print(open(stdout).read())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "All of the `fsl.wrappers` functions also accept the `submit` argument:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True)\n",
    "print('Job ID:', jobid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> But an error will occur if you try to pass in-memory images, or `LOAD` any\n",
    "> outputs when you call a wrapper function with `submit=True`.\n",
    "\n",
    "\n",
    "After submitting a job, you can use the `wait` function to wait until a job\n",
    "has completed:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import wait\n",
    "jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True)\n",
    "print('Job ID:', jobid)\n",
    "wait(jobid)\n",
    "print('Done!')\n",
    "render('08_fslpy/bighead bighead_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1812
    "When you use `submit=True`, you can also specify cluster submission options -\n",
Paul McCarthy's avatar
Paul McCarthy committed
1813
    "you can include any arguments that are accepted by the\n",
Paul McCarthy's avatar
Paul McCarthy committed
1814
    "[`fslsub.submit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html#fsl.utils.fslsub.submit)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1815
    "function"
Paul McCarthy's avatar
Paul McCarthy committed
1816
1817
1818
1819
1820
1821
1822
1823
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1824
1825
1826
1827
1828
1829
1830
    "jobs = []\n",
    "jobs.append(runfsl('robustfov -i 08_fslpy/bighead -r bighead_cropped',    submit=True, queue='short.q'))\n",
    "jobs.append(runfsl('bet bighead_cropped bighead_brain',                   submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "jobs.append(runfsl('fslroi bighead_brain bighead_slices 0 -1 111 3 0 -1', submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "jobs.append(runfsl('fast -o bighead_fast bighead_slices',                 submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "print('Waiting for', jobs, '...')\n",
    "wait(jobs)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1831
1832
1833
1834
1835
    "\n",
    "render('-vl 80 112 91 -xh -zh -hc '\n",
    "       'bighead_brain '\n",
    "       'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 '\n",
    "       'bighead_fast_seg.nii.gz -ot label -o')"
Paul McCarthy's avatar
Paul McCarthy committed
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"redirecting-output\"></a>\n",
    "### Redirecting output\n",
    "\n",
    "\n",
    "The `log` option, accepted by both `run` and `fslrun`, allows for more\n",
    "fine-grained control over what is done with the standard output and error\n",
    "streams.\n",
    "\n",
    "\n",
    "You can use `'tee'` to redirect the standard output and error streams of the\n",
    "command to the standard output and error streams of the calling command (your\n",
    "python script):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('Teeing:')\n",
    "_ = run('./mycmd 0', log={'tee' : True})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can use `'stdout'` and `'stderr'` to redirect the standard output and\n",
    "error streams of the command to files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('stdout.log', 'wt') as o, \\\n",
    "     open('stderr.log', 'wt') as e:\n",
    "     run('./mycmd 0', log={'stdout' : o, 'stderr' : e})\n",
    "print('\\nRedirected stdout:')\n",
    "!cat stdout.log\n",
    "print('\\nRedirected stderr:')\n",
    "!cat stderr.log"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, you can use `'cmd'` to log the command itself to a file (useful for\n",
    "pipeline logging):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('commands.log', 'wt') as cmdlog:\n",
    "     run('./mycmd 0',         log={'cmd' : cmdlog})\n",
    "     run('wc -l 08_fslpy.md', log={'cmd' : cmdlog})\n",
    "\n",
    "print('\\nCommand log:')\n",
    "!cat commands.log"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
1911
1912
1913
1914
1915
1916
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"fsl-atlases\"></a>\n",
    "## FSL atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1917
1918
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1919
1920
1921
1922
1923
    "The\n",
    "[`fsl.data.atlases`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.atlases.html)\n",
    "module provides access to all of the atlas images that are stored in the\n",
    "`$FSLDIR/data/atlases/` directory of a standard FSL installation. It can be\n",
    "used to load and query probabilistic and label-based atlases.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1924
1925
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1926
    "The `atlases` module needs to be initialised using the `rescanAtlases` function:"
Paul McCarthy's avatar
Paul McCarthy committed
1927
1928
1929
1930
1931
1932
1933
1934
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
    "import fsl.data.atlases as atlases\n",
    "atlases.rescanAtlases()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"querying-atlases\"></a>\n",
    "### Querying atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1945
1946
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
    "You can list all of the available atlases using `listAtlases`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for desc in atlases.listAtlases():\n",
    "    print(desc)"
Paul McCarthy's avatar
Paul McCarthy committed
1958
1959
1960
1961
1962
1963
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1964
1965
1966
1967
    "`listAtlases` returns a list of `AtlasDescription` objects, each of which\n",
    "contains descriptive information about one atlas. You can retrieve the\n",
    "`AtlasDescription` for a specific atlas via the `getAtlasDescription`\n",
    "function:"
Paul McCarthy's avatar
Paul McCarthy committed
1968
1969
1970
1971
1972
1973
1974
1975
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1976
1977
1978
1979
1980
    "desc = atlases.getAtlasDescription('harvardoxford-cortical')\n",
    "print(desc.name)\n",
    "print(desc.atlasID)\n",
    "print(desc.specPath)\n",
    "print(desc.atlasType)"
Paul McCarthy's avatar
Paul McCarthy committed
1981
1982
1983
1984
1985
1986
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1987
1988
1989
    "Each `AtlasDescription` maintains a list of `AtlasLabel` objects, each of\n",
    "which represents one region that is defined in the atlas. You can access all\n",
    "of the `AtlasLabel` objects via the `labels` attribute:"
Paul McCarthy's avatar
Paul McCarthy committed
1990
1991
1992
1993
1994
1995
1996
1997
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1998
1999
    "for lbl in desc.labels[:5]:\n",
    "    print(lbl)"
Paul McCarthy's avatar
Paul McCarthy committed
2000
2001
2002
2003
2004
2005
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2006
    "Or you can retrieve a specific label using the `find` method:"
Paul McCarthy's avatar
Paul McCarthy committed
2007
2008
2009
2010
2011
2012
2013
2014
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2015
2016
2017
2018
2019
    "# search by region name\n",
    "print(desc.find(name='Occipital Pole'))\n",
    "\n",
    "# or by label value\n",
    "print(desc.find(value=48))"
Paul McCarthy's avatar
Paul McCarthy committed
2020
2021
2022
2023
2024
2025
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2026
2027
2028
2029
2030
    "<a class=\"anchor\" id=\"loading-atlas-images\"></a>\n",
    "### Loading atlas images\n",
    "\n",
    "\n",
    "The `loadAtlas` function can be used to load the atlas image:"
Paul McCarthy's avatar
Paul McCarthy committed
2031
2032
2033
2034
2035
2036
2037
2038
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
    "# For probabilistic atlases, you\n",
    "# can ask for the 3D ROI image\n",
    "# by setting loadSummary=True.\n",
    "# You can also request a\n",
    "# resolution - by default the\n",
    "# highest resolution version\n",
    "# will be loaded.\n",
    "lblatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                             loadSummary=True,\n",
    "                             resolution=2)\n",
Paul McCarthy's avatar
Paul McCarthy committed
2049
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2050
2051
2052
2053
2054
2055
2056
2057
2058
    "# By default you will get the 4D\n",
    "# probabilistic atlas image (for\n",
    "# atlases for which this is\n",
    "# available).\n",
    "probatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                              resolution=2)\n",
    "\n",
    "print(lblatlas)\n",
    "print(probatlas)"
Paul McCarthy's avatar
Paul McCarthy committed
2059
2060
2061
2062
2063
2064
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2065
2066
2067
2068
2069
2070
    "<a class=\"anchor\" id=\"working-with-atlases\"></a>\n",
    "### Working with atlases\n",
    "\n",
    "\n",
    "Both `LabelAtlas` and `ProbabilisticAtlas` objects have a method called `get`,\n",
    "which can be used to extract ROI images for a specific region:"
Paul McCarthy's avatar
Paul McCarthy committed
2071
2072
2073
2074
2075
2076
2077
2078
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2079
2080
2081
2082
2083
2084
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "frontal = lblatlas.get(name='Frontal Pole').data\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2085
2086
    "fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal,     (45, 54, 45), cmap=plt.cm.winter, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
2087
2088
2089
2090
2091
2092
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2093
    "Calling `get` on a `ProbabilisticAtlas` will return a probability image:"
Paul McCarthy's avatar
Paul McCarthy committed
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
2104
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2105
    "frontal = probatlas.get(name='Frontal Pole').data\n",
Paul McCarthy's avatar
Paul McCarthy committed
2106
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
Paul McCarthy's avatar
Paul McCarthy committed
2107
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2108
2109
    "fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal,     (45, 54, 45), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `get` method can be used to retrieve an image for a region by:\n",
    "- an `AtlasLabel` object\n",
    "- The region index\n",
    "- The region value\n",
    "- The region name\n",
Paul McCarthy's avatar
Paul McCarthy committed
2121
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2122
2123
2124
    "\n",
    "`LabelAtlas` objects have a method called `label`, which can be used to\n",
    "interrogate the atlas at specific locations:"
Paul McCarthy's avatar
Paul McCarthy committed
2125
2126
2127
2128
2129
2130
2131
2132
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
    "# The label method accepts 3D\n",
    "# voxel or world coordinates\n",
    "val = lblatlas.label((25, 52, 43), voxel=True)\n",
    "lbl = lblatlas.find(value=val)\n",
    "print('Region at voxel [25, 52, 43]: {} [{}]'.format(val, lbl.name))\n",
    "\n",
    "\n",
    "# or a 3D weighted or binary mask\n",
    "mask = np.zeros(lblatlas.shape)\n",
    "mask[30:60, 30:60, 30:60] = 1\n",
    "mask = Image(mask, header=lblatlas.header)\n",
    "\n",
    "lbls, props = lblatlas.label(mask)\n",
    "print('Labels in mask:')\n",
    "for lbl, prop in zip(lbls, props):\n",
    "    lblname = lblatlas.find(value=lbl).name\n",
    "    print('  {} [{}]: {:0.2f}%'.format(lbl, lblname, prop))"
Paul McCarthy's avatar
Paul McCarthy committed
2150
2151
2152
2153
2154
2155
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
    "`ProbabilisticAtlas` objects have an analogous method called `values`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vals = probatlas.values((25, 52, 43), voxel=True)\n",
    "print('Regions at voxel [25, 52, 43]:')\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))\n",
Paul McCarthy's avatar
Paul McCarthy committed
2171
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2172
2173
2174
2175
2176
2177
    "print('Average proportions of regions within mask:')\n",
    "vals = probatlas.values(mask)\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))"
Paul McCarthy's avatar
Paul McCarthy committed
2178
2179
2180
2181
2182
2183
2184
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}