08_fslpy.ipynb 31.8 KB
Newer Older
Paul McCarthy's avatar
Paul McCarthy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# `fslpy`\n",
    "\n",
    "\n",
    "[`fslpy`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/) is a\n",
    "Python library which is built into FSL, and contains a range of functionality\n",
    "for working with neuroimaging data from Python.\n",
    "\n",
    "\n",
    "This practical highlights some of the most useful features provided by\n",
    "`fslpy`. You may find `fslpy` useful if you are writing Python code to\n",
    "perform analyses and image processing in conjunction with FSL.\n",
    "\n",
    "\n",
    "> **Note**: `fslpy` is distinct from `fslpython` - `fslpython` is the Python\n",
    "> environment that is baked into FSL. `fslpy` is a Python library which is\n",
    "> installed into the `fslpython` environment.\n",
    "\n",
    "\n",
    "* [The `Image` class, and other data types](#the-image-class-and-other-data-types)\n",
    "  * [Creating images](#creating-images)\n",
    "  * [Working with image data](#working-with-image-data)\n",
    "  * [Loading other file types](#loading-other-file-types)\n",
Paul McCarthy's avatar
Paul McCarthy committed
29
30
    "  * [NIfTI coordinate systems](#nifti-coordinate-systems)\n",
    "  * [Image processing](#image-processing)\n",
Paul McCarthy's avatar
Paul McCarthy committed
31
32
    "* [The `filetree`](#the-filetree)\n",
    "* [FSL wrapper functions](#fsl-wrapper-functions)\n",
Paul McCarthy's avatar
Paul McCarthy committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    "* [FSL atlases](#fsl-atlases)\n",
    "  * [Querying atlases](#querying-atlases)\n",
    "  * [Loading atlas images](#loading-atlas-images)\n",
    "  * [Working with atlases](#working-with-atlases)\n",
    "\n",
    "\n",
    "Let's start with some standard imports and environment set-up:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import os.path as op\n",
    "import nibabel as nib\n",
    "import numpy as np\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And a little function that we can use to generate a simple orthographic plot:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def ortho(data, voxel, fig=None, **kwargs):\n",
    "    \"\"\"Simple orthographic plot of a 3D array using matplotlib.\n",
    "\n",
    "    :arg data:  3D numpy array\n",
    "    :arg voxel: XYZ coordinates for each slice\n",
    "    :arg fig:   Existing figure and axes for overlay plotting\n",
Paul McCarthy's avatar
Paul McCarthy committed
77
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
78
    "    All other arguments are passed through to the `imshow` function.\n",
Paul McCarthy's avatar
Paul McCarthy committed
79
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    "    :returns:   The figure and axes (which can be passed back in as the\n",
    "                `fig` argument to plot overlays).\n",
    "    \"\"\"\n",
    "    x, y, z = voxel\n",
    "    xslice  = np.flipud(data[x, :, :].T)\n",
    "    yslice  = np.flipud(data[:, y, :].T)\n",
    "    zslice  = np.flipud(data[:, :, z].T)\n",
    "\n",
    "    if fig is None:\n",
    "        fig = plt.figure()\n",
    "        xax = fig.add_subplot(1, 3, 1)\n",
    "        yax = fig.add_subplot(1, 3, 2)\n",
    "        zax = fig.add_subplot(1, 3, 3)\n",
    "    else:\n",
    "        fig, xax, yax, zax = fig\n",
    "\n",
    "    xax.imshow(xslice, **kwargs)\n",
    "    yax.imshow(yslice, **kwargs)\n",
    "    zax.imshow(zslice, **kwargs)\n",
    "\n",
    "    for ax in (xax, yax, zax):\n",
    "        ax.set_xticks([])\n",
    "        ax.set_yticks([])\n",
    "    fig.tight_layout(pad=0)\n",
    "\n",
    "    return (fig, xax, yax, zax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And another function which uses FSLeyes for more complex plots:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import shlex\n",
    "import IPython.display as display\n",
    "from fsleyes.render import main\n",
    "\n",
    "def render(cmdline):\n",
    "    prefix = '-of screenshot.png -hl -c 2 '\n",
    "    main(shlex.split(prefix + cmdline))\n",
    "    return display.Image('screenshot.png')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    "<a class=\"anchor\" id=\"the-image-class-and-other-data-types\"></a>\n",
    "## The `Image` class, and other data types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "module provides the `Image` class, which sits on top of `nibabel` and contains\n",
    "some handy functionality if you need to work with coordinate transformations,\n",
    "or do some FSL-specific processing. The `Image` class provides features such\n",
    "as:\n",
    "\n",
    "- Support for NIFTI1, NIFTI2, and ANALYZE image files\n",
    "- Access to affine transformations between the voxel, FSL and world coordinate\n",
    "  systems\n",
    "- Ability to load metadata from BIDS sidecar files\n",
    "\n",
    "\n",
    "Some simple image processing routines are also provided - these are covered\n",
    "[below](#image-processing).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"creating-images\"></a>\n",
    "### Creating images\n",
    "\n",
    "\n",
    "It's easy to create an `Image` - you can create one from a file name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.data.image import Image\n",
    "\n",
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "\n",
    "# load a FSL image - the file\n",
    "# suffix is optional, just like\n",
    "# in real FSL-land!\n",
    "img = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "print(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can create an `Image` from an existing `nibabel` image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load a nibabel image, and\n",
    "# convert it into an FSL image\n",
    "nibimg = nib.load(op.join(stddir, 'MNI152_T1_1mm.nii.gz'))\n",
    "img    = Image(nibimg)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can create an `Image` from a `numpy` array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.zeros((100, 100, 100))\n",
    "img = Image(data, xform=np.eye(4))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can save an image to file via the `save` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img.save('empty.nii.gz')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`Image` objects have all of the attributes you might expect:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std1mm = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "\n",
    "print('name:         ', std1mm.name)\n",
    "print('file:         ', std1mm.dataSource)\n",
    "print('NIfTI version:', std1mm.niftiVersion)\n",
    "print('ndim:         ', std1mm.ndim)\n",
    "print('shape:        ', std1mm.shape)\n",
    "print('dtype:        ', std1mm.dtype)\n",
    "print('nvals:        ', std1mm.nvals)\n",
    "print('pixdim:       ', std1mm.pixdim)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and a number of useful methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "std2mm  = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
272
    "mask2mm = Image(op.join(stddir, 'MNI152_T1_2mm_brain_mask'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    "\n",
    "print(std1mm.sameSpace(std2mm))\n",
    "print(std2mm.sameSpace(mask2mm))\n",
    "print(std2mm.getAffine('voxel', 'world'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An `Image` object is a high-level wrapper around a `nibabel` image object -\n",
    "you can always work directly with the `nibabel` object via the `nibImage`\n",
    "attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(std2mm)\n",
    "print(std2mm.nibImage)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"working-with-image-data\"></a>\n",
    "### Working with image data\n",
    "\n",
    "\n",
    "You can get the image data as a `numpy` array via the `data` attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = std2mm.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
316
    "print(data.min(), data.max())"
Paul McCarthy's avatar
Paul McCarthy committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> Note that this will give you the data in its underlying type, unlike the\n",
    "> `nibabel.get_fdata` method, which up-casts image data to floating-point.\n",
    "\n",
    "\n",
    "You can also read and write data directly via the `Image` object:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "slc = std2mm[:, :, 45]\n",
Paul McCarthy's avatar
Paul McCarthy committed
337
    "std2mm[0:10, :, :] *= 2"
Paul McCarthy's avatar
Paul McCarthy committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Doing so has some advantages that may or may not be useful, depending on your\n",
    "use-case:\n",
    " - The image data will be kept on disk - only the parts that you access will\n",
    "   be loaded into RAM (you will also need to pass`loadData=False` when creating\n",
    "   the `Image` to achieve this).\n",
    " - The `Image` object will keep track of modifications to the data - this can\n",
    "   be queried via the `saveState` attribute.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"loading-other-file-types\"></a>\n",
    "### Loading other file types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.html#module-fsl.data)\n",
    "package has a number of other classes for working with different types of FSL\n",
    "and neuroimaging data. Most of these are higher-level wrappers around the\n",
    "corresponding `nibabel` types:\n",
    "\n",
    "* The\n",
    "  [`fsl.data.bitmap.Bitmap`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.bitmap.html)\n",
    "  class can be used to load a bitmap image (e.g. `jpg, `png`, etc) and\n",
    "  convert it to a NIfTI image.\n",
    "* The\n",
    "  [`fsl.data.dicom.DicomImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dicom.html)\n",
    "  class uses `dcm2niix` to load NIfTI images contained within a DICOM\n",
    "  directory<sup>*</sup>.\n",
    "* The\n",
    "  [`fsl.data.mghimahe.MGHImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.mghimage.html)\n",
    "  class can be used too load `.mgh`/`.mgz` images (they are converted into\n",
    "  NIfTI images).\n",
    "* The\n",
    "  [`fsl.data.dtifit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dtifit.html)\n",
    "  module contains functions for loading and working with the output of the\n",
    "  FSL `dtifit` tool.\n",
    "* The\n",
    "  [`fsl.data.featanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featanalysis.html),\n",
    "  [`fsl.data.featimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featimage.html),\n",
    "  and\n",
    "  [`fsl.data.featdesign`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featdesign.html)\n",
    "  modules contain classes and functions for loading data from FEAT\n",
    "  directories.\n",
    "* Similarly, the\n",
    "  [`fsl.data.melodicanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicanalysis.html)\n",
    "  and\n",
    "  [`fsl.data.melodicimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicimage.html)\n",
    "  modules contain classes and functions for loading data from MELODIC\n",
    "  directories.\n",
    "* The\n",
    "  [`fsl.data.gifti`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.gifti.html),\n",
    "  [`fsl.data.freesurfer`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.freesurfer.html),\n",
    "  and\n",
    "  [`fsl.data.vtk`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.vtk.html)\n",
    "  modules contain functionality form loading surface data from GIfTI,\n",
    "  freesurfer, and VTK files respectively.\n",
    "\n",
    "\n",
    "> <sup>*</sup>You must make sure that `dcm2niix` is installed on your system\n",
    "> in order to use this class.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
405
406
    "<a class=\"anchor\" id=\"nifti-coordinate-systems\"></a>\n",
    "### NIfTI coordinate systems\n",
Paul McCarthy's avatar
Paul McCarthy committed
407
408
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    "The `Image.getAffine` method gives you access to affine transformations which\n",
    "can be used to convert coordinates between the different coordinate systems\n",
    "associated with a NIfTI image. Have some MNI coordinates you'd like to convert\n",
    "to voxels? Easy!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "mnicoords = np.array([[0,   0,  0],\n",
    "                      [0, -18, 18]])\n",
Paul McCarthy's avatar
Paul McCarthy committed
426
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
427
428
    "world2vox = std2mm.getAffine('world', 'voxel')\n",
    "vox2world = std2mm.getAffine('voxel', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
429
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    "# Apply the world->voxel\n",
    "# affine to the coordinates\n",
    "voxcoords = (np.dot(world2vox[:3, :3], mnicoords.T)).T + world2vox[:3, 3]\n",
    "\n",
    "# The code above is a bit fiddly, so\n",
    "# instead of figuring it out, you can\n",
    "# just use the transform() function:\n",
    "from fsl.transform.affine import transform\n",
    "voxcoords = transform(mnicoords, world2vox)\n",
    "\n",
    "# just to double check, let's transform\n",
    "# those voxel coordinates back into world\n",
    "# coordinates\n",
    "backtomni = transform(voxcoords, vox2world)\n",
    "\n",
    "for m, v, b in zip(mnicoords, voxcoords, backtomni):\n",
    "    print(m, '->', v, '->', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `Image.getAffine` method can give you transformation matrices\n",
    "> between any of these coordinate systems:\n",
    ">\n",
    ">  - `'voxel'`: Image data voxel coordinates\n",
    ">  - `'world'`: mm coordinates, defined by the sform/qform of an image\n",
    ">  - `'fsl'`: The FSL coordinate system, used internally by many FSL tools\n",
    ">    (e.g. FLIRT)\n",
    "\n",
    "\n",
    "Oh, that example was too easy I hear you say? Try this one on for size. Let's\n",
    "say we have run FEAT on some task fMRI data, and want to get the MNI\n",
    "coordinates of the voxel with peak activation.\n",
    "\n",
    "\n",
    "> This is what people used to use `Featquery` for, back in the un-enlightened\n",
    "> days.\n",
    "\n",
    "\n",
    "Let's start by identifying the voxel with the biggest t-statistic:"
Paul McCarthy's avatar
Paul McCarthy committed
472
473
474
475
476
477
478
479
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
480
481
482
483
484
485
486
487
488
489
490
491
    "featdir = op.join(op.join('08_fslpy', 'fmri.feat'))\n",
    "\n",
    "tstat1 = Image(op.join(featdir, 'stats', 'tstat1')).data\n",
    "\n",
    "# Recall from the numpy practical that\n",
    "# argmax gives us a 1D index into a\n",
    "# flattened view of the array. We can\n",
    "# use the unravel_index function to\n",
    "# convert it into a 3D index.\n",
    "peakvox = np.abs(tstat1).argmax()\n",
    "peakvox = np.unravel_index(peakvox, tstat1.shape)\n",
    "print('Peak voxel coordinates for tstat1:', peakvox, tstat1[peakvox])"
Paul McCarthy's avatar
Paul McCarthy committed
492
493
494
495
496
497
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
498
499
500
    "Now that we've got the voxel coordinates in functional space, we need to\n",
    "transform them into MNI space. FEAT provides a transformation which goes\n",
    "directly from functional to standard space, in the `reg` directory:"
Paul McCarthy's avatar
Paul McCarthy committed
501
502
503
504
505
506
507
508
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
509
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))"
Paul McCarthy's avatar
Paul McCarthy committed
510
511
512
513
514
515
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
516
517
518
519
520
521
    "But ... wait a minute ... this is a FLIRT matrix! We can't just plug voxel\n",
    "coordinates into a FLIRT matrix and expect to get sensible results, because\n",
    "FLIRT works in an internal FSL coordinate system, which is not quite\n",
    "`'voxel'`, and not quite `'world'`. So we need to do a little more work.\n",
    "Let's start by loading our functional image, and the MNI152 template (the\n",
    "source and reference images of our FLIRT matrix):"
Paul McCarthy's avatar
Paul McCarthy committed
522
523
524
525
526
527
528
529
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
530
531
    "func = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "std  = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
Paul McCarthy's avatar
Paul McCarthy committed
532
533
534
535
536
537
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
538
539
540
541
542
543
544
    "Now we can use them to get affines which convert between all of the different\n",
    "coordinate systems - we're going to combine them into a single uber-affine,\n",
    "which transforms our functional-space voxels into MNI world coordinates via:\n",
    "\n",
    "   1. functional voxels -> FLIRT source space\n",
    "   2. FLIRT source space -> FLIRT reference space\n",
    "   3. FLIRT referece space -> MNI world coordinates"
Paul McCarthy's avatar
Paul McCarthy committed
545
546
547
548
549
550
551
552
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
553
554
    "vox2fsl = func.getAffine('voxel', 'fsl')\n",
    "fsl2mni = std .getAffine('fsl',   'world')"
Paul McCarthy's avatar
Paul McCarthy committed
555
556
557
558
559
560
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
561
562
    "Combining two affines into one is just a simple dot-product. There is a\n",
    "`concat()` function which does this for us, for any number of affines:"
Paul McCarthy's avatar
Paul McCarthy committed
563
564
565
566
567
568
569
570
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
571
    "from fsl.transform.affine import concat\n",
Paul McCarthy's avatar
Paul McCarthy committed
572
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
573
574
575
576
    "# To combine affines together, we\n",
    "# have to list them in reverse -\n",
    "# linear algebra is *weird*.\n",
    "funcvox2mni = concat(fsl2mni, func2std, vox2fsl)"
Paul McCarthy's avatar
Paul McCarthy committed
577
578
579
580
581
582
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
583
584
    "So we've now got some voxel coordinates from our functional data, and an\n",
    "affine to transform into MNI world coordinates. The rest is easy:"
Paul McCarthy's avatar
Paul McCarthy committed
585
586
587
588
589
590
591
592
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
593
594
595
596
597
    "mnicoords = transform(peakvox, funcvox2mni)\n",
    "mnivoxels = transform(mnicoords, std.getAffine('world', 'voxel'))\n",
    "mnivoxels = [int(round(v)) for v in mnivoxels]\n",
    "print('Peak activation (MNI coordinates):', mnicoords)\n",
    "print('Peak activation (MNI voxels):     ', mnivoxels)"
Paul McCarthy's avatar
Paul McCarthy committed
598
599
600
601
602
603
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    "> Note that in the above example we are only applying a linear transformation\n",
    "> into MNI space - in reality you would also want to apply your non-linear\n",
    "> structural-to-standard transformation too. But this is left as [an exercise\n",
    "> for the\n",
    "> reader](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.fnirt.html).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"image-processing\"></a>\n",
    "### Image processing\n",
    "\n",
    "\n",
    "Now, it's all well and good to look at t-statistic values and voxel\n",
    "coordinates and so on and so forth, but let's spice things up a bit and look\n",
    "at some images. Let's display our peak activation location in MNI space. To do\n",
    "this, we're going to resample our functional image into MNI space, so we can\n",
    "overlay it on the MNI template. This can be done using some handy functions\n",
    "from the\n",
    "[`fsl.utils.image.resample`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.resample.html)\n",
    "module:"
Paul McCarthy's avatar
Paul McCarthy committed
623
624
625
626
627
628
629
630
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
631
632
    "from fsl.transform.flirt import fromFlirt\n",
    "from fsl.utils.image.resample import resampleToReference\n",
Paul McCarthy's avatar
Paul McCarthy committed
633
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
634
635
636
    "featdir = op.join(op.join('08_fslpy', 'fmri.feat'))\n",
    "tstat1  = Image(op.join(featdir, 'stats', 'tstat1'))\n",
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))\n",
Paul McCarthy's avatar
Paul McCarthy committed
637
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
638
639
640
641
642
643
644
    "# Load the func2standard FLIRT matrix, and adjust it\n",
    "# so that it transforms from functional *world*\n",
    "# coordinates into standard *world* coordinates -\n",
    "# this is what is expected by the resampleToReference\n",
    "# function, used below\n",
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))\n",
    "func2std = fromFlirt(func2std, tstat1, std, 'world', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
645
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
646
647
648
649
650
651
652
653
654
    "# All of the functions in the resample module\n",
    "# return a numpy array containing the resampled\n",
    "# data, and an adjusted voxel-to-world affine\n",
    "# transformation. But when using the\n",
    "# resampleToReference function, the affine will\n",
    "# be the same as the MNI152 2mm affine, so we\n",
    "# can ignore it.\n",
    "std_tstat1 = resampleToReference(tstat1, std, func2std)[0]\n",
    "std_tstat1 = Image(std_tstat1, header=std.header)"
Paul McCarthy's avatar
Paul McCarthy committed
655
656
657
658
659
660
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
661
662
    "Now that we have our t-statistic image in MNI152 space, we can plot it in\n",
    "standard space using `matplotlib`:"
Paul McCarthy's avatar
Paul McCarthy committed
663
664
665
666
667
668
669
670
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
671
672
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
673
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
674
675
676
677
678
    "std_tstat1 = std_tstat1.data\n",
    "std_tstat1 = np.ma.masked_where(std_tstat1 < 3, std_tstat1)\n",
    "\n",
    "fig = ortho(std2mm,     mnivoxels, cmap=plt.cm.gray)\n",
    "fig = ortho(std_tstat1, mnivoxels, cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
679
680
681
682
683
684
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
685
686
687
688
689
690
691
    "There are a few other useful functions tucked away in the\n",
    "[fsl.utils.image](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.html)\n",
    "package, with more to be added in the future. The [`fsl.transform`]() package\n",
    "also contains a wealth of functionality for working with linear (FLIRT) and\n",
    "non-linear (FNIRT) transformations.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
692
693
694
695
696
697
698
699
    "<a class=\"anchor\" id=\"the-filetree\"></a>\n",
    "## The `filetree`\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"fsl-wrapper-functions\"></a>\n",
    "## FSL wrapper functions\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
700
701
702
703
704
    "The\n",
    "[fsl.wrappers](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.wrappers.html)\n",
    "package is the home of \"wrapper\" functions for a range of FSL tools. You can\n",
    "use them to call an FSL tool from Python code, without having to worry about\n",
    "constructing a command-line, or saving/loading input/output images.\n",
Paul McCarthy's avatar
Paul McCarthy committed
705
706
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
707
    "You can use the FSL wrapper functions with file names:"
Paul McCarthy's avatar
Paul McCarthy committed
708
709
710
711
712
713
714
715
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
716
717
718
719
    "from fsl.wrappers import bet, robustfov, LOAD\n",
    "os.chdir('08_fslpy')\n",
    "robustfov('bighead', 'bighead_cropped')\n",
    "render('bighead bighead_cropped -cm blue')"
Paul McCarthy's avatar
Paul McCarthy committed
720
721
722
723
724
725
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
726
727
728
729
730
731
732
733
734
735
736
737
    "Or, if you have images in memory, you can pass the `Image` objects in,\n",
    "and have the results automatically loaded in too:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
    "betted = bet(cropped, LOAD)['output']\n",
Paul McCarthy's avatar
Paul McCarthy committed
738
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
739
740
741
742
743
744
745
746
747
748
    "fig = ortho(cropped, (80, 112, 85))\n",
    "fig = ortho(betted,  (80, 112, 85), fig=fig, cmap=plt.cm.inferno)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"fsl-atlases\"></a>\n",
    "## FSL atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
749
750
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
751
752
753
754
755
    "The\n",
    "[`fsl.data.atlases`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.atlases.html)\n",
    "module provides access to all of the atlas images that are stored in the\n",
    "`$FSLDIR/data/atlases/` directory of a standard FSL installation. It can be\n",
    "used to load and query probabilistic and label-based atlases.\n",
Paul McCarthy's avatar
Paul McCarthy committed
756
757
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
758
    "The `atlases` module needs to be initialised using the `rescanAtlases` function:"
Paul McCarthy's avatar
Paul McCarthy committed
759
760
761
762
763
764
765
766
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
767
768
769
770
771
772
773
774
775
776
    "import fsl.data.atlases as atlases\n",
    "atlases.rescanAtlases()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"querying-atlases\"></a>\n",
    "### Querying atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
777
778
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
779
780
781
782
783
784
785
786
787
788
789
    "You can list all of the available atlases using `listAtlases`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for desc in atlases.listAtlases():\n",
    "    print(desc)"
Paul McCarthy's avatar
Paul McCarthy committed
790
791
792
793
794
795
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
796
797
798
799
    "`listAtlases` returns a list of `AtlasDescription` objects, each of which\n",
    "contains descriptive information about one atlas. You can retrieve the\n",
    "`AtlasDescription` for a specific atlas via the `getAtlasDescription`\n",
    "function:"
Paul McCarthy's avatar
Paul McCarthy committed
800
801
802
803
804
805
806
807
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
808
809
810
811
812
    "desc = atlases.getAtlasDescription('harvardoxford-cortical')\n",
    "print(desc.name)\n",
    "print(desc.atlasID)\n",
    "print(desc.specPath)\n",
    "print(desc.atlasType)"
Paul McCarthy's avatar
Paul McCarthy committed
813
814
815
816
817
818
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
819
820
821
    "Each `AtlasDescription` maintains a list of `AtlasLabel` objects, each of\n",
    "which represents one region that is defined in the atlas. You can access all\n",
    "of the `AtlasLabel` objects via the `labels` attribute:"
Paul McCarthy's avatar
Paul McCarthy committed
822
823
824
825
826
827
828
829
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
830
831
    "for lbl in desc.labels[:5]:\n",
    "    print(lbl)"
Paul McCarthy's avatar
Paul McCarthy committed
832
833
834
835
836
837
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
838
    "Or you can retrieve a specific label using the `find` method:"
Paul McCarthy's avatar
Paul McCarthy committed
839
840
841
842
843
844
845
846
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
847
848
849
850
851
    "# search by region name\n",
    "print(desc.find(name='Occipital Pole'))\n",
    "\n",
    "# or by label value\n",
    "print(desc.find(value=48))"
Paul McCarthy's avatar
Paul McCarthy committed
852
853
854
855
856
857
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
858
859
860
861
862
    "<a class=\"anchor\" id=\"loading-atlas-images\"></a>\n",
    "### Loading atlas images\n",
    "\n",
    "\n",
    "The `loadAtlas` function can be used to load the atlas image:"
Paul McCarthy's avatar
Paul McCarthy committed
863
864
865
866
867
868
869
870
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
871
872
873
874
875
876
877
878
879
880
    "# For probabilistic atlases, you\n",
    "# can ask for the 3D ROI image\n",
    "# by setting loadSummary=True.\n",
    "# You can also request a\n",
    "# resolution - by default the\n",
    "# highest resolution version\n",
    "# will be loaded.\n",
    "lblatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                             loadSummary=True,\n",
    "                             resolution=2)\n",
Paul McCarthy's avatar
Paul McCarthy committed
881
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
882
883
884
885
886
887
888
889
890
    "# By default you will get the 4D\n",
    "# probabilistic atlas image (for\n",
    "# atlases for which this is\n",
    "# available).\n",
    "probatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                              resolution=2)\n",
    "\n",
    "print(lblatlas)\n",
    "print(probatlas)"
Paul McCarthy's avatar
Paul McCarthy committed
891
892
893
894
895
896
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
897
898
899
900
901
902
    "<a class=\"anchor\" id=\"working-with-atlases\"></a>\n",
    "### Working with atlases\n",
    "\n",
    "\n",
    "Both `LabelAtlas` and `ProbabilisticAtlas` objects have a method called `get`,\n",
    "which can be used to extract ROI images for a specific region:"
Paul McCarthy's avatar
Paul McCarthy committed
903
904
905
906
907
908
909
910
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
911
912
913
914
915
916
917
918
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "frontal = lblatlas.get(name='Frontal Pole').data\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
    "\n",
    "fig = ortho(std2mm,  (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal, (45, 54, 45), cmap=plt.cm.winter, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
919
920
921
922
923
924
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
925
926
927
928
929
930
931
932
933
934
935
    "Calling `get` on a :meth:`ProbabilisticAtlas` will return a probability image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
936
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
937
938
    "frontal = probatlas.get(name='Frontal Pole')\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
Paul McCarthy's avatar
Paul McCarthy committed
939
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
940
941
942
943
944
945
946
947
948
949
950
951
952
    "fig = ortho(std2mm,  (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal, (45, 54, 45), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `get` method can be used to retrieve an image for a region by:\n",
    "- an `AtlasLabel` object\n",
    "- The region index\n",
    "- The region value\n",
    "- The region name\n",
Paul McCarthy's avatar
Paul McCarthy committed
953
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
954
955
956
    "\n",
    "`LabelAtlas` objects have a method called `label`, which can be used to\n",
    "interrogate the atlas at specific locations:"
Paul McCarthy's avatar
Paul McCarthy committed
957
958
959
960
961
962
963
964
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    "# The label method accepts 3D\n",
    "# voxel or world coordinates\n",
    "val = lblatlas.label((25, 52, 43), voxel=True)\n",
    "lbl = lblatlas.find(value=val)\n",
    "print('Region at voxel [25, 52, 43]: {} [{}]'.format(val, lbl.name))\n",
    "\n",
    "\n",
    "# or a 3D weighted or binary mask\n",
    "mask = np.zeros(lblatlas.shape)\n",
    "mask[30:60, 30:60, 30:60] = 1\n",
    "mask = Image(mask, header=lblatlas.header)\n",
    "\n",
    "lbls, props = lblatlas.label(mask)\n",
    "print('Labels in mask:')\n",
    "for lbl, prop in zip(lbls, props):\n",
    "    lblname = lblatlas.find(value=lbl).name\n",
    "    print('  {} [{}]: {:0.2f}%'.format(lbl, lblname, prop))"
Paul McCarthy's avatar
Paul McCarthy committed
982
983
984
985
986
987
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    "`ProbabilisticAtlas` objects have an analogous method called `values`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vals = probatlas.values((25, 52, 43), voxel=True)\n",
    "print('Regions at voxel [25, 52, 43]:')\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))\n",
Paul McCarthy's avatar
Paul McCarthy committed
1003
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1004
1005
1006
1007
1008
1009
    "print('Average proportions of regions within mask:')\n",
    "vals = probatlas.values(mask)\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))"
Paul McCarthy's avatar
Paul McCarthy committed
1010
1011
1012
1013
1014
1015
1016
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}