08_fslpy.ipynb 44.7 KB
Newer Older
Paul McCarthy's avatar
Paul McCarthy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# `fslpy`\n",
    "\n",
    "\n",
    "[`fslpy`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/) is a\n",
    "Python library which is built into FSL, and contains a range of functionality\n",
    "for working with neuroimaging data from Python.\n",
    "\n",
    "\n",
    "This practical highlights some of the most useful features provided by\n",
    "`fslpy`. You may find `fslpy` useful if you are writing Python code to\n",
    "perform analyses and image processing in conjunction with FSL.\n",
    "\n",
    "\n",
    "> **Note**: `fslpy` is distinct from `fslpython` - `fslpython` is the Python\n",
    "> environment that is baked into FSL. `fslpy` is a Python library which is\n",
    "> installed into the `fslpython` environment.\n",
    "\n",
    "\n",
    "* [The `Image` class, and other data types](#the-image-class-and-other-data-types)\n",
    "  * [Creating images](#creating-images)\n",
    "  * [Working with image data](#working-with-image-data)\n",
    "  * [Loading other file types](#loading-other-file-types)\n",
Paul McCarthy's avatar
Paul McCarthy committed
29
30
    "  * [NIfTI coordinate systems](#nifti-coordinate-systems)\n",
    "  * [Image processing](#image-processing)\n",
Paul McCarthy's avatar
Paul McCarthy committed
31
    "* [The `filetree`](#the-filetree)\n",
Paul McCarthy's avatar
Paul McCarthy committed
32
    "* [Calling shell commands](#calling-shell-commands)\n",
Paul McCarthy's avatar
Paul McCarthy committed
33
    "* [FSL wrapper functions](#fsl-wrapper-functions)\n",
Paul McCarthy's avatar
Paul McCarthy committed
34
35
36
    "  * [In-memory images](#in-memory-images)\n",
    "  * [Loading outputs into Python](#loading-outputs-into-python)\n",
    "  * [The `fslmaths` wrapper](#the-fslmaths-wrapper)\n",
Paul McCarthy's avatar
Paul McCarthy committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    "* [FSL atlases](#fsl-atlases)\n",
    "  * [Querying atlases](#querying-atlases)\n",
    "  * [Loading atlas images](#loading-atlas-images)\n",
    "  * [Working with atlases](#working-with-atlases)\n",
    "\n",
    "\n",
    "Let's start with some standard imports and environment set-up:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import os.path as op\n",
    "import nibabel as nib\n",
    "import numpy as np\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And a little function that we can use to generate a simple orthographic plot:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def ortho(data, voxel, fig=None, **kwargs):\n",
    "    \"\"\"Simple orthographic plot of a 3D array using matplotlib.\n",
    "\n",
    "    :arg data:  3D numpy array\n",
    "    :arg voxel: XYZ coordinates for each slice\n",
    "    :arg fig:   Existing figure and axes for overlay plotting\n",
Paul McCarthy's avatar
Paul McCarthy committed
81
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
82
    "    All other arguments are passed through to the `imshow` function.\n",
Paul McCarthy's avatar
Paul McCarthy committed
83
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
84
85
86
    "    :returns:   The figure and axes (which can be passed back in as the\n",
    "                `fig` argument to plot overlays).\n",
    "    \"\"\"\n",
Paul McCarthy's avatar
Paul McCarthy committed
87
88
89
90
    "\n",
    "    data            = np.asanyarray(data, dtype=np.float)\n",
    "    data[data <= 0] = np.nan\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    "    x, y, z = voxel\n",
    "    xslice  = np.flipud(data[x, :, :].T)\n",
    "    yslice  = np.flipud(data[:, y, :].T)\n",
    "    zslice  = np.flipud(data[:, :, z].T)\n",
    "\n",
    "    if fig is None:\n",
    "        fig = plt.figure()\n",
    "        xax = fig.add_subplot(1, 3, 1)\n",
    "        yax = fig.add_subplot(1, 3, 2)\n",
    "        zax = fig.add_subplot(1, 3, 3)\n",
    "    else:\n",
    "        fig, xax, yax, zax = fig\n",
    "\n",
    "    xax.imshow(xslice, **kwargs)\n",
    "    yax.imshow(yslice, **kwargs)\n",
    "    zax.imshow(zslice, **kwargs)\n",
    "\n",
    "    for ax in (xax, yax, zax):\n",
    "        ax.set_xticks([])\n",
    "        ax.set_yticks([])\n",
    "    fig.tight_layout(pad=0)\n",
    "\n",
    "    return (fig, xax, yax, zax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And another function which uses FSLeyes for more complex plots:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import shlex\n",
    "import IPython.display as display\n",
    "from fsleyes.render import main\n",
    "\n",
    "def render(cmdline):\n",
    "    prefix = '-of screenshot.png -hl -c 2 '\n",
    "    main(shlex.split(prefix + cmdline))\n",
    "    return display.Image('screenshot.png')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    "<a class=\"anchor\" id=\"the-image-class-and-other-data-types\"></a>\n",
    "## The `Image` class, and other data types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "module provides the `Image` class, which sits on top of `nibabel` and contains\n",
    "some handy functionality if you need to work with coordinate transformations,\n",
    "or do some FSL-specific processing. The `Image` class provides features such\n",
    "as:\n",
    "\n",
    "- Support for NIFTI1, NIFTI2, and ANALYZE image files\n",
    "- Access to affine transformations between the voxel, FSL and world coordinate\n",
    "  systems\n",
    "- Ability to load metadata from BIDS sidecar files\n",
    "\n",
    "\n",
    "Some simple image processing routines are also provided - these are covered\n",
    "[below](#image-processing).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"creating-images\"></a>\n",
    "### Creating images\n",
    "\n",
    "\n",
    "It's easy to create an `Image` - you can create one from a file name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.data.image import Image\n",
    "\n",
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "\n",
    "# load a FSL image - the file\n",
    "# suffix is optional, just like\n",
    "# in real FSL-land!\n",
    "img = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "print(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can create an `Image` from an existing `nibabel` image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load a nibabel image, and\n",
    "# convert it into an FSL image\n",
    "nibimg = nib.load(op.join(stddir, 'MNI152_T1_1mm.nii.gz'))\n",
    "img    = Image(nibimg)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can create an `Image` from a `numpy` array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.zeros((100, 100, 100))\n",
    "img = Image(data, xform=np.eye(4))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can save an image to file via the `save` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img.save('empty.nii.gz')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`Image` objects have all of the attributes you might expect:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std1mm = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "\n",
    "print('name:         ', std1mm.name)\n",
    "print('file:         ', std1mm.dataSource)\n",
    "print('NIfTI version:', std1mm.niftiVersion)\n",
    "print('ndim:         ', std1mm.ndim)\n",
    "print('shape:        ', std1mm.shape)\n",
    "print('dtype:        ', std1mm.dtype)\n",
    "print('nvals:        ', std1mm.nvals)\n",
    "print('pixdim:       ', std1mm.pixdim)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and a number of useful methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "std2mm  = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
280
    "mask2mm = Image(op.join(stddir, 'MNI152_T1_2mm_brain_mask'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    "\n",
    "print(std1mm.sameSpace(std2mm))\n",
    "print(std2mm.sameSpace(mask2mm))\n",
    "print(std2mm.getAffine('voxel', 'world'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An `Image` object is a high-level wrapper around a `nibabel` image object -\n",
    "you can always work directly with the `nibabel` object via the `nibImage`\n",
    "attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(std2mm)\n",
    "print(std2mm.nibImage)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"working-with-image-data\"></a>\n",
    "### Working with image data\n",
    "\n",
    "\n",
    "You can get the image data as a `numpy` array via the `data` attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = std2mm.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
324
325
    "print(data.min(), data.max())\n",
    "ortho(data, (45, 54, 45))"
Paul McCarthy's avatar
Paul McCarthy committed
326
327
328
329
330
331
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
332
333
    "> Note that `Image.data` will give you the data in its underlying type, unlike\n",
    "> the `nibabel.get_fdata` method, which up-casts image data to floating-point.\n",
Paul McCarthy's avatar
Paul McCarthy committed
334
335
336
337
338
339
340
341
342
343
344
345
    "\n",
    "\n",
    "You can also read and write data directly via the `Image` object:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "slc = std2mm[:, :, 45]\n",
Paul McCarthy's avatar
Paul McCarthy committed
346
    "std2mm[0:10, :, :] *= 2"
Paul McCarthy's avatar
Paul McCarthy committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Doing so has some advantages that may or may not be useful, depending on your\n",
    "use-case:\n",
    " - The image data will be kept on disk - only the parts that you access will\n",
    "   be loaded into RAM (you will also need to pass`loadData=False` when creating\n",
    "   the `Image` to achieve this).\n",
    " - The `Image` object will keep track of modifications to the data - this can\n",
    "   be queried via the `saveState` attribute.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"loading-other-file-types\"></a>\n",
    "### Loading other file types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.html#module-fsl.data)\n",
    "package has a number of other classes for working with different types of FSL\n",
    "and neuroimaging data. Most of these are higher-level wrappers around the\n",
    "corresponding `nibabel` types:\n",
    "\n",
    "* The\n",
    "  [`fsl.data.bitmap.Bitmap`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.bitmap.html)\n",
    "  class can be used to load a bitmap image (e.g. `jpg, `png`, etc) and\n",
    "  convert it to a NIfTI image.\n",
    "* The\n",
    "  [`fsl.data.dicom.DicomImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dicom.html)\n",
    "  class uses `dcm2niix` to load NIfTI images contained within a DICOM\n",
    "  directory<sup>*</sup>.\n",
    "* The\n",
    "  [`fsl.data.mghimahe.MGHImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.mghimage.html)\n",
    "  class can be used too load `.mgh`/`.mgz` images (they are converted into\n",
    "  NIfTI images).\n",
    "* The\n",
    "  [`fsl.data.dtifit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dtifit.html)\n",
    "  module contains functions for loading and working with the output of the\n",
    "  FSL `dtifit` tool.\n",
    "* The\n",
    "  [`fsl.data.featanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featanalysis.html),\n",
    "  [`fsl.data.featimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featimage.html),\n",
    "  and\n",
    "  [`fsl.data.featdesign`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featdesign.html)\n",
    "  modules contain classes and functions for loading data from FEAT\n",
    "  directories.\n",
    "* Similarly, the\n",
    "  [`fsl.data.melodicanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicanalysis.html)\n",
    "  and\n",
    "  [`fsl.data.melodicimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicimage.html)\n",
    "  modules contain classes and functions for loading data from MELODIC\n",
    "  directories.\n",
    "* The\n",
    "  [`fsl.data.gifti`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.gifti.html),\n",
    "  [`fsl.data.freesurfer`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.freesurfer.html),\n",
    "  and\n",
    "  [`fsl.data.vtk`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.vtk.html)\n",
    "  modules contain functionality form loading surface data from GIfTI,\n",
    "  freesurfer, and VTK files respectively.\n",
    "\n",
    "\n",
    "> <sup>*</sup>You must make sure that `dcm2niix` is installed on your system\n",
    "> in order to use this class.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
414
415
    "<a class=\"anchor\" id=\"nifti-coordinate-systems\"></a>\n",
    "### NIfTI coordinate systems\n",
Paul McCarthy's avatar
Paul McCarthy committed
416
417
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    "The `Image.getAffine` method gives you access to affine transformations which\n",
    "can be used to convert coordinates between the different coordinate systems\n",
    "associated with a NIfTI image. Have some MNI coordinates you'd like to convert\n",
    "to voxels? Easy!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "mnicoords = np.array([[0,   0,  0],\n",
    "                      [0, -18, 18]])\n",
Paul McCarthy's avatar
Paul McCarthy committed
435
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
436
437
    "world2vox = std2mm.getAffine('world', 'voxel')\n",
    "vox2world = std2mm.getAffine('voxel', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
438
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    "# Apply the world->voxel\n",
    "# affine to the coordinates\n",
    "voxcoords = (np.dot(world2vox[:3, :3], mnicoords.T)).T + world2vox[:3, 3]\n",
    "\n",
    "# The code above is a bit fiddly, so\n",
    "# instead of figuring it out, you can\n",
    "# just use the transform() function:\n",
    "from fsl.transform.affine import transform\n",
    "voxcoords = transform(mnicoords, world2vox)\n",
    "\n",
    "# just to double check, let's transform\n",
    "# those voxel coordinates back into world\n",
    "# coordinates\n",
    "backtomni = transform(voxcoords, vox2world)\n",
    "\n",
    "for m, v, b in zip(mnicoords, voxcoords, backtomni):\n",
    "    print(m, '->', v, '->', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `Image.getAffine` method can give you transformation matrices\n",
    "> between any of these coordinate systems:\n",
    ">\n",
    ">  - `'voxel'`: Image data voxel coordinates\n",
    ">  - `'world'`: mm coordinates, defined by the sform/qform of an image\n",
    ">  - `'fsl'`: The FSL coordinate system, used internally by many FSL tools\n",
    ">    (e.g. FLIRT)\n",
    "\n",
    "\n",
    "Oh, that example was too easy I hear you say? Try this one on for size. Let's\n",
    "say we have run FEAT on some task fMRI data, and want to get the MNI\n",
    "coordinates of the voxel with peak activation.\n",
    "\n",
    "\n",
    "> This is what people used to use `Featquery` for, back in the un-enlightened\n",
    "> days.\n",
    "\n",
    "\n",
    "Let's start by identifying the voxel with the biggest t-statistic:"
Paul McCarthy's avatar
Paul McCarthy committed
481
482
483
484
485
486
487
488
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
489
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
Paul McCarthy's avatar
Paul McCarthy committed
490
491
492
493
494
495
496
497
498
499
500
    "\n",
    "tstat1 = Image(op.join(featdir, 'stats', 'tstat1')).data\n",
    "\n",
    "# Recall from the numpy practical that\n",
    "# argmax gives us a 1D index into a\n",
    "# flattened view of the array. We can\n",
    "# use the unravel_index function to\n",
    "# convert it into a 3D index.\n",
    "peakvox = np.abs(tstat1).argmax()\n",
    "peakvox = np.unravel_index(peakvox, tstat1.shape)\n",
    "print('Peak voxel coordinates for tstat1:', peakvox, tstat1[peakvox])"
Paul McCarthy's avatar
Paul McCarthy committed
501
502
503
504
505
506
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
507
508
509
    "Now that we've got the voxel coordinates in functional space, we need to\n",
    "transform them into MNI space. FEAT provides a transformation which goes\n",
    "directly from functional to standard space, in the `reg` directory:"
Paul McCarthy's avatar
Paul McCarthy committed
510
511
512
513
514
515
516
517
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
518
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))"
Paul McCarthy's avatar
Paul McCarthy committed
519
520
521
522
523
524
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
525
526
527
528
529
530
    "But ... wait a minute ... this is a FLIRT matrix! We can't just plug voxel\n",
    "coordinates into a FLIRT matrix and expect to get sensible results, because\n",
    "FLIRT works in an internal FSL coordinate system, which is not quite\n",
    "`'voxel'`, and not quite `'world'`. So we need to do a little more work.\n",
    "Let's start by loading our functional image, and the MNI152 template (the\n",
    "source and reference images of our FLIRT matrix):"
Paul McCarthy's avatar
Paul McCarthy committed
531
532
533
534
535
536
537
538
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
539
540
    "func = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "std  = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
Paul McCarthy's avatar
Paul McCarthy committed
541
542
543
544
545
546
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
547
548
549
550
551
552
553
    "Now we can use them to get affines which convert between all of the different\n",
    "coordinate systems - we're going to combine them into a single uber-affine,\n",
    "which transforms our functional-space voxels into MNI world coordinates via:\n",
    "\n",
    "   1. functional voxels -> FLIRT source space\n",
    "   2. FLIRT source space -> FLIRT reference space\n",
    "   3. FLIRT referece space -> MNI world coordinates"
Paul McCarthy's avatar
Paul McCarthy committed
554
555
556
557
558
559
560
561
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
562
563
    "vox2fsl = func.getAffine('voxel', 'fsl')\n",
    "fsl2mni = std .getAffine('fsl',   'world')"
Paul McCarthy's avatar
Paul McCarthy committed
564
565
566
567
568
569
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
570
571
    "Combining two affines into one is just a simple dot-product. There is a\n",
    "`concat()` function which does this for us, for any number of affines:"
Paul McCarthy's avatar
Paul McCarthy committed
572
573
574
575
576
577
578
579
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
580
    "from fsl.transform.affine import concat\n",
Paul McCarthy's avatar
Paul McCarthy committed
581
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
582
583
584
585
    "# To combine affines together, we\n",
    "# have to list them in reverse -\n",
    "# linear algebra is *weird*.\n",
    "funcvox2mni = concat(fsl2mni, func2std, vox2fsl)"
Paul McCarthy's avatar
Paul McCarthy committed
586
587
588
589
590
591
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
592
593
    "So we've now got some voxel coordinates from our functional data, and an\n",
    "affine to transform into MNI world coordinates. The rest is easy:"
Paul McCarthy's avatar
Paul McCarthy committed
594
595
596
597
598
599
600
601
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
602
603
604
605
606
    "mnicoords = transform(peakvox, funcvox2mni)\n",
    "mnivoxels = transform(mnicoords, std.getAffine('world', 'voxel'))\n",
    "mnivoxels = [int(round(v)) for v in mnivoxels]\n",
    "print('Peak activation (MNI coordinates):', mnicoords)\n",
    "print('Peak activation (MNI voxels):     ', mnivoxels)"
Paul McCarthy's avatar
Paul McCarthy committed
607
608
609
610
611
612
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
    "> Note that in the above example we are only applying a linear transformation\n",
    "> into MNI space - in reality you would also want to apply your non-linear\n",
    "> structural-to-standard transformation too. But this is left as [an exercise\n",
    "> for the\n",
    "> reader](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.fnirt.html).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"image-processing\"></a>\n",
    "### Image processing\n",
    "\n",
    "\n",
    "Now, it's all well and good to look at t-statistic values and voxel\n",
    "coordinates and so on and so forth, but let's spice things up a bit and look\n",
    "at some images. Let's display our peak activation location in MNI space. To do\n",
    "this, we're going to resample our functional image into MNI space, so we can\n",
    "overlay it on the MNI template. This can be done using some handy functions\n",
    "from the\n",
    "[`fsl.utils.image.resample`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.resample.html)\n",
    "module:"
Paul McCarthy's avatar
Paul McCarthy committed
632
633
634
635
636
637
638
639
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
640
641
    "from fsl.transform.flirt import fromFlirt\n",
    "from fsl.utils.image.resample import resampleToReference\n",
Paul McCarthy's avatar
Paul McCarthy committed
642
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
643
644
645
    "featdir = op.join(op.join('08_fslpy', 'fmri.feat'))\n",
    "tstat1  = Image(op.join(featdir, 'stats', 'tstat1'))\n",
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))\n",
Paul McCarthy's avatar
Paul McCarthy committed
646
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
647
648
649
650
651
652
653
    "# Load the func2standard FLIRT matrix, and adjust it\n",
    "# so that it transforms from functional *world*\n",
    "# coordinates into standard *world* coordinates -\n",
    "# this is what is expected by the resampleToReference\n",
    "# function, used below\n",
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))\n",
    "func2std = fromFlirt(func2std, tstat1, std, 'world', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
654
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
655
656
657
658
659
660
661
662
663
    "# All of the functions in the resample module\n",
    "# return a numpy array containing the resampled\n",
    "# data, and an adjusted voxel-to-world affine\n",
    "# transformation. But when using the\n",
    "# resampleToReference function, the affine will\n",
    "# be the same as the MNI152 2mm affine, so we\n",
    "# can ignore it.\n",
    "std_tstat1 = resampleToReference(tstat1, std, func2std)[0]\n",
    "std_tstat1 = Image(std_tstat1, header=std.header)"
Paul McCarthy's avatar
Paul McCarthy committed
664
665
666
667
668
669
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
670
671
    "Now that we have our t-statistic image in MNI152 space, we can plot it in\n",
    "standard space using `matplotlib`:"
Paul McCarthy's avatar
Paul McCarthy committed
672
673
674
675
676
677
678
679
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
680
681
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
682
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
683
684
    "std_tstat1                 = std_tstat1.data\n",
    "std_tstat1[std_tstat1 < 3] = 0\n",
Paul McCarthy's avatar
Paul McCarthy committed
685
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
686
687
    "fig = ortho(std2mm.data, mnivoxels, cmap=plt.cm.gray)\n",
    "fig = ortho(std_tstat1,  mnivoxels, cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
688
689
690
691
692
693
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
694
695
696
697
698
699
700
    "There are a few other useful functions tucked away in the\n",
    "[fsl.utils.image](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.html)\n",
    "package, with more to be added in the future. The [`fsl.transform`]() package\n",
    "also contains a wealth of functionality for working with linear (FLIRT) and\n",
    "non-linear (FNIRT) transformations.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
701
702
703
704
    "<a class=\"anchor\" id=\"the-filetree\"></a>\n",
    "## The `filetree`\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
    "<a class=\"anchor\" id=\"calling-shell-commands\"></a>\n",
    "## Calling shell commands\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.run`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.run.html)\n",
    "module provides the `run` and `runfsl` functions, which are wrappers around\n",
    "the built-in [`subprocess`\n",
    "library](https://docs.python.org/3/library/subprocess.html).\n",
    "\n",
    "\n",
    "The defsault behaviour of `run` is to return the standard output of the\n",
    "command:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import run\n",
    "\n",
    "# You can pass the command\n",
    "# and its arguments as a single\n",
    "# string, or as a sequence\n",
    "print('Lines in this notebook:', run('wc -l 08_fslpy.md'))\n",
    "print('Lines in this notebook:', run(['wc', '-l', '08_fslpy.md']))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But you can use the `stdout`, `stderr` and `exitcode` arguments to control the\n",
    "return value. Let's create a little script to demonstrate the options:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mycmd\n",
    "#!/usr/bin/env bash\n",
    "exitcode=$1\n",
    "\n",
    "echo \"Standard output!\"\n",
    "echo \"Standard error :(\" >&2\n",
    "\n",
    "exit $exitcode"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And let's not forget to make it executable:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!chmod a+x mycmd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('run(\"./mycmd 0\"):                                         ',\n",
    "       run(\"./mycmd 0\"))\n",
    "print('run(\"./mycmd 0\", stdout=False):                           ',\n",
    "       run(\"./mycmd 0\", stdout=False))\n",
    "print('run(\"./mycmd 0\",                           exitcode=True):',\n",
    "       run(\"./mycmd 0\",                           exitcode=True))\n",
    "print('run(\"./mycmd 0\", stdout=False,             exitcode=True):',\n",
    "       run(\"./mycmd 0\", stdout=False,             exitcode=True))\n",
    "print('run(\"./mycmd 0\", stdout=True, stderr=True):               ',\n",
    "       run(\"./mycmd 0\", stdout=True, stderr=True))\n",
    "print('run(\"./mycmd 0\", stdout=True, stderr=True, exitcode=True):',\n",
    "       run(\"./mycmd 0\", stdout=True, stderr=True, exitcode=True))\n",
    "\n",
    "print('run(\"./mycmd 1\",                           exitcode=True):',\n",
    "       run(\"./mycmd 1\",                           exitcode=True))\n",
    "print('run(\"./mycmd 1\", stdout=False,             exitcode=True):',\n",
    "       run(\"./mycmd 1\", stdout=False,             exitcode=True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If the command returns a non-0 exit code, the default behaviour (if you don't\n",
    "set `exitcode=True`) is for an `Exception` to be raised:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('run(\"./mycmd 99\")', run(\"./mycmd 99\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `log` option allows for more fine-grained control over what is done with\n",
    "the standard output and error streams:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import time\n",
    "\n",
    "# Use 'tee' to redirect the stdout/stderr\n",
    "# of the command to the stdout/stderr of\n",
    "# the calling command (your python script):\n",
    "print('Teeing:')\n",
    "run('./mycmd 0', log={'tee' : True})\n",
    "\n",
    "# sleep a tiny bit, otherwise the outputs\n",
    "# from the command above might get interspersed\n",
    "# with the print statements below\n",
    "time.sleep(0.5)\n",
    "\n",
    "# Use 'stdout'/'stderr' to redirect\n",
    "# the stdout/stderr to files:\n",
    "with open('stdout.log', 'wt') as o, \\\n",
    "     open('stderr.log', 'wt') as e:\n",
    "     run('./mycmd 0', log={'stdout' : o, 'stderr' : e})\n",
    "print('\\nRedirected stdout:')\n",
    "!cat stdout.log\n",
    "print('\\nRedirected stderr:')\n",
    "!cat stderr.log\n",
    "\n",
    "# Use 'cmd' to log the command to a file\n",
    "# (useful for pipeline logging!)\n",
    "with open('commands.log', 'wt') as cmdlog:\n",
    "     run('./mycmd 0',         log={'cmd' : cmdlog})\n",
    "     run('wc -l 08_fslpy.md', log={'cmd' : cmdlog})\n",
    "\n",
    "print('\\nCommand log:')\n",
    "!cat commands.log"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
868
869
870
871
    "<a class=\"anchor\" id=\"fsl-wrapper-functions\"></a>\n",
    "## FSL wrapper functions\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
872
873
874
875
876
    "The\n",
    "[fsl.wrappers](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.wrappers.html)\n",
    "package is the home of \"wrapper\" functions for a range of FSL tools. You can\n",
    "use them to call an FSL tool from Python code, without having to worry about\n",
    "constructing a command-line, or saving/loading input/output images.\n",
Paul McCarthy's avatar
Paul McCarthy committed
877
878
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
879
880
    "You can use the FSL wrapper functions with file names, similar to calling the\n",
    "corresponding tool via the command-line:"
Paul McCarthy's avatar
Paul McCarthy committed
881
882
883
884
885
886
887
888
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
889
    "from fsl.wrappers import bet, robustfov, LOAD\n",
Paul McCarthy's avatar
Paul McCarthy committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    "\n",
    "robustfov('08_fslpy/bighead', 'bighead_cropped')\n",
    "\n",
    "render('08_fslpy/bighead bighead_cropped -cm blue')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `fsl.wrapper` functions strive to provide an interface which is as close\n",
    "as possible to the command-line tool - most functions use positional arguments\n",
    "for required options, and keyword arguments for all other options, with\n",
    "argument names equivalent to command line option names. For example, the usage\n",
    "for the command-line `bet` tool is as follows:\n",
    "\n",
    "\n",
    "> ```\n",
    "> Usage:    bet <input> <output> [options]\n",
    ">\n",
    "> Main bet2 options:\n",
    ">   -o          generate brain surface outline overlaid onto original image\n",
    ">   -m          generate binary brain mask\n",
    ">   -s          generate approximate skull image\n",
    ">   -n          don't generate segmented brain image output\n",
    ">   -f <f>      fractional intensity threshold (0->1); default=0.5; smaller values give larger brain outline estimates\n",
    ">   -g <g>      vertical gradient in fractional intensity threshold (-1->1); default=0; positive values give larger brain outline at bottom, smaller at top\n",
    ">   -r <r>      head radius (mm not voxels); initial surface sphere is set to half of this\n",
    ">   -c <x y z>  centre-of-gravity (voxels not mm) of initial mesh surface.\n",
    "> ...\n",
    "> ```\n",
    "\n",
    "\n",
    "So to use the `bet()` wrapper function, pass `<input>` and `<output>` as\n",
    "positional arguments, and pass the additional options as keyword arguments:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "bet('bighead_cropped', 'bighead_cropped_brain', f=0.3, m=True, s=True)\n",
    "\n",
    "render('bighead_cropped             -b 40 '\n",
    "       'bighead_cropped_brain       -cm hot '\n",
    "       'bighead_cropped_brain_skull -ot mask -mc 0.4 0.4 1 '\n",
    "       'bighead_cropped_brain_mask  -ot mask -mc 0   1   0 -o -w 5')"
Paul McCarthy's avatar
Paul McCarthy committed
939
940
941
942
943
944
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
    "> Some FSL commands accept arguments which cannot be used as Python\n",
    "> identifiers - for example, the `-2D` option to `flirt` cannot be used as an\n",
    "> identifier in Python, because it begins with a number. In situations like\n",
    "> this, an alias is used. So to set the `-2D` option to `flirt`, you can do this:\n",
    ">\n",
    "> ```\n",
    "> # \"twod\" applies the -2D flag\n",
    "> flirt('source.nii.gz', 'ref.nii.gz', omat='src2ref.mat', twod=True)\n",
    "> ```\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"in-memory-images\"></a>\n",
    "### In-memory images\n",
    "\n",
    "\n",
    "It can be quite awkward to combine image processing with FSL tools and image\n",
    "processing in Python. The `fsl.wrapper` package tries to make this a little\n",
    "easier for you - if you are working with image data in Python, you can pass\n",
    "`Image` or `nibabel` objects directly into `fsl.wrapper` functions - they will\n",
    "be automatically saved to temporary files and passed to the underlying FSL\n",
    "command:"
Paul McCarthy's avatar
Paul McCarthy committed
966
967
968
969
970
971
972
973
974
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
975
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
    "bet(cropped, 'bighead_cropped_brain')\n",
    "\n",
    "betted = Image('bighead_cropped_brain')\n",
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"loading-outputs-into-python\"></a>\n",
    "### Loading outputs into Python\n",
    "\n",
    "\n",
    "By using the special `fsl.wrappers.LOAD` symbol, you can have any output\n",
    "files produced by the tool automatically loaded in too:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
    "betted  = bet(cropped, LOAD)['output']\n",
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `LOAD` symbol for any output argument - any output files which\n",
    "are loaded will be returned in a dictionary, with the argument name used as\n",
    "the key:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import flirt\n",
    "\n",
    "std2mm   = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))\n",
    "tstat1   = Image(op.join('08_fslpy', 'fmri.feat', 'stats', 'tstat1'))\n",
    "func2std = np.loadtxt(op.join('08_fslpy', 'fmri.feat', 'reg', 'example_func2standard.mat'))\n",
    "\n",
    "aligned = flirt(tstat1, std2mm, applyxfm=True, init=func2std, out=LOAD)\n",
    "\n",
    "print(aligned)\n",
    "\n",
    "aligned = aligned['out'].data\n",
    "aligned[aligned < 1] = 0\n",
    "\n",
    "fig = ortho(std2mm .data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(aligned.data, (45, 54, 45), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For tools like `bet`, which expect an output *prefix* or *basename*, you can\n",
    "just set the prefix to `LOAD` - all output files with that prefix will be\n",
    "available in the returned dictionary:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img    = Image('bighead_cropped')\n",
    "betted = bet(img, LOAD, f=0.3, m=True)\n",
    "\n",
    "print(betted)\n",
    "\n",
    "fig = ortho(img                  .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted['output']     .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)\n",
    "fig = ortho(betted['output_mask'].data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig, alpha=0.5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-fslmaths-wrapper\"></a>\n",
    "### The `fslmaths` wrapper\n",
    "\n",
    "\n",
    "*Most* of the `fsl.wrapper` functions aim to provide an interface which is as\n",
    "close as possible to the underlying FSL tool. Ideally, if you read the\n",
    "command-line help for a tool, you should be able to figure out how to use the\n",
    "corresponding wrapper function. The wrapper for the `fslmaths` command is a\n",
    "little different, however. It provides more of an object-oriented interface,\n",
    "which is hopefully a little easier to use from within Python.\n",
    "\n",
    "\n",
    "You can apply an `fslmaths` operation by specifying the input file, *chaining*\n",
    "method calls together, and finally calling the `run()` method. For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from wrappers import fslmaths\n",
    "fslmaths('bighead_cropped')            \\\n",
    "  .mas(  'bighead_cropped_brain_mask') \\\n",
    "  .run(  'bighead_cropped_brain')\n",
    "\n",
    "render('bighead_cropped bighead_cropped_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Of course, you can also use the `fslmaths` wrapper with in-memory images:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "wholehead   = Image('bighead_cropped')\n",
    "brainmask   = Image('bighead_cropped_brain_mask')\n",
    "\n",
    "eroded      = fslmaths(brainmask).ero().ero().run()\n",
    "erodedbrain = fslmaths(wholehead).mas(eroded).run()\n",
    "\n",
    "fig = ortho(wholehead  .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(brainmask  .data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig)\n",
    "fig = ortho(erodedbrain.data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
1122
1123
1124
1125
1126
1127
1128
1129
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"fsl-atlases\"></a>\n",
    "## FSL atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1130
1131
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1132
1133
1134
1135
1136
    "The\n",
    "[`fsl.data.atlases`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.atlases.html)\n",
    "module provides access to all of the atlas images that are stored in the\n",
    "`$FSLDIR/data/atlases/` directory of a standard FSL installation. It can be\n",
    "used to load and query probabilistic and label-based atlases.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1137
1138
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1139
    "The `atlases` module needs to be initialised using the `rescanAtlases` function:"
Paul McCarthy's avatar
Paul McCarthy committed
1140
1141
1142
1143
1144
1145
1146
1147
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    "import fsl.data.atlases as atlases\n",
    "atlases.rescanAtlases()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"querying-atlases\"></a>\n",
    "### Querying atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1158
1159
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    "You can list all of the available atlases using `listAtlases`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for desc in atlases.listAtlases():\n",
    "    print(desc)"
Paul McCarthy's avatar
Paul McCarthy committed
1171
1172
1173
1174
1175
1176
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1177
1178
1179
1180
    "`listAtlases` returns a list of `AtlasDescription` objects, each of which\n",
    "contains descriptive information about one atlas. You can retrieve the\n",
    "`AtlasDescription` for a specific atlas via the `getAtlasDescription`\n",
    "function:"
Paul McCarthy's avatar
Paul McCarthy committed
1181
1182
1183
1184
1185
1186
1187
1188
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1189
1190
1191
1192
1193
    "desc = atlases.getAtlasDescription('harvardoxford-cortical')\n",
    "print(desc.name)\n",
    "print(desc.atlasID)\n",
    "print(desc.specPath)\n",
    "print(desc.atlasType)"
Paul McCarthy's avatar
Paul McCarthy committed
1194
1195
1196
1197
1198
1199
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1200
1201
1202
    "Each `AtlasDescription` maintains a list of `AtlasLabel` objects, each of\n",
    "which represents one region that is defined in the atlas. You can access all\n",
    "of the `AtlasLabel` objects via the `labels` attribute:"
Paul McCarthy's avatar
Paul McCarthy committed
1203
1204
1205
1206
1207
1208
1209
1210
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1211
1212
    "for lbl in desc.labels[:5]:\n",
    "    print(lbl)"
Paul McCarthy's avatar
Paul McCarthy committed
1213
1214
1215
1216
1217
1218
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1219
    "Or you can retrieve a specific label using the `find` method:"
Paul McCarthy's avatar
Paul McCarthy committed
1220
1221
1222
1223
1224
1225
1226
1227
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1228
1229
1230
1231
1232
    "# search by region name\n",
    "print(desc.find(name='Occipital Pole'))\n",
    "\n",
    "# or by label value\n",
    "print(desc.find(value=48))"
Paul McCarthy's avatar
Paul McCarthy committed
1233
1234
1235
1236
1237
1238
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1239
1240
1241
1242
1243
    "<a class=\"anchor\" id=\"loading-atlas-images\"></a>\n",
    "### Loading atlas images\n",
    "\n",
    "\n",
    "The `loadAtlas` function can be used to load the atlas image:"
Paul McCarthy's avatar
Paul McCarthy committed
1244
1245
1246
1247
1248
1249
1250
1251
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    "# For probabilistic atlases, you\n",
    "# can ask for the 3D ROI image\n",
    "# by setting loadSummary=True.\n",
    "# You can also request a\n",
    "# resolution - by default the\n",
    "# highest resolution version\n",
    "# will be loaded.\n",
    "lblatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                             loadSummary=True,\n",
    "                             resolution=2)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1262
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
    "# By default you will get the 4D\n",
    "# probabilistic atlas image (for\n",
    "# atlases for which this is\n",
    "# available).\n",
    "probatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                              resolution=2)\n",
    "\n",
    "print(lblatlas)\n",
    "print(probatlas)"
Paul McCarthy's avatar
Paul McCarthy committed
1272
1273
1274
1275
1276
1277
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1278
1279
1280
1281
1282
1283
    "<a class=\"anchor\" id=\"working-with-atlases\"></a>\n",
    "### Working with atlases\n",
    "\n",
    "\n",
    "Both `LabelAtlas` and `ProbabilisticAtlas` objects have a method called `get`,\n",
    "which can be used to extract ROI images for a specific region:"
Paul McCarthy's avatar
Paul McCarthy committed
1284
1285
1286
1287
1288
1289
1290
1291
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1292
1293
1294
1295
1296
1297
1298
1299
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "frontal = lblatlas.get(name='Frontal Pole').data\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
    "\n",
    "fig = ortho(std2mm,  (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal, (45, 54, 45), cmap=plt.cm.winter, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
1300
1301
1302
1303
1304
1305
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
    "Calling `get` on a :meth:`ProbabilisticAtlas` will return a probability image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
1317
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1318
1319
    "frontal = probatlas.get(name='Frontal Pole')\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1320
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
    "fig = ortho(std2mm,  (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal, (45, 54, 45), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `get` method can be used to retrieve an image for a region by:\n",
    "- an `AtlasLabel` object\n",
    "- The region index\n",
    "- The region value\n",
    "- The region name\n",
Paul McCarthy's avatar
Paul McCarthy committed
1334
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1335
1336
1337
    "\n",
    "`LabelAtlas` objects have a method called `label`, which can be used to\n",
    "interrogate the atlas at specific locations:"
Paul McCarthy's avatar
Paul McCarthy committed
1338
1339
1340
1341
1342
1343
1344
1345
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    "# The label method accepts 3D\n",
    "# voxel or world coordinates\n",
    "val = lblatlas.label((25, 52, 43), voxel=True)\n",
    "lbl = lblatlas.find(value=val)\n",
    "print('Region at voxel [25, 52, 43]: {} [{}]'.format(val, lbl.name))\n",
    "\n",
    "\n",
    "# or a 3D weighted or binary mask\n",
    "mask = np.zeros(lblatlas.shape)\n",
    "mask[30:60, 30:60, 30:60] = 1\n",
    "mask = Image(mask, header=lblatlas.header)\n",
    "\n",
    "lbls, props = lblatlas.label(mask)\n",
    "print('Labels in mask:')\n",
    "for lbl, prop in zip(lbls, props):\n",
    "    lblname = lblatlas.find(value=lbl).name\n",
    "    print('  {} [{}]: {:0.2f}%'.format(lbl, lblname, prop))"
Paul McCarthy's avatar
Paul McCarthy committed
1363
1364
1365
1366
1367
1368
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    "`ProbabilisticAtlas` objects have an analogous method called `values`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vals = probatlas.values((25, 52, 43), voxel=True)\n",
    "print('Regions at voxel [25, 52, 43]:')\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))\n",
Paul McCarthy's avatar
Paul McCarthy committed
1384
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1385
1386
1387
1388
1389
1390
    "print('Average proportions of regions within mask:')\n",
    "vals = probatlas.values(mask)\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))"
Paul McCarthy's avatar
Paul McCarthy committed
1391
1392
1393
1394
1395
1396
1397
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}