08_fslpy.ipynb 68.5 KB
Newer Older
Paul McCarthy's avatar
Paul McCarthy committed
1
2
3
4
5
6
7
8
9
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# `fslpy`\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
10
11
12
13
    "**Important:** Portions of this practical require `fslpy` 2.9.0, due to be\n",
    "released with FSL 6.0.4, in Spring 2020.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
14
15
    "[`fslpy`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/) is a\n",
    "Python library which is built into FSL, and contains a range of functionality\n",
Paul McCarthy's avatar
Paul McCarthy committed
16
    "for working with FSL and with neuroimaging data from Python.\n",
Paul McCarthy's avatar
Paul McCarthy committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    "\n",
    "\n",
    "This practical highlights some of the most useful features provided by\n",
    "`fslpy`. You may find `fslpy` useful if you are writing Python code to\n",
    "perform analyses and image processing in conjunction with FSL.\n",
    "\n",
    "\n",
    "> **Note**: `fslpy` is distinct from `fslpython` - `fslpython` is the Python\n",
    "> environment that is baked into FSL. `fslpy` is a Python library which is\n",
    "> installed into the `fslpython` environment.\n",
    "\n",
    "\n",
    "* [The `Image` class, and other data types](#the-image-class-and-other-data-types)\n",
    "  * [Creating images](#creating-images)\n",
    "  * [Working with image data](#working-with-image-data)\n",
    "  * [Loading other file types](#loading-other-file-types)\n",
Paul McCarthy's avatar
Paul McCarthy committed
33
    "  * [NIfTI coordinate systems](#nifti-coordinate-systems)\n",
34
    "  * [Transformations and resampling](#transformations-and-resampling)\n",
Paul McCarthy's avatar
Paul McCarthy committed
35
    "* [FSL wrapper functions](#fsl-wrapper-functions)\n",
Paul McCarthy's avatar
Paul McCarthy committed
36
37
38
    "  * [In-memory images](#in-memory-images)\n",
    "  * [Loading outputs into Python](#loading-outputs-into-python)\n",
    "  * [The `fslmaths` wrapper](#the-fslmaths-wrapper)\n",
Paul McCarthy's avatar
Paul McCarthy committed
39
40
41
42
43
    "* [The `FileTree`](#the-filetree)\n",
    "  * [Describing your data](#describing-your-data)\n",
    "  * [Using the `FileTree`](#using-the-filetree)\n",
    "  * [Building a processing pipeline with `FileTree`](#building-a-processing-pipeline-with-filetree)\n",
    "  * [The `FileTreeQuery`](#the-filetreequery)\n",
Paul McCarthy's avatar
Paul McCarthy committed
44
    "* [Calling shell commands](#calling-shell-commands)\n",
Paul McCarthy's avatar
Paul McCarthy committed
45
46
    "  * [The `runfsl` function](#the-runfsl-function)\n",
    "  * [Submitting to the cluster](#submitting-to-the-cluster)\n",
Paul McCarthy's avatar
Paul McCarthy committed
47
    "  * [Redirecting output](#redirecting-output)\n",
Paul McCarthy's avatar
Paul McCarthy committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    "* [FSL atlases](#fsl-atlases)\n",
    "  * [Querying atlases](#querying-atlases)\n",
    "  * [Loading atlas images](#loading-atlas-images)\n",
    "  * [Working with atlases](#working-with-atlases)\n",
    "\n",
    "\n",
    "Let's start with some standard imports and environment set-up:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import os.path as op\n",
    "import nibabel as nib\n",
    "import numpy as np\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And a little function that we can use to generate a simple orthographic plot:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
86
    "def ortho(data, voxel, fig=None, cursor=False, **kwargs):\n",
Paul McCarthy's avatar
Paul McCarthy committed
87
88
    "    \"\"\"Simple orthographic plot of a 3D array using matplotlib.\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
89
90
91
92
    "    :arg data:   3D numpy array\n",
    "    :arg voxel:  XYZ coordinates for each slice\n",
    "    :arg fig:    Existing figure and axes for overlay plotting\n",
    "    :arg cursor: Show a cursor at the `voxel`\n",
Paul McCarthy's avatar
Paul McCarthy committed
93
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
94
    "    All other arguments are passed through to the `imshow` function.\n",
Paul McCarthy's avatar
Paul McCarthy committed
95
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
96
    "    :returns:   The figure and orthogaxes (which can be passed back in as the\n",
Paul McCarthy's avatar
Paul McCarthy committed
97
98
    "                `fig` argument to plot overlays).\n",
    "    \"\"\"\n",
Paul McCarthy's avatar
Paul McCarthy committed
99
    "\n",
100
101
    "    voxel = [int(round(v)) for v in voxel]\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
102
103
104
    "    data            = np.asanyarray(data, dtype=np.float)\n",
    "    data[data <= 0] = np.nan\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    "    x, y, z = voxel\n",
    "    xslice  = np.flipud(data[x, :, :].T)\n",
    "    yslice  = np.flipud(data[:, y, :].T)\n",
    "    zslice  = np.flipud(data[:, :, z].T)\n",
    "\n",
    "    if fig is None:\n",
    "        fig = plt.figure()\n",
    "        xax = fig.add_subplot(1, 3, 1)\n",
    "        yax = fig.add_subplot(1, 3, 2)\n",
    "        zax = fig.add_subplot(1, 3, 3)\n",
    "    else:\n",
    "        fig, xax, yax, zax = fig\n",
    "\n",
    "    xax.imshow(xslice, **kwargs)\n",
    "    yax.imshow(yslice, **kwargs)\n",
    "    zax.imshow(zslice, **kwargs)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
122
123
124
125
126
127
128
129
130
    "    if cursor:\n",
    "        cargs = {'color' : (0, 1, 0), 'linewidth' : 1}\n",
    "        xax.axvline(                y, **cargs)\n",
    "        xax.axhline(data.shape[2] - z, **cargs)\n",
    "        yax.axvline(                x, **cargs)\n",
    "        yax.axhline(data.shape[2] - z, **cargs)\n",
    "        zax.axvline(                x, **cargs)\n",
    "        zax.axhline(data.shape[1] - y, **cargs)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "    for ax in (xax, yax, zax):\n",
    "        ax.set_xticks([])\n",
    "        ax.set_yticks([])\n",
    "    fig.tight_layout(pad=0)\n",
    "\n",
    "    return (fig, xax, yax, zax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And another function which uses FSLeyes for more complex plots:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def render(cmdline):\n",
Paul McCarthy's avatar
Paul McCarthy committed
153
154
155
156
    "\n",
    "    import shlex\n",
    "    import IPython.display as display\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
157
    "    prefix = '-of screenshot.png -hl -c 2 '\n",
Paul McCarthy's avatar
Paul McCarthy committed
158
159
160
161
162
163
164
165
166
167
168
169
    "\n",
    "    try:\n",
    "        from fsleyes.render import main\n",
    "        main(shlex.split(prefix + cmdline))\n",
    "\n",
    "    except ImportError:\n",
    "        # fall-back for macOS - we have to run\n",
    "        # FSLeyes render in a separate process\n",
    "        from fsl.utils.run import runfsl\n",
    "        prefix = 'render ' + prefix\n",
    "        runfsl(prefix + cmdline, env={})\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
170
171
172
173
174
175
176
    "    return display.Image('screenshot.png')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    "<a class=\"anchor\" id=\"the-image-class-and-other-data-types\"></a>\n",
    "## The `Image` class, and other data types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image)\n",
    "module provides the `Image` class, which sits on top of `nibabel` and contains\n",
    "some handy functionality if you need to work with coordinate transformations,\n",
    "or do some FSL-specific processing. The `Image` class provides features such\n",
    "as:\n",
    "\n",
    "- Support for NIFTI1, NIFTI2, and ANALYZE image files\n",
    "- Access to affine transformations between the voxel, FSL and world coordinate\n",
    "  systems\n",
    "- Ability to load metadata from BIDS sidecar files\n",
    "\n",
    "\n",
    "Some simple image processing routines are also provided - these are covered\n",
    "[below](#image-processing).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"creating-images\"></a>\n",
    "### Creating images\n",
    "\n",
    "\n",
    "It's easy to create an `Image` - you can create one from a file name:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.data.image import Image\n",
    "\n",
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "\n",
    "# load a FSL image - the file\n",
    "# suffix is optional, just like\n",
    "# in real FSL-land!\n",
    "img = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "print(img)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can create an `Image` from an existing `nibabel` image:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load a nibabel image, and\n",
    "# convert it into an FSL image\n",
    "nibimg = nib.load(op.join(stddir, 'MNI152_T1_1mm.nii.gz'))\n",
    "img    = Image(nibimg)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can create an `Image` from a `numpy` array:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.zeros((100, 100, 100))\n",
    "img = Image(data, xform=np.eye(4))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can save an image to file via the `save` method:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img.save('empty.nii.gz')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`Image` objects have all of the attributes you might expect:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std1mm = Image(op.join(stddir, 'MNI152_T1_1mm'))\n",
    "\n",
    "print('name:         ', std1mm.name)\n",
    "print('file:         ', std1mm.dataSource)\n",
    "print('NIfTI version:', std1mm.niftiVersion)\n",
    "print('ndim:         ', std1mm.ndim)\n",
    "print('shape:        ', std1mm.shape)\n",
    "print('dtype:        ', std1mm.dtype)\n",
    "print('nvals:        ', std1mm.nvals)\n",
    "print('pixdim:       ', std1mm.pixdim)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and a number of useful methods:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "std2mm  = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
314
    "mask2mm = Image(op.join(stddir, 'MNI152_T1_2mm_brain_mask'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    "\n",
    "print(std1mm.sameSpace(std2mm))\n",
    "print(std2mm.sameSpace(mask2mm))\n",
    "print(std2mm.getAffine('voxel', 'world'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An `Image` object is a high-level wrapper around a `nibabel` image object -\n",
    "you can always work directly with the `nibabel` object via the `nibImage`\n",
    "attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(std2mm)\n",
    "print(std2mm.nibImage)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"working-with-image-data\"></a>\n",
    "### Working with image data\n",
    "\n",
    "\n",
    "You can get the image data as a `numpy` array via the `data` attribute:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = std2mm.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
358
359
    "print(data.min(), data.max())\n",
    "ortho(data, (45, 54, 45))"
Paul McCarthy's avatar
Paul McCarthy committed
360
361
362
363
364
365
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
366
367
    "> Note that `Image.data` will give you the data in its underlying type, unlike\n",
    "> the `nibabel.get_fdata` method, which up-casts image data to floating-point.\n",
Paul McCarthy's avatar
Paul McCarthy committed
368
369
370
371
372
373
374
375
376
377
378
379
    "\n",
    "\n",
    "You can also read and write data directly via the `Image` object:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "slc = std2mm[:, :, 45]\n",
Paul McCarthy's avatar
Paul McCarthy committed
380
    "std2mm[0:10, :, :] *= 2"
Paul McCarthy's avatar
Paul McCarthy committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Doing so has some advantages that may or may not be useful, depending on your\n",
    "use-case:\n",
    " - The image data will be kept on disk - only the parts that you access will\n",
    "   be loaded into RAM (you will also need to pass`loadData=False` when creating\n",
    "   the `Image` to achieve this).\n",
    " - The `Image` object will keep track of modifications to the data - this can\n",
    "   be queried via the `saveState` attribute.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"loading-other-file-types\"></a>\n",
    "### Loading other file types\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.data`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.html#module-fsl.data)\n",
    "package has a number of other classes for working with different types of FSL\n",
    "and neuroimaging data. Most of these are higher-level wrappers around the\n",
    "corresponding `nibabel` types:\n",
    "\n",
    "* The\n",
    "  [`fsl.data.bitmap.Bitmap`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.bitmap.html)\n",
    "  class can be used to load a bitmap image (e.g. `jpg, `png`, etc) and\n",
    "  convert it to a NIfTI image.\n",
    "* The\n",
    "  [`fsl.data.dicom.DicomImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dicom.html)\n",
    "  class uses `dcm2niix` to load NIfTI images contained within a DICOM\n",
    "  directory<sup>*</sup>.\n",
    "* The\n",
Paul McCarthy's avatar
Paul McCarthy committed
415
    "  [`fsl.data.mghimage.MGHImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.mghimage.html)\n",
Paul McCarthy's avatar
Paul McCarthy committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    "  class can be used too load `.mgh`/`.mgz` images (they are converted into\n",
    "  NIfTI images).\n",
    "* The\n",
    "  [`fsl.data.dtifit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dtifit.html)\n",
    "  module contains functions for loading and working with the output of the\n",
    "  FSL `dtifit` tool.\n",
    "* The\n",
    "  [`fsl.data.featanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featanalysis.html),\n",
    "  [`fsl.data.featimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featimage.html),\n",
    "  and\n",
    "  [`fsl.data.featdesign`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featdesign.html)\n",
    "  modules contain classes and functions for loading data from FEAT\n",
    "  directories.\n",
    "* Similarly, the\n",
    "  [`fsl.data.melodicanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicanalysis.html)\n",
    "  and\n",
    "  [`fsl.data.melodicimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicimage.html)\n",
    "  modules contain classes and functions for loading data from MELODIC\n",
    "  directories.\n",
    "* The\n",
    "  [`fsl.data.gifti`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.gifti.html),\n",
    "  [`fsl.data.freesurfer`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.freesurfer.html),\n",
    "  and\n",
    "  [`fsl.data.vtk`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.vtk.html)\n",
    "  modules contain functionality form loading surface data from GIfTI,\n",
Paul McCarthy's avatar
Paul McCarthy committed
441
    "  freesurfer, and ASCII VTK files respectively.\n",
Paul McCarthy's avatar
Paul McCarthy committed
442
443
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
444
445
446
    "> <sup>*</sup>You must make sure that\n",
    "> [`dcm2niix`](https://github.com/rordenlab/dcm2niix/) is installed on your\n",
    "> system in order to use this class.\n",
Paul McCarthy's avatar
Paul McCarthy committed
447
448
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
449
450
    "<a class=\"anchor\" id=\"nifti-coordinate-systems\"></a>\n",
    "### NIfTI coordinate systems\n",
Paul McCarthy's avatar
Paul McCarthy committed
451
452
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    "The `Image.getAffine` method gives you access to affine transformations which\n",
    "can be used to convert coordinates between the different coordinate systems\n",
    "associated with a NIfTI image. Have some MNI coordinates you'd like to convert\n",
    "to voxels? Easy!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "mnicoords = np.array([[0,   0,  0],\n",
    "                      [0, -18, 18]])\n",
Paul McCarthy's avatar
Paul McCarthy committed
470
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
471
472
    "world2vox = std2mm.getAffine('world', 'voxel')\n",
    "vox2world = std2mm.getAffine('voxel', 'world')\n",
Paul McCarthy's avatar
Paul McCarthy committed
473
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
474
475
    "# Apply the world->voxel\n",
    "# affine to the coordinates\n",
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    "voxcoords = (np.dot(world2vox[:3, :3], mnicoords.T)).T + world2vox[:3, 3]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The code above is a bit fiddly, so instead of figuring it out, you can just\n",
    "use the\n",
    "[`affine.transform`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.affine.html#fsl.transform.affine.transform)\n",
    "function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
495
    "from fsl.transform.affine import transform\n",
496
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    "voxcoords = transform(mnicoords, world2vox)\n",
    "\n",
    "# just to double check, let's transform\n",
    "# those voxel coordinates back into world\n",
    "# coordinates\n",
    "backtomni = transform(voxcoords, vox2world)\n",
    "\n",
    "for m, v, b in zip(mnicoords, voxcoords, backtomni):\n",
    "    print(m, '->', v, '->', b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> The `Image.getAffine` method can give you transformation matrices\n",
    "> between any of these coordinate systems:\n",
    ">\n",
    ">  - `'voxel'`: Image data voxel coordinates\n",
    ">  - `'world'`: mm coordinates, defined by the sform/qform of an image\n",
    ">  - `'fsl'`: The FSL coordinate system, used internally by many FSL tools\n",
    ">    (e.g. FLIRT)\n",
    "\n",
    "\n",
    "Oh, that example was too easy I hear you say? Try this one on for size. Let's\n",
    "say we have run FEAT on some task fMRI data, and want to get the MNI\n",
    "coordinates of the voxel with peak activation.\n",
    "\n",
    "\n",
    "> This is what people used to use `Featquery` for, back in the un-enlightened\n",
    "> days.\n",
    "\n",
    "\n",
    "Let's start by identifying the voxel with the biggest t-statistic:"
Paul McCarthy's avatar
Paul McCarthy committed
531
532
533
534
535
536
537
538
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
539
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
Paul McCarthy's avatar
Paul McCarthy committed
540
541
542
543
544
545
546
547
548
549
550
    "\n",
    "tstat1 = Image(op.join(featdir, 'stats', 'tstat1')).data\n",
    "\n",
    "# Recall from the numpy practical that\n",
    "# argmax gives us a 1D index into a\n",
    "# flattened view of the array. We can\n",
    "# use the unravel_index function to\n",
    "# convert it into a 3D index.\n",
    "peakvox = np.abs(tstat1).argmax()\n",
    "peakvox = np.unravel_index(peakvox, tstat1.shape)\n",
    "print('Peak voxel coordinates for tstat1:', peakvox, tstat1[peakvox])"
Paul McCarthy's avatar
Paul McCarthy committed
551
552
553
554
555
556
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
557
558
559
    "Now that we've got the voxel coordinates in functional space, we need to\n",
    "transform them into MNI space. FEAT provides a transformation which goes\n",
    "directly from functional to standard space, in the `reg` directory:"
Paul McCarthy's avatar
Paul McCarthy committed
560
561
562
563
564
565
566
567
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
568
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))"
Paul McCarthy's avatar
Paul McCarthy committed
569
570
571
572
573
574
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
575
576
577
578
579
580
    "But ... wait a minute ... this is a FLIRT matrix! We can't just plug voxel\n",
    "coordinates into a FLIRT matrix and expect to get sensible results, because\n",
    "FLIRT works in an internal FSL coordinate system, which is not quite\n",
    "`'voxel'`, and not quite `'world'`. So we need to do a little more work.\n",
    "Let's start by loading our functional image, and the MNI152 template (the\n",
    "source and reference images of our FLIRT matrix):"
Paul McCarthy's avatar
Paul McCarthy committed
581
582
583
584
585
586
587
588
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
589
590
    "func = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "std  = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
Paul McCarthy's avatar
Paul McCarthy committed
591
592
593
594
595
596
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
597
598
599
600
601
602
603
    "Now we can use them to get affines which convert between all of the different\n",
    "coordinate systems - we're going to combine them into a single uber-affine,\n",
    "which transforms our functional-space voxels into MNI world coordinates via:\n",
    "\n",
    "   1. functional voxels -> FLIRT source space\n",
    "   2. FLIRT source space -> FLIRT reference space\n",
    "   3. FLIRT referece space -> MNI world coordinates"
Paul McCarthy's avatar
Paul McCarthy committed
604
605
606
607
608
609
610
611
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
612
613
    "vox2fsl = func.getAffine('voxel', 'fsl')\n",
    "fsl2mni = std .getAffine('fsl',   'world')"
Paul McCarthy's avatar
Paul McCarthy committed
614
615
616
617
618
619
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
620
621
    "Combining two affines into one is just a simple dot-product. There is a\n",
    "`concat()` function which does this for us, for any number of affines:"
Paul McCarthy's avatar
Paul McCarthy committed
622
623
624
625
626
627
628
629
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
630
    "from fsl.transform.affine import concat\n",
Paul McCarthy's avatar
Paul McCarthy committed
631
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
632
633
634
635
    "# To combine affines together, we\n",
    "# have to list them in reverse -\n",
    "# linear algebra is *weird*.\n",
    "funcvox2mni = concat(fsl2mni, func2std, vox2fsl)"
Paul McCarthy's avatar
Paul McCarthy committed
636
637
638
639
640
641
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
642
    "> In the next section we will use the\n",
Paul McCarthy's avatar
Paul McCarthy committed
643
644
645
646
    "> [`fsl.transform.flirt.fromFlirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html#fsl.transform.flirt.fromFlirt)\n",
    "> function, which does all of the above for us.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
647
648
    "So we've now got some voxel coordinates from our functional data, and an\n",
    "affine to transform into MNI world coordinates. The rest is easy:"
Paul McCarthy's avatar
Paul McCarthy committed
649
650
651
652
653
654
655
656
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
657
658
659
660
661
    "mnicoords = transform(peakvox, funcvox2mni)\n",
    "mnivoxels = transform(mnicoords, std.getAffine('world', 'voxel'))\n",
    "mnivoxels = [int(round(v)) for v in mnivoxels]\n",
    "print('Peak activation (MNI coordinates):', mnicoords)\n",
    "print('Peak activation (MNI voxels):     ', mnivoxels)"
Paul McCarthy's avatar
Paul McCarthy committed
662
663
664
665
666
667
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
668
669
670
671
    "Note that in the above example we are only applying a linear transformation\n",
    "into MNI space - in reality you would also want to apply your non-linear\n",
    "structural-to-standard transformation too. This is covered in the next\n",
    "section.\n",
Paul McCarthy's avatar
Paul McCarthy committed
672
673
    "\n",
    "\n",
674
675
    "<a class=\"anchor\" id=\"transformations-and-resampling\"></a>\n",
    "### Transformations and resampling\n",
Paul McCarthy's avatar
Paul McCarthy committed
676
677
678
679
680
681
682
683
    "\n",
    "\n",
    "Now, it's all well and good to look at t-statistic values and voxel\n",
    "coordinates and so on and so forth, but let's spice things up a bit and look\n",
    "at some images. Let's display our peak activation location in MNI space. To do\n",
    "this, we're going to resample our functional image into MNI space, so we can\n",
    "overlay it on the MNI template. This can be done using some handy functions\n",
    "from the\n",
684
685
    "[`fsl.transform.flirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html)\n",
    "and\n",
Paul McCarthy's avatar
Paul McCarthy committed
686
    "[`fsl.utils.image.resample`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.resample.html)\n",
687
688
689
690
    "modules.\n",
    "\n",
    "\n",
    "Let's make sure we've got our source and reference images loaded:"
Paul McCarthy's avatar
Paul McCarthy committed
691
692
693
694
695
696
697
698
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
699
700
    "featdir = op.join(op.join('08_fslpy', 'fmri.feat'))\n",
    "tstat1  = Image(op.join(featdir, 'stats', 'tstat1'))\n",
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we'll load the `example_func2standard` FLIRT matrix, and adjust it so that\n",
    "it transforms from functional *world* coordinates into standard *world*\n",
    "coordinates - this is what is expected by the `resampleToReference` function,\n",
    "used below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.flirt import fromFlirt\n",
Paul McCarthy's avatar
Paul McCarthy committed
721
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
722
    "func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat'))\n",
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
    "func2std = fromFlirt(func2std, tstat1, std, 'world', 'world')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can use `resampleToReference` to resample our functional data into\n",
    "MNI152 space. This function returns a `numpy` array containing the resampled\n",
    "data, and an adjusted voxel-to-world affine transformation. But in this case,\n",
    "we know that the data will be aligned to MNI152, so we can ignore the affine:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.image.resample import resampleToReference\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
744
745
    "std_tstat1 = resampleToReference(tstat1, std, func2std)[0]\n",
    "std_tstat1 = Image(std_tstat1, header=std.header)"
Paul McCarthy's avatar
Paul McCarthy committed
746
747
748
749
750
751
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
752
753
    "Now that we have our t-statistic image in MNI152 space, we can plot it in\n",
    "standard space using `matplotlib`:"
Paul McCarthy's avatar
Paul McCarthy committed
754
755
756
757
758
759
760
761
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
762
763
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
764
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
765
766
    "std_tstat1                 = std_tstat1.data\n",
    "std_tstat1[std_tstat1 < 3] = 0\n",
Paul McCarthy's avatar
Paul McCarthy committed
767
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
768
    "fig = ortho(std2mm.data, mnivoxels, cmap=plt.cm.gray)\n",
Paul McCarthy's avatar
Paul McCarthy committed
769
    "fig = ortho(std_tstat1,  mnivoxels, cmap=plt.cm.inferno, fig=fig, cursor=True)"
Paul McCarthy's avatar
Paul McCarthy committed
770
771
   ]
  },
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the example above, we resampled some data from functional space into\n",
    "standard space using a linear transformation. But we all know that this is not\n",
    "how things work in the real world - linear transformations are for kids. The\n",
    "real world is full of lions and tigers and bears and warp fields.\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.transform.fnirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.fnirt.html#fsl.transform.fnirt.fromFnirt)\n",
    "and\n",
    "[`fsl.transform.nonlinear`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.nonlinear.html)\n",
    "modules contain classes and functions for working with FNIRT-style warp fields\n",
    "(modules for working with lions, tigers, and bears are still under\n",
    "development).\n",
    "\n",
    "\n",
    "Let's imagine that we have defined an ROI in MNI152 space, and we want to\n",
    "project it into the space of our functional data.  We can do this by combining\n",
    "the nonlinear structural to standard registration produced by FNIRT with the\n",
    "linear functional to structural registration generated by FLIRT.  First of\n",
    "all, we'll load images from each of the functional, structural, and standard\n",
    "spaces:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "featdir = op.join('08_fslpy', 'fmri.feat')\n",
    "func    = Image(op.join(featdir, 'reg', 'example_func'))\n",
    "struc   = Image(op.join(featdir, 'reg', 'highres'))\n",
    "std     = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, let's say we have obtained our seed location in MNI152 coordinates. Let's\n",
    "convert them to MNI152 voxels just to double check:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "seedmni    = [-48, -74, -9]\n",
    "seedmnivox = transform(seedmni, std.getAffine('world', 'voxel'))\n",
    "ortho(std.data, seedmnivox, cursor=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we'll load the FNIRT warp field, which encodes a nonlinear transformation\n",
    "from structural space to standard space. FNIRT warp fields are often stored as\n",
    "*coefficient* fields to reduce the file size, but in order to use it, we must\n",
    "convert the coefficient field into a *deformation* (a.k.a. *displacement*)\n",
    "field. This takes a few seconds:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.fnirt     import readFnirt\n",
    "from fsl.transform.nonlinear import coefficientFieldToDeformationField\n",
    "\n",
    "struc2std = readFnirt(op.join(featdir, 'reg', 'highres2standard_warp'), struc, std)\n",
    "struc2std = coefficientFieldToDeformationField(struc2std)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll also load our FLIRT functional to structural transformation, adjust it\n",
    "so that it transforms between voxel coordinate systems instead of the FSL\n",
    "coordinate system, and invert so it can transform from structural voxels to\n",
    "functional voxels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.affine import invert\n",
    "func2struc = np.loadtxt(op.join(featdir, 'reg', 'example_func2highres.mat'))\n",
    "func2struc = fromFlirt(func2struc, func, struc, 'voxel', 'voxel')\n",
    "struc2func = invert(func2struc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can transform our seed coordinates from MNI152 space into functional\n",
    "space in two stages. First, we'll use our deformation field to transform from\n",
    "MNI152 space into structural space:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "seedstruc = struc2std.transform([seedmni], 'world', 'voxel')[0]\n",
    "seedfunc  = transform(seedstruc, struc2func)\n",
    "\n",
    "print('Seed location in MNI coordinates:  ', seedmni)\n",
    "print('Seed location in functional voxels:', seedfunc)\n",
    "ortho(func.data, seedfunc, cursor=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> FNIRT warp fields kind of work backwards - we can use them to transform\n",
    "> reference coordinates into source coordinates, but would need to invert the\n",
    "> warp field using `invwarp` if we wanted to transform from source coordinates\n",
    "> into referemce coordinates.\n",
    "\n",
    "\n",
    "Of course, we can also use our deformation field to resample an image from\n",
    "structural space into MNI152 space. The `applyDeformation` function takes an\n",
    "`Image` and a `DeformationField`, and returns a `numpy` array containing the\n",
    "resampled data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.transform.nonlinear import applyDeformation\n",
    "\n",
    "strucmni = applyDeformation(struc, struc2std)\n",
    "\n",
    "# remove low-valued voxels,\n",
    "# just for visualisation below\n",
    "strucmni[strucmni < 1] = 0\n",
    "\n",
    "fig = ortho(std.data, [45, 54, 45], cmap=plt.cm.gray)\n",
    "fig = ortho(strucmni, [45, 54, 45], fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `premat` option to `applyDeformation` can be used to specify our linear\n",
    "functional to structural transformation, and hence resample a functional image\n",
    "into MNI152 space:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tstatmni = applyDeformation(tstat1, struc2std, premat=func2struc)\n",
    "tstatmni[tstatmni < 3] = 0\n",
    "\n",
    "fig = ortho(std.data, [45, 54, 45], cmap=plt.cm.gray)\n",
    "fig = ortho(tstatmni, [45, 54, 45], fig=fig)"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
955
956
957
958
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
959
    "There are a few other useful functions tucked away in the\n",
960
961
962
963
    "[`fsl.utils.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.html)\n",
    "and\n",
    "[`fsl.transform`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.html)\n",
    "packages, with more to be added in the future.\n",
Paul McCarthy's avatar
Paul McCarthy committed
964
965
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
966
967
968
969
    "<a class=\"anchor\" id=\"fsl-wrapper-functions\"></a>\n",
    "## FSL wrapper functions\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
970
971
972
973
974
    "The\n",
    "[fsl.wrappers](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.wrappers.html)\n",
    "package is the home of \"wrapper\" functions for a range of FSL tools. You can\n",
    "use them to call an FSL tool from Python code, without having to worry about\n",
    "constructing a command-line, or saving/loading input/output images.\n",
Paul McCarthy's avatar
Paul McCarthy committed
975
976
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
977
978
979
980
    "> The `fsl.wrappers` functions also allow you to submit jobs to be run on the\n",
    "> cluster - this is described [below](#submitting-to-the-cluster).\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
981
982
    "You can use the FSL wrapper functions with file names, similar to calling the\n",
    "corresponding tool via the command-line:"
Paul McCarthy's avatar
Paul McCarthy committed
983
984
985
986
987
988
989
990
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
991
    "from fsl.wrappers import bet, robustfov, LOAD\n",
Paul McCarthy's avatar
Paul McCarthy committed
992
993
994
995
996
997
998
999
1000
1001
    "\n",
    "robustfov('08_fslpy/bighead', 'bighead_cropped')\n",
    "\n",
    "render('08_fslpy/bighead bighead_cropped -cm blue')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1002
    "The `fsl.wrappers` functions strive to provide an interface which is as close\n",
Paul McCarthy's avatar
Paul McCarthy committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    "as possible to the command-line tool - most functions use positional arguments\n",
    "for required options, and keyword arguments for all other options, with\n",
    "argument names equivalent to command line option names. For example, the usage\n",
    "for the command-line `bet` tool is as follows:\n",
    "\n",
    "\n",
    "> ```\n",
    "> Usage:    bet <input> <output> [options]\n",
    ">\n",
    "> Main bet2 options:\n",
    ">   -o          generate brain surface outline overlaid onto original image\n",
    ">   -m          generate binary brain mask\n",
    ">   -s          generate approximate skull image\n",
    ">   -n          don't generate segmented brain image output\n",
    ">   -f <f>      fractional intensity threshold (0->1); default=0.5; smaller values give larger brain outline estimates\n",
    ">   -g <g>      vertical gradient in fractional intensity threshold (-1->1); default=0; positive values give larger brain outline at bottom, smaller at top\n",
    ">   -r <r>      head radius (mm not voxels); initial surface sphere is set to half of this\n",
    ">   -c <x y z>  centre-of-gravity (voxels not mm) of initial mesh surface.\n",
    "> ...\n",
    "> ```\n",
    "\n",
    "\n",
    "So to use the `bet()` wrapper function, pass `<input>` and `<output>` as\n",
    "positional arguments, and pass the additional options as keyword arguments:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "bet('bighead_cropped', 'bighead_cropped_brain', f=0.3, m=True, s=True)\n",
    "\n",
    "render('bighead_cropped             -b 40 '\n",
    "       'bighead_cropped_brain       -cm hot '\n",
    "       'bighead_cropped_brain_skull -ot mask -mc 0.4 0.4 1 '\n",
    "       'bighead_cropped_brain_mask  -ot mask -mc 0   1   0 -o -w 5')"
Paul McCarthy's avatar
Paul McCarthy committed
1041
1042
1043
1044
1045
1046
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
    "> Some FSL commands accept arguments which cannot be used as Python\n",
    "> identifiers - for example, the `-2D` option to `flirt` cannot be used as an\n",
    "> identifier in Python, because it begins with a number. In situations like\n",
    "> this, an alias is used. So to set the `-2D` option to `flirt`, you can do this:\n",
    ">\n",
    "> ```\n",
    "> # \"twod\" applies the -2D flag\n",
    "> flirt('source.nii.gz', 'ref.nii.gz', omat='src2ref.mat', twod=True)\n",
    "> ```\n",
Paul McCarthy's avatar
Paul McCarthy committed
1056
1057
1058
1059
    ">\n",
    "> Some of the `fsl.wrappers` functions also support aliases which may make\n",
    "> your code more readable. For example, when calling `bet`, you can use either\n",
    "> `m=True` or `mask=True` to apply the `-m` command line flag.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1060
1061
1062
1063
1064
1065
1066
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"in-memory-images\"></a>\n",
    "### In-memory images\n",
    "\n",
    "\n",
    "It can be quite awkward to combine image processing with FSL tools and image\n",
Paul McCarthy's avatar
Paul McCarthy committed
1067
    "processing in Python. The `fsl.wrappers` package tries to make this a little\n",
Paul McCarthy's avatar
Paul McCarthy committed
1068
    "easier for you - if you are working with image data in Python, you can pass\n",
Paul McCarthy's avatar
Paul McCarthy committed
1069
    "`Image` or `nibabel` objects directly into `fsl.wrappers` functions - they will\n",
Paul McCarthy's avatar
Paul McCarthy committed
1070
1071
    "be automatically saved to temporary files and passed to the underlying FSL\n",
    "command:"
Paul McCarthy's avatar
Paul McCarthy committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1081
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    "bet(cropped, 'bighead_cropped_brain')\n",
    "\n",
    "betted = Image('bighead_cropped_brain')\n",
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"loading-outputs-into-python\"></a>\n",
    "### Loading outputs into Python\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1098
    "By using the special `fsl.wrappers.LOAD` symbol, you can also have any output\n",
Paul McCarthy's avatar
Paul McCarthy committed
1099
    "files produced by the tool automatically loaded into memory for you:"
Paul McCarthy's avatar
Paul McCarthy committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cropped = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1109
1110
1111
1112
1113
    "\n",
    "# The loaded result is called \"output\",\n",
    "# because that is the name of the\n",
    "# argument in the bet wrapper function.\n",
    "betted  = bet(cropped, LOAD).output\n",
Paul McCarthy's avatar
Paul McCarthy committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    "\n",
    "fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `LOAD` symbol for any output argument - any output files which\n",
Paul McCarthy's avatar
Paul McCarthy committed
1124
    "are loaded will be available through the return value of the wrapper function:"
Paul McCarthy's avatar
Paul McCarthy committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import flirt\n",
    "\n",
    "std2mm   = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm')))\n",
    "tstat1   = Image(op.join('08_fslpy', 'fmri.feat', 'stats', 'tstat1'))\n",
    "func2std = np.loadtxt(op.join('08_fslpy', 'fmri.feat', 'reg', 'example_func2standard.mat'))\n",
    "\n",
    "aligned = flirt(tstat1, std2mm, applyxfm=True, init=func2std, out=LOAD)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1141
1142
1143
1144
    "# Here the resampled tstat image\n",
    "# is called \"out\", because that\n",
    "# is the name of the flirt argument.\n",
    "aligned = aligned.out.data\n",
Paul McCarthy's avatar
Paul McCarthy committed
1145
1146
    "aligned[aligned < 1] = 0\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1147
1148
1149
1150
1151
    "peakvox = np.abs(aligned).argmax()\n",
    "peakvox = np.unravel_index(peakvox, aligned.shape)\n",
    "\n",
    "fig = ortho(std2mm .data, peakvox, cmap=plt.cm.gray)\n",
    "fig = ortho(aligned.data, peakvox, cmap=plt.cm.inferno, fig=fig, cursor=True)"
Paul McCarthy's avatar
Paul McCarthy committed
1152
1153
1154
1155
1156
1157
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1158
1159
    "For tools like `bet` and `fast`, which expect an output *prefix* or\n",
    "*basename*, you can just set the prefix to `LOAD` - all output files with that\n",
Paul McCarthy's avatar
Paul McCarthy committed
1160
    "prefix will be available in the object that is returned:"
Paul McCarthy's avatar
Paul McCarthy committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img    = Image('bighead_cropped')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1170
    "betted = bet(img, LOAD, f=0.3, mask=True)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1171
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1172
1173
1174
    "fig = ortho(img               .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(betted.output     .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)\n",
    "fig = ortho(betted.output_mask.data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig, alpha=0.5)"
Paul McCarthy's avatar
Paul McCarthy committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-fslmaths-wrapper\"></a>\n",
    "### The `fslmaths` wrapper\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1185
    "*Most* of the `fsl.wrappers` functions aim to provide an interface which is as\n",
Paul McCarthy's avatar
Paul McCarthy committed
1186
1187
1188
1189
1190
1191
1192
    "close as possible to the underlying FSL tool. Ideally, if you read the\n",
    "command-line help for a tool, you should be able to figure out how to use the\n",
    "corresponding wrapper function. The wrapper for the `fslmaths` command is a\n",
    "little different, however. It provides more of an object-oriented interface,\n",
    "which is hopefully a little easier to use from within Python.\n",
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1193
1194
1195
    "You can apply an `fslmaths` operation by specifying the input image,\n",
    "*chaining* method calls together, and finally calling the `run()` method. For\n",
    "example:"
Paul McCarthy's avatar
Paul McCarthy committed
1196
1197
1198
1199
1200
1201
1202
1203
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1204
    "from fsl.wrappers import fslmaths\n",
Paul McCarthy's avatar
Paul McCarthy committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
    "fslmaths('bighead_cropped')            \\\n",
    "  .mas(  'bighead_cropped_brain_mask') \\\n",
    "  .run(  'bighead_cropped_brain')\n",
    "\n",
    "render('bighead_cropped bighead_cropped_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Of course, you can also use the `fslmaths` wrapper with in-memory images:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "wholehead   = Image('bighead_cropped')\n",
    "brainmask   = Image('bighead_cropped_brain_mask')\n",
    "\n",
    "eroded      = fslmaths(brainmask).ero().ero().run()\n",
    "erodedbrain = fslmaths(wholehead).mas(eroded).run()\n",
    "\n",
    "fig = ortho(wholehead  .data, (80, 112, 85), cmap=plt.cm.gray)\n",
    "fig = ortho(brainmask  .data, (80, 112, 85), cmap=plt.cm.summer,  fig=fig)\n",
    "fig = ortho(erodedbrain.data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
1234
1235
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
1236
1237
1238
1239
1240
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-filetree\"></a>\n",
Paul McCarthy's avatar
Paul McCarthy committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
    "## The `FileTree`\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.filetree`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html)\n",
    "library provides functionality which allows you to work with *structured data\n",
    "directories*, such as HCP or BIDS datasets. You can use `filetree` for both\n",
    "reading and for creating datasets.\n",
    "\n",
    "\n",
    "This practical gives a very brief introduction to the `filetree` library -\n",
    "refer to the [full\n",
    "documentation](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html)\n",
    "to get a feel for how powerful it can be.\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"describing-your-data\"></a>\n",
    "### Describing your data\n",
    "\n",
    "\n",
    "To introduce `filetree`, we'll begin with a small example. Imagine that we\n",
    "have a dataset which looks like this:\n",
    "\n",
    "\n",
    "> ```\n",
    "> mydata\n",
    "> ├── sub_A\n",
    "> │   ├── ses_1\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   ├── ses_2\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   └── T2w.nii.gz\n",
    "> ├── sub_B\n",
    "> │   ├── ses_1\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   ├── ses_2\n",
    "> │   │   └── T1w.nii.gz\n",
    "> │   └── T2w.nii.gz\n",
    "> └── sub_C\n",
    ">     ├── ses_1\n",
    ">     │   └── T1w.nii.gz\n",
    ">     ├── ses_2\n",
    ">     │   └── T1w.nii.gz\n",
    ">     └── T2w.nii.gz\n",
    "> ```\n",
    "\n",
    "\n",
    "(Run the code cell below to create a dummy data set with the above structure):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%bash\n",
    "for sub in A B C; do\n",
    "  subdir=mydata/sub_$sub/\n",
    "  mkdir -p $subdir\n",
    "  cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $subdir/T2w.nii.gz\n",
    "  for ses in 1 2; do\n",
    "    sesdir=$subdir/ses_$ses/\n",
    "    mkdir $sesdir\n",
    "    cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $sesdir/T1w.nii.gz\n",
    "  done\n",
    "done"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To use `filetree` with this dataset, we must first describe its structure - we\n",
    "do this by creating a `.tree` file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mydata.tree\n",
    "sub_{subject}\n",
    "  T2w.nii.gz\n",
    "  ses_{session}\n",
    "    T1w.nii.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A `.tree` file is simply a description of the structure of your data\n",
    "directory - it describes the *file types* (also known as *templates*) which\n",
    "are present in the dataset (`T1w` and `T2w`), and the *variables* which are\n",
    "implicitly present in the structure of the dataset (`subject` and `session`).\n",
    "\n",
    "\n",
    "<a class=\"anchor\" id=\"using-the-filetree\"></a>\n",
    "### Using the `FileTree`\n",
    "\n",
    "\n",
    "Now that we have a `.tree` file which describe our data, we can create a\n",
    "`FileTree` to work with it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.filetree import FileTree\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1357
1358
1359
    "# Create a FileTree, giving\n",
    "# it our tree specification,\n",
    "# and the path to our data.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1360
1361
1362
1363
1364
1365
1366
1367
1368
    "tree = FileTree.read('mydata.tree', 'mydata')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can list all of the T1 images via the `FileTree.get_all` method. The\n",
    "`glob_vars='all'` option tells the `FileTree` to fill in the `T1w` template\n",
Paul McCarthy's avatar
Paul McCarthy committed
1369
1370
1371
    "with all possible combinations of variables. The `FileTree.extract_variables`\n",
    "method accepts a file path, and gives you back the variable values contained\n",
    "within:"
Paul McCarthy's avatar
Paul McCarthy committed
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for t1file in tree.get_all('T1w', glob_vars='all'):\n",
    "    fvars = tree.extract_variables('T1w', t1file)\n",
    "    print(t1file, fvars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `FileTree.update` method allows you to \"fill in\" variable values; it\n",
    "returns a new `FileTree` object which can be used on a selection of the\n",
    "data set:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "treeA = tree.update(subject='A')\n",
    "for t1file in treeA.get_all('T1w', glob_vars='all'):\n",
    "    fvars = treeA.extract_variables('T1w', t1file)\n",
    "    print(t1file, fvars)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"building-a-processing-pipeline-with-filetree\"></a>\n",
    "### Building a processing pipeline with `FileTree`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1412
1413
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    "Let's say we want to run BET on all of our T1 images. Let's start by modifying\n",
    "our `.tree` definition to include the BET outputs:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mydata.tree\n",
    "sub_{subject}\n",
    "  T2w.nii.gz\n",
    "  ses_{session}\n",
    "    T1w.nii.gz\n",
    "    T1w_brain.nii.gz\n",
    "    T1w_brain_mask.nii.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1437
1438
1439
    "Now we can use the `FileTree` to generate the relevant file names for us,\n",
    "which we can then pass on to BET.  Here we'll use the `FileTree.get_all_trees`\n",
    "method to create a sub-tree for each subject and each session:"
Paul McCarthy's avatar
Paul McCarthy committed
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.wrappers import bet\n",
    "tree = FileTree.read('mydata.tree', 'mydata')\n",
    "for subtree in tree.get_all_trees('T1w', glob_vars='all'):\n",
    "    t1file  = subtree.get('T1w')\n",
    "    t1brain = subtree.get('T1w_brain')\n",
    "    print('Running BET: {} -> {} ...'.format(t1file, t1brain))\n",
    "    bet(t1file, t1brain, mask=True)\n",
    "print('Done!')\n",
    "\n",
    "example = tree.update(subject='A', session='1')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1458
    "render('{} {} -ot mask -o -w 2 -mc 0 1 0'.format(\n",
Paul McCarthy's avatar
Paul McCarthy committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
    "    example.get('T1w'),\n",
    "    example.get('T1w_brain_mask')))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"the-filetreequery\"></a>\n",
    "### The `FileTreeQuery`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1469
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1470
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
    "The `filetree` module contains another class called the\n",
    "[`FileTreeQuery`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.query.html),\n",
    "which provides an interface that is more convenient if you are reading data\n",
    "from large datasets with many different file types and variables.\n",
    "\n",
    "\n",
    "When you create a `FileTreeQuery`, it scans the entire data directory and\n",
    "identifies all of the values that are present for each variable defined in the\n",
    "`.tree` file:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.filetree import FileTreeQuery\n",
    "tree = FileTree.read('mydata.tree', 'mydata')\n",
    "query = FileTreeQuery(tree)\n",
    "print('T1w variables:', query.variables('T1w'))\n",
    "print('T2w variables:', query.variables('T2w'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `FileTreeQuery.query` method will return the paths to all existing files\n",
    "which match a set of variable values:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1509
    "print('All files for subject A')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1510
    "for template in query.templates:\n",
Paul McCarthy's avatar
Paul McCarthy committed
1511
1512
1513
    "    print('  {} files:'.format(template))\n",
    "    for match in query.query(template, subject='A'):\n",
    "        print('   ', match.filename)"
Paul McCarthy's avatar
Paul McCarthy committed
1514
1515
1516
1517
1518
1519
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
    "<a class=\"anchor\" id=\"calling-shell-commands\"></a>\n",
    "## Calling shell commands\n",
    "\n",
    "\n",
    "The\n",
    "[`fsl.utils.run`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.run.html)\n",
    "module provides the `run` and `runfsl` functions, which are wrappers around\n",
    "the built-in [`subprocess`\n",
    "library](https://docs.python.org/3/library/subprocess.html).\n",
    "\n",
    "\n",
    "The default behaviour of `run` is to return the standard output of the\n",
    "command:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import run\n",
    "\n",
    "# You can pass the command\n",
    "# and its arguments as a single\n",
    "# string, or as a sequence\n",
    "print('Lines in this notebook:', run('wc -l 08_fslpy.md').strip())\n",
    "print('Words in this notebook:', run(['wc', '-w', '08_fslpy.md']).strip())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But you can control what `run` returns, depending on your needs. Let's create\n",
    "a little script to demonstrate the options:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile mycmd\n",
    "#!/usr/bin/env bash\n",
    "exitcode=$1\n",
    "\n",
    "echo \"Standard output!\"\n",
    "echo \"Standard error :(\" >&2\n",
    "\n",
    "exit $exitcode"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And let's not forget to make it executable:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!chmod a+x mycmd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can use the `stdout`, `stderr` and `exitcode` arguments to control the\n",
    "return value:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('run(\"./mycmd 0\"):                                          ',\n",
    "       run(\"./mycmd 0\").strip())\n",
    "print('run(\"./mycmd 0\", stdout=False):                            ',\n",
    "       run(\"./mycmd 0\", stdout=False))\n",
    "print('run(\"./mycmd 0\",                            exitcode=True):',\n",
    "       run(\"./mycmd 0\",                            exitcode=True))\n",
    "print('run(\"./mycmd 0\", stdout=False,              exitcode=True):',\n",
    "       run(\"./mycmd 0\", stdout=False,              exitcode=True))\n",
    "print('run(\"./mycmd 0\",               stderr=True):               ',\n",
    "       run(\"./mycmd 0\",               stderr=True))\n",
    "print('run(\"./mycmd 0\", stdout=False, stderr=True):               ',\n",
    "       run(\"./mycmd 0\", stdout=False, stderr=True).strip())\n",
    "print('run(\"./mycmd 0\",               stderr=True, exitcode=True):',\n",
    "       run(\"./mycmd 0\",               stderr=True, exitcode=True))\n",
    "\n",
    "print('run(\"./mycmd 1\",                            exitcode=True):',\n",
    "       run(\"./mycmd 1\",                            exitcode=True))\n",
    "print('run(\"./mycmd 1\", stdout=False,              exitcode=True):',\n",
    "       run(\"./mycmd 1\", stdout=False,              exitcode=True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "So if only one of `stdout`, `stderr`, or `exitcode` is `True`, `run` will only\n",
    "return the corresponding value. Otherwise `run` will return a tuple which\n",
    "contains the requested outputs.\n",
    "\n",
    "\n",
    "If you run a command which returns a non-0 exit code, the default behaviour\n",
    "(if you don't set `exitcode=True`) is for a `RuntimeError` to be raised:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "run(\"./mycmd 99\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1651
1652
    "<a class=\"anchor\" id=\"the-runfsl-function\"></a>\n",
    "### The `runfsl` function\n",
Paul McCarthy's avatar
Paul McCarthy committed
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
    "\n",
    "\n",
    "The `runfsl` function is a wrapper around `run` which simply makes sure that\n",
    "the command you are calling is inside the `$FSLDIR/bin/` directory. It has the\n",
    "same usage as the `run` function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import runfsl\n",
Paul McCarthy's avatar
Paul McCarthy committed
1667
    "runfsl('bet bighead_cropped bighead_cropped_brain')\n",
Paul McCarthy's avatar
Paul McCarthy committed
1668
1669
1670
1671
    "runfsl('fslroi bighead_cropped_brain bighead_slices 0 -1 0 -1 90 3')\n",
    "runfsl('fast -o bighead_fast bighead_slices')\n",
    "\n",
    "render('-vl 80 112 91 -xh -yh '\n",
Paul McCarthy's avatar
Paul McCarthy committed
1672
    "       'bighead_cropped '\n",
Paul McCarthy's avatar
Paul McCarthy committed
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
    "       'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 '\n",
    "       'bighead_fast_seg.nii.gz -ot label -o')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"submitting-to-the-cluster\"></a>\n",
    "### Submitting to the cluster\n",
    "\n",
    "\n",
    "Both the `run` and `runfsl` accept an argument called `submit`, which allows\n",
    "you to submit jobs to be executed on the cluster via the FSL `fsl_sub`\n",
    "command.\n",
    "\n",
    "\n",
    "> Cluster submission is handled by the\n",
    "> [`fsl.utils.fslsub`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html)\n",
    "> module - it contains lower level functions for managing and querying jobs\n",
    "> that have been submitted to the cluster. The functions defined in this\n",
    "> module can be used directly if you have more complicated requirements.\n",
    "\n",
    "\n",
    "The semantics of the `run` and `runfsl` functions are slightly different when\n",
Paul McCarthy's avatar
Paul McCarthy committed
1698
1699
1700
    "you use the `submit` option - when you submit a job, the `run`/`runfsl`\n",
    "functions will return immediately, and will return a string containing the job\n",
    "ID:"
Paul McCarthy's avatar
Paul McCarthy committed
1701
1702
1703
1704
1705
1706
1707
1708
1709
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobid  = run('ls', submit=True)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1710
1711
1712
1713
1714
1715
1716
    "print('Job ID:', jobid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1717
    "Once the job finishes, we should be able to read the usual `.o` and `.e`\n",
Paul McCarthy's avatar
Paul McCarthy committed
1718
1719
1720
1721
1722
1723
1724
1725
1726
    "files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
    "stdout = f'ls.o{jobid}'\n",
    "print('Job output')\n",
    "print(open(stdout).read())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "All of the `fsl.wrappers` functions also accept the `submit` argument:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True)\n",
    "print('Job ID:', jobid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> But an error will occur if you try to pass in-memory images, or `LOAD` any\n",
    "> outputs when you call a wrapper function with `submit=True`.\n",
    "\n",
    "\n",
    "After submitting a job, you can use the `wait` function to wait until a job\n",
    "has completed:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fsl.utils.run import wait\n",
    "jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True)\n",
    "print('Job ID:', jobid)\n",
    "wait(jobid)\n",
    "print('Done!')\n",
    "render('08_fslpy/bighead bighead_brain -cm hot')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1779
    "When you use `submit=True`, you can also specify cluster submission options -\n",
Paul McCarthy's avatar
Paul McCarthy committed
1780
    "you can include any arguments that are accepted by the\n",
Paul McCarthy's avatar
Paul McCarthy committed
1781
    "[`fslsub.submit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html#fsl.utils.fslsub.submit)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1782
    "function"
Paul McCarthy's avatar
Paul McCarthy committed
1783
1784
1785
1786
1787
1788
1789
1790
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1791
1792
1793
1794
1795
1796
1797
    "jobs = []\n",
    "jobs.append(runfsl('robustfov -i 08_fslpy/bighead -r bighead_cropped',    submit=True, queue='short.q'))\n",
    "jobs.append(runfsl('bet bighead_cropped bighead_brain',                   submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "jobs.append(runfsl('fslroi bighead_brain bighead_slices 0 -1 111 3 0 -1', submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "jobs.append(runfsl('fast -o bighead_fast bighead_slices',                 submit=True, queue='short.q', wait_for=jobs[-1]))\n",
    "print('Waiting for', jobs, '...')\n",
    "wait(jobs)\n",
Paul McCarthy's avatar
Paul McCarthy committed
1798
1799
1800
1801
1802
    "\n",
    "render('-vl 80 112 91 -xh -zh -hc '\n",
    "       'bighead_brain '\n",
    "       'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 '\n",
    "       'bighead_fast_seg.nii.gz -ot label -o')"
Paul McCarthy's avatar
Paul McCarthy committed
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"redirecting-output\"></a>\n",
    "### Redirecting output\n",
    "\n",
    "\n",
    "The `log` option, accepted by both `run` and `fslrun`, allows for more\n",
    "fine-grained control over what is done with the standard output and error\n",
    "streams.\n",
    "\n",
    "\n",
    "You can use `'tee'` to redirect the standard output and error streams of the\n",
    "command to the standard output and error streams of the calling command (your\n",
    "python script):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print('Teeing:')\n",
    "_ = run('./mycmd 0', log={'tee' : True})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or you can use `'stdout'` and `'stderr'` to redirect the standard output and\n",
    "error streams of the command to files:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('stdout.log', 'wt') as o, \\\n",
    "     open('stderr.log', 'wt') as e:\n",
    "     run('./mycmd 0', log={'stdout' : o, 'stderr' : e})\n",
    "print('\\nRedirected stdout:')\n",
    "!cat stdout.log\n",
    "print('\\nRedirected stderr:')\n",
    "!cat stderr.log"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, you can use `'cmd'` to log the command itself to a file (useful for\n",
    "pipeline logging):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('commands.log', 'wt') as cmdlog:\n",
    "     run('./mycmd 0',         log={'cmd' : cmdlog})\n",
    "     run('wc -l 08_fslpy.md', log={'cmd' : cmdlog})\n",
    "\n",
    "print('\\nCommand log:')\n",
    "!cat commands.log"
   ]
  },
Paul McCarthy's avatar
Paul McCarthy committed
1878
1879
1880
1881
1882
1883
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"fsl-atlases\"></a>\n",
    "## FSL atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1884
1885
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1886
1887
1888
1889
1890
    "The\n",
    "[`fsl.data.atlases`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.atlases.html)\n",
    "module provides access to all of the atlas images that are stored in the\n",
    "`$FSLDIR/data/atlases/` directory of a standard FSL installation. It can be\n",
    "used to load and query probabilistic and label-based atlases.\n",
Paul McCarthy's avatar
Paul McCarthy committed
1891
1892
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1893
    "The `atlases` module needs to be initialised using the `rescanAtlases` function:"
Paul McCarthy's avatar
Paul McCarthy committed
1894
1895
1896
1897
1898
1899
1900
1901
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
    "import fsl.data.atlases as atlases\n",
    "atlases.rescanAtlases()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a class=\"anchor\" id=\"querying-atlases\"></a>\n",
    "### Querying atlases\n",
Paul McCarthy's avatar
Paul McCarthy committed
1912
1913
    "\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
    "You can list all of the available atlases using `listAtlases`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for desc in atlases.listAtlases():\n",
    "    print(desc)"
Paul McCarthy's avatar
Paul McCarthy committed
1925
1926
1927
1928
1929
1930
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1931
1932
1933
1934
    "`listAtlases` returns a list of `AtlasDescription` objects, each of which\n",
    "contains descriptive information about one atlas. You can retrieve the\n",
    "`AtlasDescription` for a specific atlas via the `getAtlasDescription`\n",
    "function:"
Paul McCarthy's avatar
Paul McCarthy committed
1935
1936
1937
1938
1939
1940
1941
1942
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1943
1944
1945
1946
1947
    "desc = atlases.getAtlasDescription('harvardoxford-cortical')\n",
    "print(desc.name)\n",
    "print(desc.atlasID)\n",
    "print(desc.specPath)\n",
    "print(desc.atlasType)"
Paul McCarthy's avatar
Paul McCarthy committed
1948
1949
1950
1951
1952
1953
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1954
1955
1956
    "Each `AtlasDescription` maintains a list of `AtlasLabel` objects, each of\n",
    "which represents one region that is defined in the atlas. You can access all\n",
    "of the `AtlasLabel` objects via the `labels` attribute:"
Paul McCarthy's avatar
Paul McCarthy committed
1957
1958
1959
1960
1961
1962
1963
1964
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1965
1966
    "for lbl in desc.labels[:5]:\n",
    "    print(lbl)"
Paul McCarthy's avatar
Paul McCarthy committed
1967
1968
1969
1970
1971
1972
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1973
    "Or you can retrieve a specific label using the `find` method:"
Paul McCarthy's avatar
Paul McCarthy committed
1974
1975
1976
1977
1978
1979
1980
1981
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1982
1983
1984
1985
1986
    "# search by region name\n",
    "print(desc.find(name='Occipital Pole'))\n",
    "\n",
    "# or by label value\n",
    "print(desc.find(value=48))"
Paul McCarthy's avatar
Paul McCarthy committed
1987
1988
1989
1990
1991
1992
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
1993
1994
1995
1996
1997
    "<a class=\"anchor\" id=\"loading-atlas-images\"></a>\n",
    "### Loading atlas images\n",
    "\n",
    "\n",
    "The `loadAtlas` function can be used to load the atlas image:"
Paul McCarthy's avatar
Paul McCarthy committed
1998
1999
2000
2001
2002
2003
2004
2005
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
    "# For probabilistic atlases, you\n",
    "# can ask for the 3D ROI image\n",
    "# by setting loadSummary=True.\n",
    "# You can also request a\n",
    "# resolution - by default the\n",
    "# highest resolution version\n",
    "# will be loaded.\n",
    "lblatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                             loadSummary=True,\n",
    "                             resolution=2)\n",
Paul McCarthy's avatar
Paul McCarthy committed
2016
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2017
2018
2019
2020
2021
2022
2023
2024
2025
    "# By default you will get the 4D\n",
    "# probabilistic atlas image (for\n",
    "# atlases for which this is\n",
    "# available).\n",
    "probatlas = atlases.loadAtlas('harvardoxford-cortical',\n",
    "                              resolution=2)\n",
    "\n",
    "print(lblatlas)\n",
    "print(probatlas)"
Paul McCarthy's avatar
Paul McCarthy committed
2026
2027
2028
2029
2030
2031
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2032
2033
2034
2035
2036
2037
    "<a class=\"anchor\" id=\"working-with-atlases\"></a>\n",
    "### Working with atlases\n",
    "\n",
    "\n",
    "Both `LabelAtlas` and `ProbabilisticAtlas` objects have a method called `get`,\n",
    "which can be used to extract ROI images for a specific region:"
Paul McCarthy's avatar
Paul McCarthy committed
2038
2039
2040
2041
2042
2043
2044
2045
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2046
2047
2048
2049
2050
2051
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
    "\n",
    "frontal = lblatlas.get(name='Frontal Pole').data\n",
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2052
2053
    "fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal,     (45, 54, 45), cmap=plt.cm.winter, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
2054
2055
2056
2057
2058
2059
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2060
    "Calling `get` on a `ProbabilisticAtlas` will return a probability image:"
Paul McCarthy's avatar
Paul McCarthy committed
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stddir = op.expandvars('${FSLDIR}/data/standard/')\n",
    "std2mm = Image(op.join(stddir, 'MNI152_T1_2mm'))\n",
Paul McCarthy's avatar
Paul McCarthy committed
2071
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2072
    "frontal = probatlas.get(name='Frontal Pole').data\n",
Paul McCarthy's avatar
Paul McCarthy committed
2073
    "frontal = np.ma.masked_where(frontal < 1, frontal)\n",
Paul McCarthy's avatar
Paul McCarthy committed
2074
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2075
2076
    "fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray)\n",
    "fig = ortho(frontal,     (45, 54, 45), cmap=plt.cm.inferno, fig=fig)"
Paul McCarthy's avatar
Paul McCarthy committed
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `get` method can be used to retrieve an image for a region by:\n",
    "- an `AtlasLabel` object\n",
    "- The region index\n",
    "- The region value\n",
    "- The region name\n",
Paul McCarthy's avatar
Paul McCarthy committed
2088
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2089
2090
2091
    "\n",
    "`LabelAtlas` objects have a method called `label`, which can be used to\n",
    "interrogate the atlas at specific locations:"
Paul McCarthy's avatar
Paul McCarthy committed
2092
2093
2094
2095
2096
2097
2098
2099
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
    "# The label method accepts 3D\n",
    "# voxel or world coordinates\n",
    "val = lblatlas.label((25, 52, 43), voxel=True)\n",
    "lbl = lblatlas.find(value=val)\n",
    "print('Region at voxel [25, 52, 43]: {} [{}]'.format(val, lbl.name))\n",
    "\n",
    "\n",
    "# or a 3D weighted or binary mask\n",
    "mask = np.zeros(lblatlas.shape)\n",
    "mask[30:60, 30:60, 30:60] = 1\n",
    "mask = Image(mask, header=lblatlas.header)\n",
    "\n",
    "lbls, props = lblatlas.label(mask)\n",
    "print('Labels in mask:')\n",
    "for lbl, prop in zip(lbls, props):\n",
    "    lblname = lblatlas.find(value=lbl).name\n",
    "    print('  {} [{}]: {:0.2f}%'.format(lbl, lblname, prop))"
Paul McCarthy's avatar
Paul McCarthy committed
2117
2118
2119
2120
2121
2122
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Paul McCarthy's avatar
Paul McCarthy committed
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
    "`ProbabilisticAtlas` objects have an analogous method called `values`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "vals = probatlas.values((25, 52, 43), voxel=True)\n",
    "print('Regions at voxel [25, 52, 43]:')\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))\n",
Paul McCarthy's avatar
Paul McCarthy committed
2138
    "\n",
Paul McCarthy's avatar
Paul McCarthy committed
2139
2140
2141
2142
2143
2144
    "print('Average proportions of regions within mask:')\n",
    "vals = probatlas.values(mask)\n",
    "for idx, val in enumerate(vals):\n",
    "    if val > 0:\n",
    "        lbl = probatlas.find(index=idx)\n",
    "        print('  {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val))"
Paul McCarthy's avatar
Paul McCarthy committed
2145
2146
2147
2148
2149
2150
2151
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 2
}