08_fslpy.ipynb 68.9 KB
Newer Older
Paul McCarthy's avatar
Paul McCarthy committed
1
2
3
4
5
6
7
8
9
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# `fslpy`\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
10
11
12
13
    "**Important:** Portions of this practical require `fslpy` 2.9.0, due to be\n",
    "released with FSL 6.0.4, in Spring 2020.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
14
15
    "[`fslpy`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/) is a\n",
    "Python library which is built into FSL, and contains a range of functionality\n",
Paul McCarthy's avatar
Paul McCarthy committed
16
    "for working with FSL and with neuroimaging data from Python.\n",
Paul McCarthy's avatar
Paul McCarthy committed
17
18
19
20
21
22
23
24
25
26
27
    "\n",
    "\n",
    "This practical highlights some of the most useful features provided by\n",
    "`fslpy`. You may find `fslpy` useful if you are writing Python code to\n",
    "perform analyses and image processing in conjunction with FSL.\n",
    "\n",
    "\n",
    "* [The `Image` class, and other data types](#the-image-class-and-other-data-types)\n",
    "  * [Creating images](#creating-images)\n",
    "  * [Working with image data](#working-with-image-data)\n",
    "  * [Loading other file types](#loading-other-file-types)\n",
Paul McCarthy's avatar
Paul McCarthy committed
28
    "  * [NIfTI coordinate systems](#nifti-coordinate-systems)\n",
29
    "  * [Transformations and resampling](#transformations-and-resampling)\n",
Paul McCarthy's avatar
Paul McCarthy committed
30
    "* [FSL wrapper functions](#fsl-wrapper-functions)\n",
Paul McCarthy's avatar
Paul McCarthy committed
31
32
33
    "  * [In-memory images](#in-memory-images)\n",
    "  * [Loading outputs into Python](#loading-outputs-into-python)\n",
    "  * [The `fslmaths` wrapper](#the-fslmaths-wrapper)\n",
Paul McCarthy's avatar
Paul McCarthy committed
34
35
36
37
38
    "* [The `FileTree`](#the-filetree)\n",
    "  * [Describing your data](#describing-your-data)\n",
    "  * [Using the `FileTree`](#using-the-filetree)\n",
    "  * [Building a processing pipeline with `FileTree`](#building-a-processing-pipeline-with-filetree)\n",
    "  * [The `FileTreeQuery`](#the-filetreequery)\n",
Paul McCarthy's avatar
Paul McCarthy committed
39
    "* [Calling shell commands](#calling-shell-commands)\n",
Paul McCarthy's avatar
Paul McCarthy committed
40
41
    "  * [The `runfsl` function](#the-runfsl-function)\n",
    "  * [Submitting to the cluster](#submitting-to-the-cluster)\n",
Paul McCarthy's avatar
Paul McCarthy committed
42
    "  * [Redirecting output](#redirecting-output)\n",
Paul McCarthy's avatar
Paul McCarthy committed
43
44
45
46
47
48
    "* [FSL atlases](#fsl-atlases)\n",
    "  * [Querying atlases](#querying-atlases)\n",
    "  * [Loading atlas images](#loading-atlas-images)\n",
    "  * [Working with atlases](#working-with-atlases)\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
49
50
51
52
53
    "> **Note**: `fslpy` is distinct from `fslpython` - `fslpython` is the Python\n",
    "> environment that is baked into FSL. `fslpy` is a Python library which is\n",
    "> installed into the `fslpython` environment.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    "Let's start with some standard imports and environment set-up:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import os.path as op\n",
    "import nibabel as nib\n",
    "import numpy as np\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And a little function that we can use to generate a simple orthographic plot:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
86
    "def ortho(data, voxel, fig=None, cursor=False, **kwargs):\n",
Paul McCarthy's avatar
Paul McCarthy committed
87
88
    "    \"\"\"Simple orthographic plot of a 3D array using matplotlib.\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
89
90
91
92
    "    :arg data:   3D numpy array\n",
    "    :arg voxel:  XYZ coordinates for each slice\n",
    "    :arg fig:    Existing figure and axes for overlay plotting\n",
    "    :arg cursor: Show a cursor at the `voxel`\n",
Paul McCarthy's avatar
Paul McCarthy committed
93
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
94
    "    All other arguments are passed through to the `imshow` function.\n",
Paul McCarthy's avatar
Paul McCarthy committed
95
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
96
    "    :returns:   The figure and orthogaxes (which can be passed back in as the\n",
Paul McCarthy's avatar
Paul McCarthy committed
97
98
    "                `fig` argument to plot overlays).\n",
    "    \"\"\"\n",
Paul McCarthy's avatar
Paul McCarthy committed
99
    "\n",
100
101
    "    voxel = [int(round(v)) for v in voxel]\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
102
103
104
    "    data            = np.asanyarray(data, dtype=np.float)\n",
    "    data[data <= 0] = np.nan\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    "    x, y, z = voxel\n",
    "    xslice  = np.flipud(data[x, :, :].T)\n",
    "    yslice  = np.flipud(data[:, y, :].T)\n",
    "    zslice  = np.flipud(data[:, :, z].T)\n",
    "\n",
    "    if fig is None:\n",
    "        fig = plt.figure()\n",
    "        xax = fig.add_subplot(1, 3, 1)\n",
    "        yax = fig.add_subplot(1, 3, 2)\n",
    "        zax = fig.add_subplot(1, 3, 3)\n",
    "    else:\n",
    "        fig, xax, yax, zax = fig\n",
    "\n",
    "    xax.imshow(xslice, **kwargs)\n",
    "    yax.imshow(yslice, **kwargs)\n",
    "    zax.imshow(zslice, **kwargs)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
122
123
124
125
126
127
128
129
130
    "    if cursor:\n",
    "        cargs = {'color' : (0, 1, 0), 'linewidth' : 1}\n",
    "        xax.axvline(                y, **cargs)\n",
    "        xax.axhline(data.shape[2] - z, **cargs)\n",
    "        yax.axvline(                x, **cargs)\n",
    "        yax.axhline(data.shape[2] - z, **cargs)\n",
    "        zax.axvline(                x, **cargs)\n",
    "        zax.axhline(data.shape[1] - y, **cargs)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "    for ax in (xax, yax, zax):\n",
    "        ax.set_xticks([])\n",
    "        ax.set_yticks([])\n",
    "    fig.tight_layout(pad=0)\n",
    "\n",
    "    return (fig, xax, yax, zax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And another function which uses FSLeyes for more complex plots:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def render(cmdline):\n",
Paul McCarthy's avatar
Paul McCarthy committed
153
154
155
156
    "\n",
    "    import shlex\n",
    "    import IPython.display as display\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
157
    "    prefix = '-of screenshot.png -hl -c 2 '\n",
Paul McCarthy's avatar
Paul McCarthy committed
158
159
160
161
162
163
164
165
166
167
168
169
    "\n",
    "    try:\n",
    "        from fsleyes.render import main\n",
    "        main(shlex.split(prefix + cmdline))\n",
    "\n",
    "    except ImportError:\n",
    "        # fall-back for macOS - we have to run\n",
    "        # FSLeyes render in a separate process\n",
    "        from fsl.utils.run import runfsl\n",
    "        prefix = 'render ' + prefix\n",
    "        runfsl(prefix + cmdline, env={})\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
170
171
172
173
174
175
176
    "    return display.Image('screenshot.png')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    "<a class=\"anchor\" id=\"the-image-class-and-other-data-types\"></a>\n",
    "## The `Image` class, and other data types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "module provides the `Image` class, which sits on top of `nibabel` and contains\n",
    "some handy functionality if you need to work with coordinate transformations,\n",
    "or do some FSL-specific processing. The `Image` class provides features such\n",
    "as:\n",
    "\n",
    "- Support for NIFTI1, NIFTI2, and ANALYZE image files\n",
    "- Access to affine transformations between the voxel, FSL and world coordinate\n",
    "  systems\n",
    "- Ability to load metadata from BIDS sidecar files\n",
    "\n",
    "\n",
194
195
196
197
198
199
200
201
    "> The `Image` class behaves differently to the `nibabel.Nifti1Image`. For\n",
    "> example, when you create an `Image` object, the default behaviour is to load\n",
    "> the image data into memory. This is configurable however; take a look at\n",
    "> [the\n",
    "> documentation](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "> to explore all of the options.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    "Some simple image processing routines are also provided - these are covered\n",
    "[below](#image-processing).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"creating-images\"></a>\n",
    "### Creating images\n",
    "\n",
    "\n",
    "It's easy to create an `Image` - you can create one from a file name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.data.image import Image\n",
    "\n",
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "\n",
    "# load a FSL image - the file\n",
    "# suffix is optional, just like\n",
    "# in real FSL-land!\n",
    "img = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "print(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can create an `Image` from an existing `nibabel` image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load a nibabel image, and\n",
    "# convert it into an FSL image\n",
    "nibimg = nib.load(op.join(stddir, 'MNI152_T1_1mm.nii.gz'))\n",
    "img    = Image(nibimg)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can create an `Image` from a `numpy` array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.zeros((100, 100, 100))\n",
    "img = Image(data, xform=np.eye(4))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can save an image to file via the `save` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img.save('empty.nii.gz')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`Image` objects have all of the attributes you might expect:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std1mm = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "\n",
    "print('name:         ', std1mm.name)\n",
    "print('file:         ', std1mm.dataSource)\n",
    "print('NIfTI version:', std1mm.niftiVersion)\n",
    "print('ndim:         ', std1mm.ndim)\n",
    "print('shape:        ', std1mm.shape)\n",
    "print('dtype:        ', std1mm.dtype)\n",
    "print('nvals:        ', std1mm.nvals)\n",
    "print('pixdim:       ', std1mm.pixdim)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and a number of useful methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "std2mm  = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
322
    "mask2mm = Image(op.join(stddir, 'MNI152_T1_2mm_brain_mask'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    "\n",
    "print(std1mm.sameSpace(std2mm))\n",
    "print(std2mm.sameSpace(mask2mm))\n",
    "print(std2mm.getAffine('voxel', 'world'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An `Image` object is a high-level wrapper around a `nibabel` image object -\n",
    "you can always work directly with the `nibabel` object via the `nibImage`\n",
    "attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(std2mm)\n",
    "print(std2mm.nibImage)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"working-with-image-data\"></a>\n",
    "### Working with image data\n",
    "\n",
    "\n",
    "You can get the image data as a `numpy` array via the `data` attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = std2mm.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
366
367
    "print(data.min(), data.max())\n",
    "ortho(data, (45, 54, 45))"
Paul McCarthy's avatar
Paul McCarthy committed
368
369
370
371
372
373
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
374
375
    "> Note that `Image.data` will give you the data in its underlying type, unlike\n",
    "> the `nibabel.get_fdata` method, which up-casts image data to floating-point.\n",
Paul McCarthy's avatar
Paul McCarthy committed
376
377
378
379
380
381
382
383
384
385
386
387
    "\n",
    "\n",
    "You can also read and write data directly via the `Image` object:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "slc = std2mm[:, :, 45]\n",
Paul McCarthy's avatar
Paul McCarthy committed
388
    "std2mm[0:10, :, :] *= 2"
Paul McCarthy's avatar
Paul McCarthy committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Doing so has some advantages that may or may not be useful, depending on your\n",
    "use-case:\n",
    " - The image data will be kept on disk - only the parts that you access will\n",
    "   be loaded into RAM (you will also need to pass`loadData=False` when creating\n",
    "   the `Image` to achieve this).\n",
    " - The `Image` object will keep track of modifications to the data - this can\n",
    "   be queried via the `saveState` attribute.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"loading-other-file-types\"></a>\n",
    "### Loading other file types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.html#module-fsl.data)\n",
    "package has a number of other classes for working with different types of FSL\n",
    "and neuroimaging data. Most of these are higher-level wrappers around the\n",
    "corresponding `nibabel` types:\n",
    "\n",
    "* The\n",
    "  [`fsl.data.bitmap.Bitmap`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.bitmap.html)\n",
    "  class can be used to load a bitmap image (e.g. `jpg, `png`, etc) and\n",
    "  convert it to a NIfTI image.\n",
    "* The\n",
    "  [`fsl.data.dicom.DicomImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dicom.html)\n",
    "  class uses `dcm2niix` to load NIfTI images contained within a DICOM\n",
    "  directory<sup>*</sup>.\n",
    "* The\n",
Paul McCarthy's avatar
Paul McCarthy committed
423
    "  [`fsl.data.mghimage.MGHImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.mghimage.html)\n",
Paul McCarthy's avatar
Paul McCarthy committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    "  class can be used too load `.mgh`/`.mgz` images (they are converted into\n",
    "  NIfTI images).\n",
    "* The\n",
    "  [`fsl.data.dtifit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dtifit.html)\n",
    "  module contains functions for loading and working with the output of the\n",
    "  FSL `dtifit` tool.\n",
    "* The\n",
    "  [`fsl.data.featanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featanalysis.html),\n",
    "  [`fsl.data.featimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featimage.html),\n",
    "  and\n",
    "  [`fsl.data.featdesign`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featdesign.html)\n",
    "  modules contain classes and functions for loading data from FEAT\n",
    "  directories.\n",
    "* Similarly, the\n",
    "  [`fsl.data.melodicanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicanalysis.html)\n",
    "  and\n",
    "  [`fsl.data.melodicimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicimage.html)\n",
    "  modules contain classes and functions for loading data from MELODIC\n",
    "  directories.\n",
    "* The\n",
    "  [`fsl.data.gifti`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.gifti.html),\n",
    "  [`fsl.data.freesurfer`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.freesurfer.html),\n",
    "  and\n",
    "  [`fsl.data.vtk`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.vtk.html)\n",
    "  modules contain functionality form loading surface data from GIfTI,\n",
Paul McCarthy's avatar
Paul McCarthy committed
449
    "  freesurfer, and ASCII VTK files respectively.\n",
Paul McCarthy's avatar
Paul McCarthy committed
450
451
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
452
453
454
    "> <sup>*</sup>You must make sure that\n",
    "> [`dcm2niix`](https://github.com/rordenlab/dcm2niix/) is installed on your\n",
    "> system in order to use this class.\n",
Paul McCarthy's avatar
Paul McCarthy committed
455
456
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
457
458
    "<a class=\"anchor\" id=\"nifti-coordinate-systems\"></a>\n",
    "### NIfTI coordinate systems\n",
Paul McCarthy's avatar
Paul McCarthy committed
459
460
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    "The `Image.getAffine` method gives you access to affine transformations which\n",
    "can be used to convert coordinates between the different coordinate systems\n",
    "associated with a NIfTI image. Have some MNI coordinates you'd like to convert\n",
    "to voxels? Easy!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "mnicoords = np.array([[0,   0,  0],\n",
    "                      [0, -18, 18]])\n",
Paul McCarthy's avatar
Paul McCarthy committed
478
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
479
480
    "world2vox = std2mm.getAffine('world', 'voxel')\n",
    "vox2world = std2mm.getAffine('voxel', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
481
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
482
483
    "# Apply the world->voxel\n",
    "# affine to the coordinates\n",
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    "voxcoords = (np.dot(world2vox[:3, :3], mnicoords.T)).T + world2vox[:3, 3]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The code above is a bit fiddly, so instead of figuring it out, you can just\n",
    "use the\n",
    "[`affine.transform`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.affine.html#fsl.transform.affine.transform)\n",
    "function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
503
    "from fsl.transform.affine import transform\n",
504
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    "voxcoords = transform(mnicoords, world2vox)\n",
    "\n",
    "# just to double check, let's transform\n",
    "# those voxel coordinates back into world\n",
    "# coordinates\n",
    "backtomni = transform(voxcoords, vox2world)\n",
    "\n",
    "for m, v, b in zip(mnicoords, voxcoords, backtomni):\n",
    "    print(m, '->', v, '->', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `Image.getAffine` method can give you transformation matrices\n",
    "> between any of these coordinate systems:\n",
    ">\n",
    ">  - `'voxel'`: Image data voxel coordinates\n",
    ">  - `'world'`: mm coordinates, defined by the sform/qform of an image\n",
    ">  - `'fsl'`: The FSL coordinate system, used internally by many FSL tools\n",
    ">    (e.g. FLIRT)\n",
    "\n",
    "\n",
    "Oh, that example was too easy I hear you say? Try this one on for size. Let's\n",
    "say we have run FEAT on some task fMRI data, and want to get the MNI\n",
    "coordinates of the voxel with peak activation.\n",
    "\n",
    "\n",
    "> This is what people used to use `Featquery` for, back in the un-enlightened\n",
    "> days.\n",
    "\n",
    "\n",
    "Let's start by identifying the voxel with the biggest t-statistic:"
Paul McCarthy's avatar
Paul McCarthy committed
539
540
541
542
543
544
545
546
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
547
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
Paul McCarthy's avatar
Paul McCarthy committed
548
549
550
551
552
553
554
555
556
557
558
    "\n",
    "tstat1 = Image(op.join(featdir, 'stats', 'tstat1')).data\n",
    "\n",
    "# Recall from the numpy practical that\n",
    "# argmax gives us a 1D index into a\n",
    "# flattened view of the array. We can\n",
    "# use the unravel_index function to\n",
    "# convert it into a 3D index.\n",
    "peakvox = np.abs(tstat1).argmax()\n",
    "peakvox = np.unravel_index(peakvox, tstat1.shape)\n",
    "print('Peak voxel coordinates for tstat1:', peakvox, tstat1[peakvox])"
Paul McCarthy's avatar
Paul McCarthy committed
559
560
561
562
563
564
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
565
566
567
    "Now that we've got the voxel coordinates in functional space, we need to\n",
    "transform them into MNI space. FEAT provides a transformation which goes\n",
    "directly from functional to standard space, in the `reg` directory:"
Paul McCarthy's avatar
Paul McCarthy committed
568
569
570
571
572
573
574
575
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
576
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))"
Paul McCarthy's avatar
Paul McCarthy committed
577
578
579
580
581
582
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
583
584
585
586
587
588
    "But ... wait a minute ... this is a FLIRT matrix! We can't just plug voxel\n",
    "coordinates into a FLIRT matrix and expect to get sensible results, because\n",
    "FLIRT works in an internal FSL coordinate system, which is not quite\n",
    "`'voxel'`, and not quite `'world'`. So we need to do a little more work.\n",
    "Let's start by loading our functional image, and the MNI152 template (the\n",
    "source and reference images of our FLIRT matrix):"
Paul McCarthy's avatar
Paul McCarthy committed
589
590
591
592
593
594
595
596
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
597
598
    "func = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "std  = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
Paul McCarthy's avatar
Paul McCarthy committed
599
600
601
602
603
604
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
605
606
607
608
609
610
611
    "Now we can use them to get affines which convert between all of the different\n",
    "coordinate systems - we're going to combine them into a single uber-affine,\n",
    "which transforms our functional-space voxels into MNI world coordinates via:\n",
    "\n",
    "   1. functional voxels -> FLIRT source space\n",
    "   2. FLIRT source space -> FLIRT reference space\n",
    "   3. FLIRT referece space -> MNI world coordinates"
Paul McCarthy's avatar
Paul McCarthy committed
612
613
614
615
616
617
618
619
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
620
621
    "vox2fsl = func.getAffine('voxel', 'fsl')\n",
    "fsl2mni = std .getAffine('fsl',   'world')"
Paul McCarthy's avatar
Paul McCarthy committed
622
623
624
625
626
627
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
628
629
    "Combining two affines into one is just a simple dot-product. There is a\n",
    "`concat()` function which does this for us, for any number of affines:"
Paul McCarthy's avatar
Paul McCarthy committed
630
631
632
633
634
635
636
637
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
638
    "from fsl.transform.affine import concat\n",
Paul McCarthy's avatar
Paul McCarthy committed
639
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
640
641
642
643
    "# To combine affines together, we\n",
    "# have to list them in reverse -\n",
    "# linear algebra is *weird*.\n",
    "funcvox2mni = concat(fsl2mni, func2std, vox2fsl)"
Paul McCarthy's avatar
Paul McCarthy committed
644
645
646
647
648
649
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
650
    "> In the next section we will use the\n",
Paul McCarthy's avatar
Paul McCarthy committed
651
652
653
654
    "> [`fsl.transform.flirt.fromFlirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html#fsl.transform.flirt.fromFlirt)\n",
    "> function, which does all of the above for us.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
655
656
    "So we've now got some voxel coordinates from our functional data, and an\n",
    "affine to transform into MNI world coordinates. The rest is easy:"
Paul McCarthy's avatar
Paul McCarthy committed
657
658
659
660
661
662
663
664
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
665
666
667
668
669
    "mnicoords = transform(peakvox, funcvox2mni)\n",
    "mnivoxels = transform(mnicoords, std.getAffine('world', 'voxel'))\n",
    "mnivoxels = [int(round(v)) for v in mnivoxels]\n",
    "print('Peak activation (MNI coordinates):', mnicoords)\n",
    "print('Peak activation (MNI voxels):     ', mnivoxels)"
Paul McCarthy's avatar
Paul McCarthy committed
670
671
672
673
674
675
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
676
677
678
679
    "Note that in the above example we are only applying a linear transformation\n",
    "into MNI space - in reality you would also want to apply your non-linear\n",
    "structural-to-standard transformation too. This is covered in the next\n",
    "section.\n",
Paul McCarthy's avatar
Paul McCarthy committed
680
681
    "\n",
    "\n",
682
683
    "<a class=\"anchor\" id=\"transformations-and-resampling\"></a>\n",
    "### Transformations and resampling\n",
Paul McCarthy's avatar
Paul McCarthy committed
684
685
686
687
688
689
690
691
    "\n",
    "\n",
    "Now, it's all well and good to look at t-statistic values and voxel\n",
    "coordinates and so on and so forth, but let's spice things up a bit and look\n",
    "at some images. Let's display our peak activation location in MNI space. To do\n",
    "this, we're going to resample our functional image into MNI space, so we can\n",
    "overlay it on the MNI template. This can be done using some handy functions\n",
    "from the\n",
692
693
    "[`fsl.transform.flirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html)\n",
    "and\n",
Paul McCarthy's avatar
Paul McCarthy committed
694
    "[`fsl.utils.image.resample`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.resample.html)\n",
695
696
697
698
    "modules.\n",
    "\n",
    "\n",
    "Let's make sure we've got our source and reference images loaded:"
Paul McCarthy's avatar
Paul McCarthy committed
699
700
701
702
703
704
705
706
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
707
708
    "featdir = op.join(op.join('08_fslpy', 'fmri.feat'))\n",
    "tstat1  = Image(op.join(featdir, 'stats', 'tstat1'))\n",
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we'll load the `example_func2standard` FLIRT matrix, and adjust it so that\n",
    "it transforms from functional *world* coordinates into standard *world*\n",
    "coordinates - this is what is expected by the `resampleToReference` function,\n",
    "used below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.flirt import fromFlirt\n",
Paul McCarthy's avatar
Paul McCarthy committed
729
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
730
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))\n",
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    "func2std = fromFlirt(func2std, tstat1, std, 'world', 'world')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can use `resampleToReference` to resample our functional data into\n",
    "MNI152 space. This function returns a `numpy` array containing the resampled\n",
    "data, and an adjusted voxel-to-world affine transformation. But in this case,\n",
    "we know that the data will be aligned to MNI152, so we can ignore the affine:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.image.resample import resampleToReference\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
752
753
    "std_tstat1 = resampleToReference(tstat1, std, func2std)[0]\n",
    "std_tstat1 = Image(std_tstat1, header=std.header)"
Paul McCarthy's avatar
Paul McCarthy committed
754
755
756
757
758
759
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
760
761
    "Now that we have our t-statistic image in MNI152 space, we can plot it in\n",
    "standard space using `matplotlib`:"
Paul McCarthy's avatar
Paul McCarthy committed
762
763
764
765
766
767
768
769
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
770
771
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
772
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
773
774
    "std_tstat1                 = std_tstat1.data\n",
    "std_tstat1[std_tstat1 < 3] = 0\n",
Paul McCarthy's avatar
Paul McCarthy committed
775
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
776
    "fig = ortho(std2mm.data, mnivoxels, cmap=plt.cm.gray)\n",
Paul McCarthy's avatar
Paul McCarthy committed
777
    "fig = ortho(std_tstat1,  mnivoxels, cmap=plt.cm.inferno, fig=fig, cursor=True)"
Paul McCarthy's avatar
Paul McCarthy committed
778
779
   ]
  },
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the example above, we resampled some data from functional space into\n",
    "standard space using a linear transformation. But we all know that this is not\n",
    "how things work in the real world - linear transformations are for kids. The\n",
    "real world is full of lions and tigers and bears and warp fields.\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.transform.fnirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.fnirt.html#fsl.transform.fnirt.fromFnirt)\n",
    "and\n",
    "[`fsl.transform.nonlinear`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.nonlinear.html)\n",
    "modules contain classes and functions for working with FNIRT-style warp fields\n",
    "(modules for working with lions, tigers, and bears are still under\n",
    "development).\n",
    "\n",
    "\n",
    "Let's imagine that we have defined an ROI in MNI152 space, and we want to\n",
    "project it into the space of our functional data.  We can do this by combining\n",
    "the nonlinear structural to standard registration produced by FNIRT with the\n",
    "linear functional to structural registration generated by FLIRT.  First of\n",
    "all, we'll load images from each of the functional, structural, and standard\n",
    "spaces:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
    "func    = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "struc   = Image(op.join(featdir, 'reg', 'highres'))\n",
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, let's say we have obtained our seed location in MNI152 coordinates. Let's\n",
    "convert them to MNI152 voxels just to double check:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "seedmni    = [-48, -74, -9]\n",
    "seedmnivox = transform(seedmni, std.getAffine('world', 'voxel'))\n",
    "ortho(std.data, seedmnivox, cursor=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we'll load the FNIRT warp field, which encodes a nonlinear transformation\n",
    "from structural space to standard space. FNIRT warp fields are often stored as\n",
    "*coefficient* fields to reduce the file size, but in order to use it, we must\n",
    "convert the coefficient field into a *deformation* (a.k.a. *displacement*)\n",
    "field. This takes a few seconds:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.fnirt     import readFnirt\n",
    "from fsl.transform.nonlinear import coefficientFieldToDeformationField\n",
    "\n",
    "struc2std = readFnirt(op.join(featdir, 'reg', 'highres2standard_warp'), struc, std)\n",
    "struc2std = coefficientFieldToDeformationField(struc2std)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll also load our FLIRT functional to structural transformation, adjust it\n",
    "so that it transforms between voxel coordinate systems instead of the FSL\n",
    "coordinate system, and invert so it can transform from structural voxels to\n",
    "functional voxels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.affine import invert\n",
    "func2struc = np.loadtxt(op.join(featdir, 'reg', 'example_func2highres.mat'))\n",
    "func2struc = fromFlirt(func2struc, func, struc, 'voxel', 'voxel')\n",
    "struc2func = invert(func2struc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can transform our seed coordinates from MNI152 space into functional\n",
    "space in two stages. First, we'll use our deformation field to transform from\n",
    "MNI152 space into structural space:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "seedstruc = struc2std.transform([seedmni], 'world', 'voxel')[0]\n",
    "seedfunc  = transform(seedstruc, struc2func)\n",
    "\n",
    "print('Seed location in MNI coordinates:  ', seedmni)\n",
    "print('Seed location in functional voxels:', seedfunc)\n",
    "ortho(func.data, seedfunc, cursor=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> FNIRT warp fields kind of work backwards - we can use them to transform\n",
    "> reference coordinates into source coordinates, but would need to invert the\n",
    "> warp field using `invwarp` if we wanted to transform from source coordinates\n",
    "> into referemce coordinates.\n",
    "\n",
    "\n",
    "Of course, we can also use our deformation field to resample an image from\n",
    "structural space into MNI152 space. The `applyDeformation` function takes an\n",
    "`Image` and a `DeformationField`, and returns a `numpy` array containing the\n",
    "resampled data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.nonlinear import applyDeformation\n",
    "\n",
    "strucmni = applyDeformation(struc, struc2std)\n",
    "\n",
    "# remove low-valued voxels,\n",
    "# just for visualisation below\n",
    "strucmni[strucmni < 1] = 0\n",
    "\n",
    "fig = ortho(std.data, [45, 54, 45], cmap=plt.cm.gray)\n",
    "fig = ortho(strucmni, [45, 54, 45], fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `premat` option to `applyDeformation` can be used to specify our linear\n",
    "functional to structural transformation, and hence resample a functional image\n",
    "into MNI152 space:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tstatmni = applyDeformation(tstat1, struc2std, premat=func2struc)\n",
    "tstatmni[tstatmni < 3] = 0\n",
    "\n",
    "fig = ortho(std.data, [45, 54, 45], cmap=plt.cm.gray)\n",
    "fig = ortho(tstatmni, [45, 54, 45], fig=fig)"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
963
964
965
966
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
967
    "There are a few other useful functions tucked away in the\n",
968
969
970
971
    "[`fsl.utils.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.html)\n",
    "and\n",
    "[`fsl.transform`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.html)\n",
    "packages, with more to be added in the future.\n",
Paul McCarthy's avatar
Paul McCarthy committed
972
973
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
974
975
976
977
    "<a class=\"anchor\" id=\"fsl-wrapper-functions\"></a>\n",
    "## FSL wrapper functions\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
978
979
980
981
982
    "The\n",
    "[fsl.wrappers](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.wrappers.html)\n",
    "package is the home of \"wrapper\" functions for a range of FSL tools. You can\n",
    "use them to call an FSL tool from Python code, without having to worry about\n",
    "constructing a command-line, or saving/loading input/output images.\n",
Paul McCarthy's avatar
Paul McCarthy committed
983
984
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
985
986
987
988
    "> The `fsl.wrappers` functions also allow you to submit jobs to be run on the\n",
    "> cluster - this is described [below](#submitting-to-the-cluster).\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
989
990
    "You can use the FSL wrapper functions with file names, similar to calling the\n",
    "corresponding tool via the command-line:"
Paul McCarthy's avatar
Paul McCarthy committed
991
992
993
994
995
996
997
998
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
999
    "from fsl.wrappers import bet, robustfov, LOAD\n",
Paul McCarthy's avatar
Paul McCarthy committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    "\n",
    "robustfov('08_fslpy/bighead', 'bighead_cropped')\n",
    "\n",
    "render('08_fslpy/bighead bighead_cropped -cm blue')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1010
    "The `fsl.wrappers` functions strive to provide an interface which is as close\n",
Paul McCarthy's avatar
Paul McCarthy committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    "as possible to the command-line tool - most functions use positional arguments\n",
    "for required options, and keyword arguments for all other options, with\n",
    "argument names equivalent to command line option names. For example, the usage\n",
    "for the command-line `bet` tool is as follows:\n",
    "\n",
    "\n",
    "> ```\n",
    "> Usage:    bet <input> <output> [options]\n",
    ">\n",
    "> Main bet2 options:\n",
    ">   -o          generate brain surface outline overlaid onto original image\n",
    ">   -m          generate binary brain mask\n",
    ">   -s          generate approximate skull image\n",
    ">   -n          don't generate segmented brain image output\n",
    ">   -f <f>      fractional intensity threshold (0->1); default=0.5; smaller values give larger brain outline estimates\n",
    ">   -g <g>      vertical gradient in fractional intensity threshold (-1->1); default=0; positive values give larger brain outline at bottom, smaller at top\n",
    ">   -r <r>      head radius (mm not voxels); initial surface sphere is set to half of this\n",
    ">   -c <x y z>  centre-of-gravity (voxels not mm) of initial mesh surface.\n",
    "> ...\n",
    "> ```\n",
    "\n",
    "\n",
    "So to use the `bet()` wrapper function, pass `<input>` and `<output>` as\n",
    "positional arguments, and pass the additional options as keyword arguments:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "bet('bighead_cropped', 'bighead_cropped_brain', f=0.3, m=True, s=True)\n",
    "\n",
    "render('bighead_cropped             -b 40 '\n",
    "       'bighead_cropped_brain       -cm hot '\n",
    "       'bighead_cropped_brain_skull -ot mask -mc 0.4 0.4 1 '\n",
    "       'bighead_cropped_brain_mask  -ot mask -mc 0   1   0 -o -w 5')"
Paul McCarthy's avatar
Paul McCarthy committed
1049
1050
1051
1052
1053
1054
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
    "> Some FSL commands accept arguments which cannot be used as Python\n",
    "> identifiers - for example, the `-2D` option to `flirt` cannot be used as an\n",
    "> identifier in Python, because it begins with a number. In situations like\n",
    "> this, an alias is used. So to set the `-2D` option to `flirt`, you can do this:\n",
    ">\n",
    "> ```\n",
    "> # \"twod\" applies the -2D flag\n",
    "> flirt('source.nii.gz', 'ref.nii.gz', omat='src2ref.mat', twod=True)\n",
    "> ```\n",
Paul McCarthy's avatar
Paul McCarthy committed
1064
1065
1066
1067
    ">\n",
    "> Some of the `fsl.wrappers` functions also support aliases which may make\n",
    "> your code more readable. For example, when calling `bet`, you can use either\n",
    "> `m=True` or `mask=True` to apply the `-m` command line flag.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1068
1069
1070
1071
1072
1073
1074
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"in-memory-images\"></a>\n",
    "### In-memory images\n",
    "\n",
    "\n",
    "It can be quite awkward to combine image processing with FSL tools and image\n",
Paul McCarthy's avatar
Paul McCarthy committed
1075
    "processing in Python. The `fsl.wrappers` package tries to make this a little\n",
Paul McCarthy's avatar
Paul McCarthy committed
1076
    "easier for you - if you are working with image data in Python, you can pass\n",
Paul McCarthy's avatar
Paul McCarthy committed
1077
    "`Image` or `nibabel` objects directly into `fsl.wrappers` functions - they will\n",
Paul McCarthy's avatar
Paul McCarthy committed
1078
1079
    "be automatically saved to temporary files and passed to the underlying FSL\n",
    "command:"
Paul McCarthy's avatar
Paul McCarthy committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1089
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    "bet(cropped, 'bighead_cropped_brain')\n",
    "\n",
    "betted = Image('bighead_cropped_brain')\n",
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"loading-outputs-into-python\"></a>\n",
    "### Loading outputs into Python\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1106
    "By using the special `fsl.wrappers.LOAD` symbol, you can also have any output\n",
Paul McCarthy's avatar
Paul McCarthy committed
1107
    "files produced by the tool automatically loaded into memory for you:"
Paul McCarthy's avatar
Paul McCarthy committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1117
1118
1119
1120
1121
    "\n",
    "# The loaded result is called \"output\",\n",
    "# because that is the name of the\n",
    "# argument in the bet wrapper function.\n",
    "betted  = bet(cropped, LOAD).output\n",
Paul McCarthy's avatar
Paul McCarthy committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `LOAD` symbol for any output argument - any output files which\n",
Paul McCarthy's avatar
Paul McCarthy committed
1132
    "are loaded will be available through the return value of the wrapper function:"
Paul McCarthy's avatar
Paul McCarthy committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import flirt\n",
    "\n",
    "std2mm   = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))\n",
    "tstat1   = Image(op.join('08_fslpy', 'fmri.feat', 'stats', 'tstat1'))\n",
    "func2std = np.loadtxt(op.join('08_fslpy', 'fmri.feat', 'reg', 'example_func2standard.mat'))\n",
    "\n",
    "aligned = flirt(tstat1, std2mm, applyxfm=True, init=func2std, out=LOAD)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1149
1150
1151
1152
    "# Here the resampled tstat image\n",
    "# is called \"out\", because that\n",
    "# is the name of the flirt argument.\n",
    "aligned = aligned.out.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
1153
1154
    "aligned[aligned < 1] = 0\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1155
1156
1157
1158
1159
    "peakvox = np.abs(aligned).argmax()\n",
    "peakvox = np.unravel_index(peakvox, aligned.shape)\n",
    "\n",
    "fig = ortho(std2mm .data, peakvox, cmap=plt.cm.gray)\n",
    "fig = ortho(aligned.data, peakvox, cmap=plt.cm.inferno, fig=fig, cursor=True)"
Paul McCarthy's avatar
Paul McCarthy committed
1160
1161
1162
1163
1164
1165
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1166
1167
    "For tools like `bet` and `fast`, which expect an output *prefix* or\n",
    "*basename*, you can just set the prefix to `LOAD` - all output files with that\n",
Paul McCarthy's avatar
Paul McCarthy committed
1168
    "prefix will be available in the object that is returned:"
Paul McCarthy's avatar
Paul McCarthy committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img    = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1178
    "betted = bet(img, LOAD, f=0.3, mask=True)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1179
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1180
1181
1182
    "fig = ortho(img               .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted.output     .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)\n",
    "fig = ortho(betted.output_mask.data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig, alpha=0.5)"
Paul McCarthy's avatar
Paul McCarthy committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-fslmaths-wrapper\"></a>\n",
    "### The `fslmaths` wrapper\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1193
    "*Most* of the `fsl.wrappers` functions aim to provide an interface which is as\n",
Paul McCarthy's avatar
Paul McCarthy committed
1194
1195
1196
1197
1198
1199
1200
    "close as possible to the underlying FSL tool. Ideally, if you read the\n",
    "command-line help for a tool, you should be able to figure out how to use the\n",
    "corresponding wrapper function. The wrapper for the `fslmaths` command is a\n",
    "little different, however. It provides more of an object-oriented interface,\n",
    "which is hopefully a little easier to use from within Python.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1201
1202
1203
    "You can apply an `fslmaths` operation by specifying the input image,\n",
    "*chaining* method calls together, and finally calling the `run()` method. For\n",
    "example:"
Paul McCarthy's avatar
Paul McCarthy committed
1204
1205
1206
1207
1208
1209
1210
1211
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1212
    "from fsl.wrappers import fslmaths\n",
Paul McCarthy's avatar
Paul McCarthy committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    "fslmaths('bighead_cropped')            \\\n",
    "  .mas(  'bighead_cropped_brain_mask') \\\n",
    "  .run(  'bighead_cropped_brain')\n",
    "\n",
    "render('bighead_cropped bighead_cropped_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Of course, you can also use the `fslmaths` wrapper with in-memory images:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "wholehead   = Image('bighead_cropped')\n",
    "brainmask   = Image('bighead_cropped_brain_mask')\n",
    "\n",
    "eroded      = fslmaths(brainmask).ero().ero().run()\n",
    "erodedbrain = fslmaths(wholehead).mas(eroded).run()\n",
    "\n",
    "fig = ortho(wholehead  .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(brainmask  .data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig)\n",
    "fig = ortho(erodedbrain.data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
1242
1243
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
1244
1245
1246
1247
1248
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-filetree\"></a>\n",
Paul McCarthy's avatar
Paul McCarthy committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
    "## The `FileTree`\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.filetree`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html)\n",
    "library provides functionality which allows you to work with *structured data\n",
    "directories*, such as HCP or BIDS datasets. You can use `filetree` for both\n",
    "reading and for creating datasets.\n",
    "\n",
    "\n",
    "This practical gives a very brief introduction to the `filetree` library -\n",
    "refer to the [full\n",
    "documentation](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html)\n",
    "to get a feel for how powerful it can be.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"describing-your-data\"></a>\n",
    "### Describing your data\n",
    "\n",
    "\n",
    "To introduce `filetree`, we'll begin with a small example. Imagine that we\n",
    "have a dataset which looks like this:\n",
    "\n",
    "\n",
    "> ```\n",
    "> mydata\n",
    "> ├── sub_A\n",
    "> │   ├── ses_1\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   ├── ses_2\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   └── T2w.nii.gz\n",
    "> ├── sub_B\n",
    "> │   ├── ses_1\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   ├── ses_2\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   └── T2w.nii.gz\n",
    "> └── sub_C\n",
    ">     ├── ses_1\n",
    ">     │   └── T1w.nii.gz\n",
    ">     ├── ses_2\n",
    ">     │   └── T1w.nii.gz\n",
    ">     └── T2w.nii.gz\n",
    "> ```\n",
    "\n",
    "\n",
    "(Run the code cell below to create a dummy data set with the above structure):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%bash\n",
    "for sub in A B C; do\n",
    "  subdir=mydata/sub_$sub/\n",
    "  mkdir -p $subdir\n",
    "  cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $subdir/T2w.nii.gz\n",
    "  for ses in 1 2; do\n",
    "    sesdir=$subdir/ses_$ses/\n",
    "    mkdir $sesdir\n",
    "    cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $sesdir/T1w.nii.gz\n",
    "  done\n",
    "done"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To use `filetree` with this dataset, we must first describe its structure - we\n",
    "do this by creating a `.tree` file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mydata.tree\n",
    "sub_{subject}\n",
    "  T2w.nii.gz\n",
    "  ses_{session}\n",
    "    T1w.nii.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A `.tree` file is simply a description of the structure of your data\n",
    "directory - it describes the *file types* (also known as *templates*) which\n",
    "are present in the dataset (`T1w` and `T2w`), and the *variables* which are\n",
    "implicitly present in the structure of the dataset (`subject` and `session`).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"using-the-filetree\"></a>\n",
    "### Using the `FileTree`\n",
    "\n",
    "\n",
    "Now that we have a `.tree` file which describe our data, we can create a\n",
    "`FileTree` to work with it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.filetree import FileTree\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1365
1366
1367
    "# Create a FileTree, giving\n",
    "# it our tree specification,\n",
    "# and the path to our data.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
    "tree = FileTree.read('mydata.tree', 'mydata')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can list all of the T1 images via the `FileTree.get_all` method. The\n",
    "`glob_vars='all'` option tells the `FileTree` to fill in the `T1w` template\n",
Paul McCarthy's avatar
Paul McCarthy committed
1377
1378
1379
    "with all possible combinations of variables. The `FileTree.extract_variables`\n",
    "method accepts a file path, and gives you back the variable values contained\n",
    "within:"
Paul McCarthy's avatar
Paul McCarthy committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for t1file in tree.get_all('T1w', glob_vars='all'):\n",
    "    fvars = tree.extract_variables('T1w', t1file)\n",
    "    print(t1file, fvars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `FileTree.update` method allows you to \"fill in\" variable values; it\n",
    "returns a new `FileTree` object which can be used on a selection of the\n",
    "data set:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "treeA = tree.update(subject='A')\n",
    "for t1file in treeA.get_all('T1w', glob_vars='all'):\n",
    "    fvars = treeA.extract_variables('T1w', t1file)\n",
    "    print(t1file, fvars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"building-a-processing-pipeline-with-filetree\"></a>\n",
    "### Building a processing pipeline with `FileTree`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1420
1421
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
    "Let's say we want to run BET on all of our T1 images. Let's start by modifying\n",
    "our `.tree` definition to include the BET outputs:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mydata.tree\n",
    "sub_{subject}\n",
    "  T2w.nii.gz\n",
    "  ses_{session}\n",
    "    T1w.nii.gz\n",
    "    T1w_brain.nii.gz\n",
    "    T1w_brain_mask.nii.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1445
1446
1447
    "Now we can use the `FileTree` to generate the relevant file names for us,\n",
    "which we can then pass on to BET.  Here we'll use the `FileTree.get_all_trees`\n",
    "method to create a sub-tree for each subject and each session:"
Paul McCarthy's avatar
Paul McCarthy committed
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import bet\n",
    "tree = FileTree.read('mydata.tree', 'mydata')\n",
    "for subtree in tree.get_all_trees('T1w', glob_vars='all'):\n",
    "    t1file  = subtree.get('T1w')\n",
    "    t1brain = subtree.get('T1w_brain')\n",
    "    print('Running BET: {} -> {} ...'.format(t1file, t1brain))\n",
    "    bet(t1file, t1brain, mask=True)\n",
    "print('Done!')\n",
    "\n",
    "example = tree.update(subject='A', session='1')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1466
    "render('{} {} -ot mask -o -w 2 -mc 0 1 0'.format(\n",
Paul McCarthy's avatar
Paul McCarthy committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
    "    example.get('T1w'),\n",
    "    example.get('T1w_brain_mask')))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-filetreequery\"></a>\n",
    "### The `FileTreeQuery`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1477
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1478
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
    "The `filetree` module contains another class called the\n",
    "[`FileTreeQuery`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.query.html),\n",
    "which provides an interface that is more convenient if you are reading data\n",
    "from large datasets with many different file types and variables.\n",
    "\n",
    "\n",
    "When you create a `FileTreeQuery`, it scans the entire data directory and\n",
    "identifies all of the values that are present for each variable defined in the\n",
    "`.tree` file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.filetree import FileTreeQuery\n",
    "tree = FileTree.read('mydata.tree', 'mydata')\n",
    "query = FileTreeQuery(tree)\n",
    "print('T1w variables:', query.variables('T1w'))\n",
    "print('T2w variables:', query.variables('T2w'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `FileTreeQuery.query` method will return the paths to all existing files\n",
    "which match a set of variable values:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1517
    "print('All files for subject A')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1518
    "for template in query.templates:\n",
Paul McCarthy's avatar
Paul McCarthy committed
1519
1520
1521
    "    print('  {} files:'.format(template))\n",
    "    for match in query.query(template, subject='A'):\n",
    "        print('   ', match.filename)"
Paul McCarthy's avatar
Paul McCarthy committed
1522
1523
1524
1525
1526
1527
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    "<a class=\"anchor\" id=\"calling-shell-commands\"></a>\n",
    "## Calling shell commands\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.run`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.run.html)\n",
    "module provides the `run` and `runfsl` functions, which are wrappers around\n",
    "the built-in [`subprocess`\n",
    "library](https://docs.python.org/3/library/subprocess.html).\n",
    "\n",
    "\n",
    "The default behaviour of `run` is to return the standard output of the\n",
    "command:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import run\n",
    "\n",
    "# You can pass the command\n",
    "# and its arguments as a single\n",
    "# string, or as a sequence\n",
    "print('Lines in this notebook:', run('wc -l 08_fslpy.md').strip())\n",
    "print('Words in this notebook:', run(['wc', '-w', '08_fslpy.md']).strip())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But you can control what `run` returns, depending on your needs. Let's create\n",
    "a little script to demonstrate the options:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mycmd\n",
    "#!/usr/bin/env bash\n",
    "exitcode=$1\n",
    "\n",
    "echo \"Standard output!\"\n",
    "echo \"Standard error :(\" >&2\n",
    "\n",
    "exit $exitcode"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And let's not forget to make it executable:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!chmod a+x mycmd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `stdout`, `stderr` and `exitcode` arguments to control the\n",
    "return value:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('run(\"./mycmd 0\"):                                          ',\n",
    "       run(\"./mycmd 0\").strip())\n",
    "print('run(\"./mycmd 0\", stdout=False):                            ',\n",
    "       run(\"./mycmd 0\", stdout=False))\n",
    "print('run(\"./mycmd 0\",                            exitcode=True):',\n",
    "       run(\"./mycmd 0\",                            exitcode=True))\n",
    "print('run(\"./mycmd 0\", stdout=False,              exitcode=True):',\n",
    "       run(\"./mycmd 0\", stdout=False,              exitcode=True))\n",
    "print('run(\"./mycmd 0\",               stderr=True):               ',\n",
    "       run(\"./mycmd 0\",               stderr=True))\n",
    "print('run(\"./mycmd 0\", stdout=False, stderr=True):               ',\n",
    "       run(\"./mycmd 0\", stdout=False, stderr=True).strip())\n",
    "print('run(\"./mycmd 0\",               stderr=True, exitcode=True):',\n",
    "       run(\"./mycmd 0\",               stderr=True, exitcode=True))\n",
    "\n",
    "print('run(\"./mycmd 1\",                            exitcode=True):',\n",
    "       run(\"./mycmd 1\",                            exitcode=True))\n",
    "print('run(\"./mycmd 1\", stdout=False,              exitcode=True):',\n",
    "       run(\"./mycmd 1\", stdout=False,              exitcode=True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "So if only one of `stdout`, `stderr`, or `exitcode` is `True`, `run` will only\n",
    "return the corresponding value. Otherwise `run` will return a tuple which\n",
    "contains the requested outputs.\n",
    "\n",
    "\n",
    "If you run a command which returns a non-0 exit code, the default behaviour\n",
    "(if you don't set `exitcode=True`) is for a `RuntimeError` to be raised:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "run(\"./mycmd 99\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1659
1660
    "<a class=\"anchor\" id=\"the-runfsl-function\"></a>\n",
    "### The `runfsl` function\n",
Paul McCarthy's avatar
Paul McCarthy committed
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
    "\n",
    "\n",
    "The `runfsl` function is a wrapper around `run` which simply makes sure that\n",
    "the command you are calling is inside the `$FSLDIR/bin/` directory. It has the\n",
    "same usage as the `run` function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import runfsl\n",
Paul McCarthy's avatar
Paul McCarthy committed
1675
    "runfsl('bet bighead_cropped bighead_cropped_brain')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1676
1677
1678
1679
    "runfsl('fslroi bighead_cropped_brain bighead_slices 0 -1 0 -1 90 3')\n",
    "runfsl('fast -o bighead_fast bighead_slices')\n",
    "\n",
    "render('-vl 80 112 91 -xh -yh '\n",
Paul McCarthy's avatar
Paul McCarthy committed
1680
    "       'bighead_cropped '\n",
Paul McCarthy's avatar
Paul McCarthy committed
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
    "       'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 '\n",
    "       'bighead_fast_seg.nii.gz -ot label -o')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"submitting-to-the-cluster\"></a>\n",
    "### Submitting to the cluster\n",
    "\n",
    "\n",
    "Both the `run` and `runfsl` accept an argument called `submit`, which allows\n",
    "you to submit jobs to be executed on the cluster via the FSL `fsl_sub`\n",
    "command.\n",
    "\n",
    "\n",
    "> Cluster submission is handled by the\n",
    "> [`fsl.utils.fslsub`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html)\n",
    "> module - it contains lower level functions for managing and querying jobs\n",
    "> that have been submitted to the cluster. The functions defined in this\n",
    "> module can be used directly if you have more complicated requirements.\n",
    "\n",
    "\n",
    "The semantics of the `run` and `runfsl` functions are slightly different when\n",
Paul McCarthy's avatar
Paul McCarthy committed
1706
1707
1708
    "you use the `submit` option - when you submit a job, the `run`/`runfsl`\n",
    "functions will return immediately, and will return a string containing the job\n",
    "ID:"
Paul McCarthy's avatar
Paul McCarthy committed
1709
1710
1711
1712
1713
1714
1715
1716
1717
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobid  = run('ls', submit=True)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1718
1719
1720
1721
1722
1723
1724
    "print('Job ID:', jobid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1725
    "Once the job finishes, we should be able to read the usual `.o` and `.e`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1726
1727
1728
1729
1730
1731
1732
1733
1734
    "files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
    "stdout = f'ls.o{jobid}'\n",
    "print('Job output')\n",
    "print(open(stdout).read())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "All of the `fsl.wrappers` functions also accept the `submit` argument:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True)\n",
    "print('Job ID:', jobid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> But an error will occur if you try to pass in-memory images, or `LOAD` any\n",
    "> outputs when you call a wrapper function with `submit=True`.\n",
    "\n",
    "\n",
    "After submitting a job, you can use the `wait` function to wait until a job\n",
    "has completed:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import wait\n",
    "jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True)\n",
    "print('Job ID:', jobid)\n",
    "wait(jobid)\n",
    "print('Done!')\n",
    "render('08_fslpy/bighead bighead_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1787
    "When you use `submit=True`, you can also specify cluster submission options -\n",
Paul McCarthy's avatar
Paul McCarthy committed
1788
    "you can include any arguments that are accepted by the\n",
Paul McCarthy's avatar
Paul McCarthy committed
1789
    "[`fslsub.submit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html#fsl.utils.fslsub.submit)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1790
    "function"
Paul McCarthy's avatar
Paul McCarthy committed
1791
1792
1793
1794
1795
1796
1797
1798
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1799
1800
1801
1802
1803
1804
1805
    "jobs = []\n",
    "jobs.append(runfsl('robustfov -i 08_fslpy/bighead -r bighead_cropped',    submit=True, queue='short.q'))\n",
    "jobs.append(runfsl('bet bighead_cropped bighead_brain',                   submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "jobs.append(runfsl('fslroi bighead_brain bighead_slices 0 -1 111 3 0 -1', submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "jobs.append(runfsl('fast -o bighead_fast bighead_slices',                 submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "print('Waiting for', jobs, '...')\n",
    "wait(jobs)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1806
1807
1808
1809
1810
    "\n",
    "render('-vl 80 112 91 -xh -zh -hc '\n",
    "       'bighead_brain '\n",
    "       'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 '\n",
    "       'bighead_fast_seg.nii.gz -ot label -o')"
Paul McCarthy's avatar
Paul McCarthy committed
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"redirecting-output\"></a>\n",
    "### Redirecting output\n",
    "\n",
    "\n",
    "The `log` option, accepted by both `run` and `fslrun`, allows for more\n",
    "fine-grained control over what is done with the standard output and error\n",
    "streams.\n",
    "\n",
    "\n",
    "You can use `'tee'` to redirect the standard output and error streams of the\n",
    "command to the standard output and error streams of the calling command (your\n",
    "python script):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('Teeing:')\n",
    "_ = run('./mycmd 0', log={'tee' : True})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can use `'stdout'` and `'stderr'` to redirect the standard output and\n",
    "error streams of the command to files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('stdout.log', 'wt') as o, \\\n",
    "     open('stderr.log', 'wt') as e:\n",
    "     run('./mycmd 0', log={'stdout' : o, 'stderr' : e})\n",
    "print('\\nRedirected stdout:')\n",
    "!cat stdout.log\n",
    "print('\\nRedirected stderr:')\n",
    "!cat stderr.log"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, you can use `'cmd'` to log the command itself to a file (useful for\n",
    "pipeline logging):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('commands.log', 'wt') as cmdlog:\n",
    "     run('./mycmd 0',         log={'cmd' : cmdlog})\n",
    "     run('wc -l 08_fslpy.md', log={'cmd' : cmdlog})\n",
    "\n",
    "print('\\nCommand log:')\n",
    "!cat commands.log"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
1886
1887
1888
1889
1890
1891
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"fsl-atlases\"></a>\n",
    "## FSL atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1892
1893
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1894
1895
1896
1897
1898
    "The\n",
    "[`fsl.data.atlases`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.atlases.html)\n",
    "module provides access to all of the atlas images that are stored in the\n",
    "`$FSLDIR/data/atlases/` directory of a standard FSL installation. It can be\n",
    "used to load and query probabilistic and label-based atlases.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1899
1900
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1901
    "The `atlases` module needs to be initialised using the `rescanAtlases` function:"
Paul McCarthy's avatar
Paul McCarthy committed
1902
1903
1904
1905
1906
1907
1908
1909
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
    "import fsl.data.atlases as atlases\n",
    "atlases.rescanAtlases()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"querying-atlases\"></a>\n",
    "### Querying atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1920
1921
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
    "You can list all of the available atlases using `listAtlases`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for desc in atlases.listAtlases():\n",
    "    print(desc)"
Paul McCarthy's avatar
Paul McCarthy committed
1933
1934
1935
1936
1937
1938
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1939
1940
1941
1942
    "`listAtlases` returns a list of `AtlasDescription` objects, each of which\n",
    "contains descriptive information about one atlas. You can retrieve the\n",
    "`AtlasDescription` for a specific atlas via the `getAtlasDescription`\n",
    "function:"
Paul McCarthy's avatar
Paul McCarthy committed
1943
1944
1945
1946
1947
1948
1949
1950
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1951
1952
1953
1954
1955
    "desc = atlases.getAtlasDescription('harvardoxford-cortical')\n",
    "print(desc.name)\n",
    "print(desc.atlasID)\n",
    "print(desc.specPath)\n",
    "print(desc.atlasType)"
Paul McCarthy's avatar
Paul McCarthy committed
1956
1957
1958
1959
1960
1961
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1962
1963
1964
    "Each `AtlasDescription` maintains a list of `AtlasLabel` objects, each of\n",
    "which represents one region that is defined in the atlas. You can access all\n",
    "of the `AtlasLabel` objects via the `labels` attribute:"
Paul McCarthy's avatar
Paul McCarthy committed
1965
1966
1967
1968
1969
1970
1971
1972
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1973
1974
    "for lbl in desc.labels[:5]:\n",
    "    print(lbl)"
Paul McCarthy's avatar
Paul McCarthy committed
1975
1976
1977
1978
1979
1980
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1981
    "Or you can retrieve a specific label using the `find` method:"
Paul McCarthy's avatar
Paul McCarthy committed
1982
1983
1984
1985
1986
1987
1988
1989
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1990
1991
1992
1993
1994
    "# search by region name\n",
    "print(desc.find(name='Occipital Pole'))\n",
    "\n",
    "# or by label value\n",
    "print(desc.find(value=48))"
Paul McCarthy's avatar
Paul McCarthy committed
1995
1996
1997
1998
1999
2000
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2001
2002
2003
2004
2005
    "<a class=\"anchor\" id=\"loading-atlas-images\"></a>\n",
    "### Loading atlas images\n",
    "\n",
    "\n",
    "The `loadAtlas` function can be used to load the atlas image:"
Paul McCarthy's avatar
Paul McCarthy committed
2006
2007
2008
2009
2010
2011
2012
2013
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
    "# For probabilistic atlases, you\n",
    "# can ask for the 3D ROI image\n",
    "# by setting loadSummary=True.\n",
    "# You can also request a\n",
    "# resolution - by default the\n",
    "# highest resolution version\n",
    "# will be loaded.\n",
    "lblatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                             loadSummary=True,\n",
    "                             resolution=2)\n",
Paul McCarthy's avatar
Paul McCarthy committed
2024
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2025
2026
2027
2028
2029
2030
2031
2032
2033
    "# By default you will get the 4D\n",
    "# probabilistic atlas image (for\n",
    "# atlases for which this is\n",
    "# available).\n",
    "probatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                              resolution=2)\n",
    "\n",
    "print(lblatlas)\n",
    "print(probatlas)"
Paul McCarthy's avatar
Paul McCarthy committed
2034
2035
2036
2037
2038
2039
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2040
2041
2042
2043
2044
2045
    "<a class=\"anchor\" id=\"working-with-atlases\"></a>\n",
    "### Working with atlases\n",
    "\n",
    "\n",
    "Both `LabelAtlas` and `ProbabilisticAtlas` objects have a method called `get`,\n",
    "which can be used to extract ROI images for a specific region:"
Paul McCarthy's avatar
Paul McCarthy committed
2046
2047
2048
2049
2050
2051
2052
2053
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2054
2055
2056
2057
2058
2059
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "frontal = lblatlas.get(name='Frontal Pole').data\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2060
2061
    "fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal,     (45, 54, 45), cmap=plt.cm.winter, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
2062
2063
2064
2065
2066
2067
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2068
    "Calling `get` on a `ProbabilisticAtlas` will return a probability image:"
Paul McCarthy's avatar
Paul McCarthy committed
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
2079
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2080
    "frontal = probatlas.get(name='Frontal Pole').data\n",
Paul McCarthy's avatar
Paul McCarthy committed
2081
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
Paul McCarthy's avatar
Paul McCarthy committed
2082
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2083
2084
    "fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal,     (45, 54, 45), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `get` method can be used to retrieve an image for a region by:\n",
    "- an `AtlasLabel` object\n",
    "- The region index\n",
    "- The region value\n",
    "- The region name\n",
Paul McCarthy's avatar
Paul McCarthy committed
2096
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2097
2098
2099
    "\n",
    "`LabelAtlas` objects have a method called `label`, which can be used to\n",
    "interrogate the atlas at specific locations:"
Paul McCarthy's avatar
Paul McCarthy committed
2100
2101
2102
2103
2104
2105
2106
2107
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
    "# The label method accepts 3D\n",
    "# voxel or world coordinates\n",
    "val = lblatlas.label((25, 52, 43), voxel=True)\n",
    "lbl = lblatlas.find(value=val)\n",
    "print('Region at voxel [25, 52, 43]: {} [{}]'.format(val, lbl.name))\n",
    "\n",
    "\n",
    "# or a 3D weighted or binary mask\n",
    "mask = np.zeros(lblatlas.shape)\n",
    "mask[30:60, 30:60, 30:60] = 1\n",
    "mask = Image(mask, header=lblatlas.header)\n",
    "\n",
    "lbls, props = lblatlas.label(mask)\n",
    "print('Labels in mask:')\n",
    "for lbl, prop in zip(lbls, props):\n",
    "    lblname = lblatlas.find(value=lbl).name\n",
    "    print('  {} [{}]: {:0.2f}%'.format(lbl, lblname, prop))"
Paul McCarthy's avatar
Paul McCarthy committed
2125
2126
2127
2128
2129
2130
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
    "`ProbabilisticAtlas` objects have an analogous method called `values`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vals = probatlas.values((25, 52, 43), voxel=True)\n",
    "print('Regions at voxel [25, 52, 43]:')\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))\n",
Paul McCarthy's avatar
Paul McCarthy committed
2146
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2147
2148
2149
2150
2151
2152
    "print('Average proportions of regions within mask:')\n",
    "vals = probatlas.values(mask)\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))"
Paul McCarthy's avatar
Paul McCarthy committed
2153
2154
2155
2156
2157
2158
2159
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}