# `fslpy` **Important:** Portions of this practical require `fslpy` 2.9.0, due to be released with FSL 6.0.4, in Spring 2020. [`fslpy`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/) is a Python library which is built into FSL, and contains a range of functionality for working with FSL and with neuroimaging data from Python. This practical highlights some of the most useful features provided by `fslpy`. You may find `fslpy` useful if you are writing Python code to perform analyses and image processing in conjunction with FSL. > **Note**: `fslpy` is distinct from `fslpython` - `fslpython` is the Python > environment that is baked into FSL. `fslpy` is a Python library which is > installed into the `fslpython` environment. * [The `Image` class, and other data types](#the-image-class-and-other-data-types) * [Creating images](#creating-images) * [Working with image data](#working-with-image-data) * [Loading other file types](#loading-other-file-types) * [NIfTI coordinate systems](#nifti-coordinate-systems) * [Image processing](#image-processing) * [FSL wrapper functions](#fsl-wrapper-functions) * [In-memory images](#in-memory-images) * [Loading outputs into Python](#loading-outputs-into-python) * [The `fslmaths` wrapper](#the-fslmaths-wrapper) * [The `FileTree`](#the-filetree) * [Describing your data](#describing-your-data) * [Using the `FileTree`](#using-the-filetree) * [Building a processing pipeline with `FileTree`](#building-a-processing-pipeline-with-filetree) * [The `FileTreeQuery`](#the-filetreequery) * [Calling shell commands](#calling-shell-commands) * [The `runfsl` function](#the-runfsl-function) * [Submitting to the cluster](#submitting-to-the-cluster) * [Redirecting output](#redirecting-output) * [FSL atlases](#fsl-atlases) * [Querying atlases](#querying-atlases) * [Loading atlas images](#loading-atlas-images) * [Working with atlases](#working-with-atlases) Let's start with some standard imports and environment set-up: ``` %matplotlib inline import matplotlib.pyplot as plt import os import os.path as op import nibabel as nib import numpy as np import warnings warnings.filterwarnings("ignore") ``` And a little function that we can use to generate a simple orthographic plot: ``` def ortho(data, voxel, fig=None, cursor=False, **kwargs): """Simple orthographic plot of a 3D array using matplotlib. :arg data: 3D numpy array :arg voxel: XYZ coordinates for each slice :arg fig: Existing figure and axes for overlay plotting :arg cursor: Show a cursor at the `voxel` All other arguments are passed through to the `imshow` function. :returns: The figure and orthogaxes (which can be passed back in as the `fig` argument to plot overlays). """ data = np.asanyarray(data, dtype=np.float) data[data <= 0] = np.nan x, y, z = voxel xslice = np.flipud(data[x, :, :].T) yslice = np.flipud(data[:, y, :].T) zslice = np.flipud(data[:, :, z].T) if fig is None: fig = plt.figure() xax = fig.add_subplot(1, 3, 1) yax = fig.add_subplot(1, 3, 2) zax = fig.add_subplot(1, 3, 3) else: fig, xax, yax, zax = fig xax.imshow(xslice, **kwargs) yax.imshow(yslice, **kwargs) zax.imshow(zslice, **kwargs) if cursor: cargs = {'color' : (0, 1, 0), 'linewidth' : 1} xax.axvline( y, **cargs) xax.axhline(data.shape[2] - z, **cargs) yax.axvline( x, **cargs) yax.axhline(data.shape[2] - z, **cargs) zax.axvline( x, **cargs) zax.axhline(data.shape[1] - y, **cargs) for ax in (xax, yax, zax): ax.set_xticks([]) ax.set_yticks([]) fig.tight_layout(pad=0) return (fig, xax, yax, zax) ``` And another function which uses FSLeyes for more complex plots: ``` def render(cmdline): import shlex import IPython.display as display prefix = '-of screenshot.png -hl -c 2 ' try: from fsleyes.render import main main(shlex.split(prefix + cmdline)) except ImportError: # fall-back for macOS - we have to run # FSLeyes render in a separate process from fsl.utils.run import runfsl prefix = 'render ' + prefix runfsl(prefix + cmdline, env={}) return display.Image('screenshot.png') ``` ## The `Image` class, and other data types The [`fsl.data.image`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.image.html#fsl.data.image.Image) module provides the `Image` class, which sits on top of `nibabel` and contains some handy functionality if you need to work with coordinate transformations, or do some FSL-specific processing. The `Image` class provides features such as: - Support for NIFTI1, NIFTI2, and ANALYZE image files - Access to affine transformations between the voxel, FSL and world coordinate systems - Ability to load metadata from BIDS sidecar files Some simple image processing routines are also provided - these are covered [below](#image-processing). ### Creating images It's easy to create an `Image` - you can create one from a file name: ``` from fsl.data.image import Image stddir = op.expandvars('${FSLDIR}/data/standard/') # load a FSL image - the file # suffix is optional, just like # in real FSL-land! img = Image(op.join(stddir, 'MNI152_T1_1mm')) print(img) ``` You can create an `Image` from an existing `nibabel` image: ``` # load a nibabel image, and # convert it into an FSL image nibimg = nib.load(op.join(stddir, 'MNI152_T1_1mm.nii.gz')) img = Image(nibimg) ``` Or you can create an `Image` from a `numpy` array: ``` data = np.zeros((100, 100, 100)) img = Image(data, xform=np.eye(4)) ``` You can save an image to file via the `save` method: ``` img.save('empty.nii.gz') ``` `Image` objects have all of the attributes you might expect: ``` stddir = op.expandvars('${FSLDIR}/data/standard/') std1mm = Image(op.join(stddir, 'MNI152_T1_1mm')) print('name: ', std1mm.name) print('file: ', std1mm.dataSource) print('NIfTI version:', std1mm.niftiVersion) print('ndim: ', std1mm.ndim) print('shape: ', std1mm.shape) print('dtype: ', std1mm.dtype) print('nvals: ', std1mm.nvals) print('pixdim: ', std1mm.pixdim) ``` and a number of useful methods: ``` std2mm = Image(op.join(stddir, 'MNI152_T1_2mm')) mask2mm = Image(op.join(stddir, 'MNI152_T1_2mm_brain_mask')) print(std1mm.sameSpace(std2mm)) print(std2mm.sameSpace(mask2mm)) print(std2mm.getAffine('voxel', 'world')) ``` An `Image` object is a high-level wrapper around a `nibabel` image object - you can always work directly with the `nibabel` object via the `nibImage` attribute: ``` print(std2mm) print(std2mm.nibImage) ``` ### Working with image data You can get the image data as a `numpy` array via the `data` attribute: ``` data = std2mm.data print(data.min(), data.max()) ortho(data, (45, 54, 45)) ``` > Note that `Image.data` will give you the data in its underlying type, unlike > the `nibabel.get_fdata` method, which up-casts image data to floating-point. You can also read and write data directly via the `Image` object: ``` slc = std2mm[:, :, 45] std2mm[0:10, :, :] *= 2 ``` Doing so has some advantages that may or may not be useful, depending on your use-case: - The image data will be kept on disk - only the parts that you access will be loaded into RAM (you will also need to pass`loadData=False` when creating the `Image` to achieve this). - The `Image` object will keep track of modifications to the data - this can be queried via the `saveState` attribute. ### Loading other file types The [`fsl.data`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.html#module-fsl.data) package has a number of other classes for working with different types of FSL and neuroimaging data. Most of these are higher-level wrappers around the corresponding `nibabel` types: * The [`fsl.data.bitmap.Bitmap`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.bitmap.html) class can be used to load a bitmap image (e.g. `jpg, `png`, etc) and convert it to a NIfTI image. * The [`fsl.data.dicom.DicomImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dicom.html) class uses `dcm2niix` to load NIfTI images contained within a DICOM directory*. * The [`fsl.data.mghimage.MGHImage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.mghimage.html) class can be used too load `.mgh`/`.mgz` images (they are converted into NIfTI images). * The [`fsl.data.dtifit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.dtifit.html) module contains functions for loading and working with the output of the FSL `dtifit` tool. * The [`fsl.data.featanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featanalysis.html), [`fsl.data.featimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featimage.html), and [`fsl.data.featdesign`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.featdesign.html) modules contain classes and functions for loading data from FEAT directories. * Similarly, the [`fsl.data.melodicanalysis`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicanalysis.html) and [`fsl.data.melodicimage`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.melodicimage.html) modules contain classes and functions for loading data from MELODIC directories. * The [`fsl.data.gifti`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.gifti.html), [`fsl.data.freesurfer`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.freesurfer.html), and [`fsl.data.vtk`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.vtk.html) modules contain functionality form loading surface data from GIfTI, freesurfer, and ASCII VTK files respectively. > *You must make sure that > [`dcm2niix`](https://github.com/rordenlab/dcm2niix/) is installed on your > system in order to use this class. ### NIfTI coordinate systems The `Image.getAffine` method gives you access to affine transformations which can be used to convert coordinates between the different coordinate systems associated with a NIfTI image. Have some MNI coordinates you'd like to convert to voxels? Easy! ``` stddir = op.expandvars('${FSLDIR}/data/standard/') std2mm = Image(op.join(stddir, 'MNI152_T1_2mm')) mnicoords = np.array([[0, 0, 0], [0, -18, 18]]) world2vox = std2mm.getAffine('world', 'voxel') vox2world = std2mm.getAffine('voxel', 'world') # Apply the world->voxel # affine to the coordinates voxcoords = (np.dot(world2vox[:3, :3], mnicoords.T)).T + world2vox[:3, 3] # The code above is a bit fiddly, so # instead of figuring it out, you can # just use the transform() function: from fsl.transform.affine import transform voxcoords = transform(mnicoords, world2vox) # just to double check, let's transform # those voxel coordinates back into world # coordinates backtomni = transform(voxcoords, vox2world) for m, v, b in zip(mnicoords, voxcoords, backtomni): print(m, '->', v, '->', b) ``` > The `Image.getAffine` method can give you transformation matrices > between any of these coordinate systems: > > - `'voxel'`: Image data voxel coordinates > - `'world'`: mm coordinates, defined by the sform/qform of an image > - `'fsl'`: The FSL coordinate system, used internally by many FSL tools > (e.g. FLIRT) Oh, that example was too easy I hear you say? Try this one on for size. Let's say we have run FEAT on some task fMRI data, and want to get the MNI coordinates of the voxel with peak activation. > This is what people used to use `Featquery` for, back in the un-enlightened > days. Let's start by identifying the voxel with the biggest t-statistic: ``` featdir = op.join('08_fslpy', 'fmri.feat') tstat1 = Image(op.join(featdir, 'stats', 'tstat1')).data # Recall from the numpy practical that # argmax gives us a 1D index into a # flattened view of the array. We can # use the unravel_index function to # convert it into a 3D index. peakvox = np.abs(tstat1).argmax() peakvox = np.unravel_index(peakvox, tstat1.shape) print('Peak voxel coordinates for tstat1:', peakvox, tstat1[peakvox]) ``` Now that we've got the voxel coordinates in functional space, we need to transform them into MNI space. FEAT provides a transformation which goes directly from functional to standard space, in the `reg` directory: ``` func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat')) ``` But ... wait a minute ... this is a FLIRT matrix! We can't just plug voxel coordinates into a FLIRT matrix and expect to get sensible results, because FLIRT works in an internal FSL coordinate system, which is not quite `'voxel'`, and not quite `'world'`. So we need to do a little more work. Let's start by loading our functional image, and the MNI152 template (the source and reference images of our FLIRT matrix): ``` func = Image(op.join(featdir, 'reg', 'example_func')) std = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm'))) ``` Now we can use them to get affines which convert between all of the different coordinate systems - we're going to combine them into a single uber-affine, which transforms our functional-space voxels into MNI world coordinates via: 1. functional voxels -> FLIRT source space 2. FLIRT source space -> FLIRT reference space 3. FLIRT referece space -> MNI world coordinates ``` vox2fsl = func.getAffine('voxel', 'fsl') fsl2mni = std .getAffine('fsl', 'world') ``` Combining two affines into one is just a simple dot-product. There is a `concat()` function which does this for us, for any number of affines: ``` from fsl.transform.affine import concat # To combine affines together, we # have to list them in reverse - # linear algebra is *weird*. funcvox2mni = concat(fsl2mni, func2std, vox2fsl) ``` > Below we will use the > [`fsl.transform.flirt.fromFlirt`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.flirt.html#fsl.transform.flirt.fromFlirt) > function, which does all of the above for us. So we've now got some voxel coordinates from our functional data, and an affine to transform into MNI world coordinates. The rest is easy: ``` mnicoords = transform(peakvox, funcvox2mni) mnivoxels = transform(mnicoords, std.getAffine('world', 'voxel')) mnivoxels = [int(round(v)) for v in mnivoxels] print('Peak activation (MNI coordinates):', mnicoords) print('Peak activation (MNI voxels): ', mnivoxels) ``` > Note that in the above example we are only applying a linear transformation > into MNI space - in reality you would also want to apply your non-linear > structural-to-standard transformation too. But this is left as [an exercise > for the > reader](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.transform.fnirt.html). ### Image processing Now, it's all well and good to look at t-statistic values and voxel coordinates and so on and so forth, but let's spice things up a bit and look at some images. Let's display our peak activation location in MNI space. To do this, we're going to resample our functional image into MNI space, so we can overlay it on the MNI template. This can be done using some handy functions from the [`fsl.utils.image.resample`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.resample.html) module: ``` from fsl.transform.flirt import fromFlirt from fsl.utils.image.resample import resampleToReference featdir = op.join(op.join('08_fslpy', 'fmri.feat')) tstat1 = Image(op.join(featdir, 'stats', 'tstat1')) std = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm'))) # Load the func2standard FLIRT matrix, and adjust it # so that it transforms from functional *world* # coordinates into standard *world* coordinates - # this is what is expected by the resampleToReference # function, used below func2std = np.loadtxt(op.join(featdir, 'reg', 'example_func2standard.mat')) func2std = fromFlirt(func2std, tstat1, std, 'world', 'world') # All of the functions in the resample module # return a numpy array containing the resampled # data, and an adjusted voxel-to-world affine # transformation. But when using the # resampleToReference function, the affine will # be the same as the MNI152 2mm affine, so we # can ignore it. std_tstat1 = resampleToReference(tstat1, std, func2std)[0] std_tstat1 = Image(std_tstat1, header=std.header) ``` Now that we have our t-statistic image in MNI152 space, we can plot it in standard space using `matplotlib`: ``` stddir = op.expandvars('${FSLDIR}/data/standard/') std2mm = Image(op.join(stddir, 'MNI152_T1_2mm')) std_tstat1 = std_tstat1.data std_tstat1[std_tstat1 < 3] = 0 fig = ortho(std2mm.data, mnivoxels, cmap=plt.cm.gray) fig = ortho(std_tstat1, mnivoxels, cmap=plt.cm.inferno, fig=fig, cursor=True) ``` There are a few other useful functions tucked away in the [fsl.utils.image](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.image.html) package, with more to be added in the future. The [`fsl.transform`]() package also contains a wealth of functionality for working with linear (FLIRT) and non-linear (FNIRT) transformations. ## FSL wrapper functions The [fsl.wrappers](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.wrappers.html) package is the home of "wrapper" functions for a range of FSL tools. You can use them to call an FSL tool from Python code, without having to worry about constructing a command-line, or saving/loading input/output images. > The `fsl.wrappers` functions also allow you to submit jobs to be run on the > cluster - this is described [below](#submitting-to-the-cluster). You can use the FSL wrapper functions with file names, similar to calling the corresponding tool via the command-line: ``` from fsl.wrappers import bet, robustfov, LOAD robustfov('08_fslpy/bighead', 'bighead_cropped') render('08_fslpy/bighead bighead_cropped -cm blue') ``` The `fsl.wrappers` functions strive to provide an interface which is as close as possible to the command-line tool - most functions use positional arguments for required options, and keyword arguments for all other options, with argument names equivalent to command line option names. For example, the usage for the command-line `bet` tool is as follows: > ``` > Usage: bet [options] > > Main bet2 options: > -o generate brain surface outline overlaid onto original image > -m generate binary brain mask > -s generate approximate skull image > -n don't generate segmented brain image output > -f fractional intensity threshold (0->1); default=0.5; smaller values give larger brain outline estimates > -g vertical gradient in fractional intensity threshold (-1->1); default=0; positive values give larger brain outline at bottom, smaller at top > -r head radius (mm not voxels); initial surface sphere is set to half of this > -c centre-of-gravity (voxels not mm) of initial mesh surface. > ... > ``` So to use the `bet()` wrapper function, pass `` and `` as positional arguments, and pass the additional options as keyword arguments: ``` bet('bighead_cropped', 'bighead_cropped_brain', f=0.3, m=True, s=True) render('bighead_cropped -b 40 ' 'bighead_cropped_brain -cm hot ' 'bighead_cropped_brain_skull -ot mask -mc 0.4 0.4 1 ' 'bighead_cropped_brain_mask -ot mask -mc 0 1 0 -o -w 5') ``` > Some FSL commands accept arguments which cannot be used as Python > identifiers - for example, the `-2D` option to `flirt` cannot be used as an > identifier in Python, because it begins with a number. In situations like > this, an alias is used. So to set the `-2D` option to `flirt`, you can do this: > > ``` > # "twod" applies the -2D flag > flirt('source.nii.gz', 'ref.nii.gz', omat='src2ref.mat', twod=True) > ``` > > Some of the `fsl.wrappers` functions also support aliases which may make > your code more readable. For example, when calling `bet`, you can use either > `m=True` or `mask=True` to apply the `-m` command line flag. ### In-memory images It can be quite awkward to combine image processing with FSL tools and image processing in Python. The `fsl.wrappers` package tries to make this a little easier for you - if you are working with image data in Python, you can pass `Image` or `nibabel` objects directly into `fsl.wrappers` functions - they will be automatically saved to temporary files and passed to the underlying FSL command: ``` cropped = Image('bighead_cropped') bet(cropped, 'bighead_cropped_brain') betted = Image('bighead_cropped_brain') fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray) fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig) ``` ### Loading outputs into Python By using the special `fsl.wrappers.LOAD` symbol, you can also have any output files produced by the tool automatically loaded into memory for you: ``` cropped = Image('bighead_cropped') # The loaded result is called "output", # because that is the name of the # argument in the bet wrapper function. betted = bet(cropped, LOAD).output fig = ortho(cropped.data, (80, 112, 85), cmap=plt.cm.gray) fig = ortho(betted .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig) ``` You can use the `LOAD` symbol for any output argument - any output files which are loaded will be available through the return value of the wrapper function: ``` from fsl.wrappers import flirt std2mm = Image(op.expandvars(op.join('$FSLDIR', 'data', 'standard', 'MNI152_T1_2mm'))) tstat1 = Image(op.join('08_fslpy', 'fmri.feat', 'stats', 'tstat1')) func2std = np.loadtxt(op.join('08_fslpy', 'fmri.feat', 'reg', 'example_func2standard.mat')) aligned = flirt(tstat1, std2mm, applyxfm=True, init=func2std, out=LOAD) # Here the resampled tstat image # is called "out", because that # is the name of the flirt argument. aligned = aligned.out.data aligned[aligned < 1] = 0 peakvox = np.abs(aligned).argmax() peakvox = np.unravel_index(peakvox, aligned.shape) fig = ortho(std2mm .data, peakvox, cmap=plt.cm.gray) fig = ortho(aligned.data, peakvox, cmap=plt.cm.inferno, fig=fig, cursor=True) ``` For tools like `bet` and `fast`, which expect an output *prefix* or *basename*, you can just set the prefix to `LOAD` - all output files with that prefix will be available in the object that is returned: ``` img = Image('bighead_cropped') betted = bet(img, LOAD, f=0.3, mask=True) fig = ortho(img .data, (80, 112, 85), cmap=plt.cm.gray) fig = ortho(betted.output .data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig) fig = ortho(betted.output_mask.data, (80, 112, 85), cmap=plt.cm.summer, fig=fig, alpha=0.5) ``` ### The `fslmaths` wrapper *Most* of the `fsl.wrappers` functions aim to provide an interface which is as close as possible to the underlying FSL tool. Ideally, if you read the command-line help for a tool, you should be able to figure out how to use the corresponding wrapper function. The wrapper for the `fslmaths` command is a little different, however. It provides more of an object-oriented interface, which is hopefully a little easier to use from within Python. You can apply an `fslmaths` operation by specifying the input image, *chaining* method calls together, and finally calling the `run()` method. For example: ``` from fsl.wrappers import fslmaths fslmaths('bighead_cropped') \ .mas( 'bighead_cropped_brain_mask') \ .run( 'bighead_cropped_brain') render('bighead_cropped bighead_cropped_brain -cm hot') ``` Of course, you can also use the `fslmaths` wrapper with in-memory images: ``` wholehead = Image('bighead_cropped') brainmask = Image('bighead_cropped_brain_mask') eroded = fslmaths(brainmask).ero().ero().run() erodedbrain = fslmaths(wholehead).mas(eroded).run() fig = ortho(wholehead .data, (80, 112, 85), cmap=plt.cm.gray) fig = ortho(brainmask .data, (80, 112, 85), cmap=plt.cm.summer, fig=fig) fig = ortho(erodedbrain.data, (80, 112, 85), cmap=plt.cm.inferno, fig=fig) ``` ## The `FileTree` The [`fsl.utils.filetree`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html) library provides functionality which allows you to work with *structured data directories*, such as HCP or BIDS datasets. You can use `filetree` for both reading and for creating datasets. This practical gives a very brief introduction to the `filetree` library - refer to the [full documentation](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.html) to get a feel for how powerful it can be. ### Describing your data To introduce `filetree`, we'll begin with a small example. Imagine that we have a dataset which looks like this: > ``` > mydata > ├── sub_A > │   ├── ses_1 > │   │   └── T1w.nii.gz > │   ├── ses_2 > │   │   └── T1w.nii.gz > │   └── T2w.nii.gz > ├── sub_B > │   ├── ses_1 > │   │   └── T1w.nii.gz > │   ├── ses_2 > │   │   └── T1w.nii.gz > │   └── T2w.nii.gz > └── sub_C > ├── ses_1 > │   └── T1w.nii.gz > ├── ses_2 > │   └── T1w.nii.gz > └── T2w.nii.gz > ``` (Run the code cell below to create a dummy data set with the above structure): ``` %%bash for sub in A B C; do subdir=mydata/sub_$sub/ mkdir -p $subdir cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $subdir/T2w.nii.gz for ses in 1 2; do sesdir=$subdir/ses_$ses/ mkdir $sesdir cp $FSLDIR/data/standard/MNI152_T1_2mm.nii.gz $sesdir/T1w.nii.gz done done ``` To use `filetree` with this dataset, we must first describe its structure - we do this by creating a `.tree` file: ``` %%writefile mydata.tree sub_{subject} T2w.nii.gz ses_{session} T1w.nii.gz ``` A `.tree` file is simply a description of the structure of your data directory - it describes the *file types* (also known as *templates*) which are present in the dataset (`T1w` and `T2w`), and the *variables* which are implicitly present in the structure of the dataset (`subject` and `session`). ### Using the `FileTree` Now that we have a `.tree` file which describe our data, we can create a `FileTree` to work with it: ``` from fsl.utils.filetree import FileTree # Create a FileTree, giving # it our tree specification, # and the path to our data. tree = FileTree.read('mydata.tree', 'mydata') ``` We can list all of the T1 images via the `FileTree.get_all` method. The `glob_vars='all'` option tells the `FileTree` to fill in the `T1w` template with all possible combinations of variables. The `FileTree.extract_variables` method accepts a file path, and gives you back the variable values contained within: ``` for t1file in tree.get_all('T1w', glob_vars='all'): fvars = tree.extract_variables('T1w', t1file) print(t1file, fvars) ``` The `FileTree.update` method allows you to "fill in" variable values; it returns a new `FileTree` object which can be used on a selection of the data set: ``` treeA = tree.update(subject='A') for t1file in treeA.get_all('T1w', glob_vars='all'): fvars = treeA.extract_variables('T1w', t1file) print(t1file, fvars) ``` ### Building a processing pipeline with `FileTree` Let's say we want to run BET on all of our T1 images. Let's start by modifying our `.tree` definition to include the BET outputs: ``` %%writefile mydata.tree sub_{subject} T2w.nii.gz ses_{session} T1w.nii.gz T1w_brain.nii.gz T1w_brain_mask.nii.gz ``` Now we can use the `FileTree` to generate the relevant file names for us, which we can then pass on to BET. Here we'll use the `FileTree.get_all_trees` method to create a sub-tree for each subject and each session: ``` from fsl.wrappers import bet tree = FileTree.read('mydata.tree', 'mydata') for subtree in tree.get_all_trees('T1w', glob_vars='all'): t1file = subtree.get('T1w') t1brain = subtree.get('T1w_brain') print('Running BET: {} -> {} ...'.format(t1file, t1brain)) bet(t1file, t1brain, mask=True) print('Done!') example = tree.update(subject='A', session='1') render('{} {} -ot mask -o -w 2 -mc 0 1 0'.format( example.get('T1w'), example.get('T1w_brain_mask'))) ``` ### The `FileTreeQuery` The `filetree` module contains another class called the [`FileTreeQuery`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.filetree.query.html), which provides an interface that is more convenient if you are reading data from large datasets with many different file types and variables. When you create a `FileTreeQuery`, it scans the entire data directory and identifies all of the values that are present for each variable defined in the `.tree` file: ``` from fsl.utils.filetree import FileTreeQuery tree = FileTree.read('mydata.tree', 'mydata') query = FileTreeQuery(tree) print('T1w variables:', query.variables('T1w')) print('T2w variables:', query.variables('T2w')) ``` The `FileTreeQuery.query` method will return the paths to all existing files which match a set of variable values: ``` print('All files for subject A') for template in query.templates: print(' {} files:'.format(template)) for match in query.query(template, subject='A'): print(' ', match.filename) ``` ## Calling shell commands The [`fsl.utils.run`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.run.html) module provides the `run` and `runfsl` functions, which are wrappers around the built-in [`subprocess` library](https://docs.python.org/3/library/subprocess.html). The default behaviour of `run` is to return the standard output of the command: ``` from fsl.utils.run import run # You can pass the command # and its arguments as a single # string, or as a sequence print('Lines in this notebook:', run('wc -l 08_fslpy.md').strip()) print('Words in this notebook:', run(['wc', '-w', '08_fslpy.md']).strip()) ``` But you can control what `run` returns, depending on your needs. Let's create a little script to demonstrate the options: ``` %%writefile mycmd #!/usr/bin/env bash exitcode=$1 echo "Standard output!" echo "Standard error :(" >&2 exit $exitcode ``` And let's not forget to make it executable: ``` !chmod a+x mycmd ``` You can use the `stdout`, `stderr` and `exitcode` arguments to control the return value: ``` print('run("./mycmd 0"): ', run("./mycmd 0").strip()) print('run("./mycmd 0", stdout=False): ', run("./mycmd 0", stdout=False)) print('run("./mycmd 0", exitcode=True):', run("./mycmd 0", exitcode=True)) print('run("./mycmd 0", stdout=False, exitcode=True):', run("./mycmd 0", stdout=False, exitcode=True)) print('run("./mycmd 0", stderr=True): ', run("./mycmd 0", stderr=True)) print('run("./mycmd 0", stdout=False, stderr=True): ', run("./mycmd 0", stdout=False, stderr=True).strip()) print('run("./mycmd 0", stderr=True, exitcode=True):', run("./mycmd 0", stderr=True, exitcode=True)) print('run("./mycmd 1", exitcode=True):', run("./mycmd 1", exitcode=True)) print('run("./mycmd 1", stdout=False, exitcode=True):', run("./mycmd 1", stdout=False, exitcode=True)) ``` So if only one of `stdout`, `stderr`, or `exitcode` is `True`, `run` will only return the corresponding value. Otherwise `run` will return a tuple which contains the requested outputs. If you run a command which returns a non-0 exit code, the default behaviour (if you don't set `exitcode=True`) is for a `RuntimeError` to be raised: ``` run("./mycmd 99") ``` ### The `runfsl` function The `runfsl` function is a wrapper around `run` which simply makes sure that the command you are calling is inside the `$FSLDIR/bin/` directory. It has the same usage as the `run` function: ``` from fsl.utils.run import runfsl runfsl('bet bighead_cropped bighead_cropped_brain') runfsl('fslroi bighead_cropped_brain bighead_slices 0 -1 0 -1 90 3') runfsl('fast -o bighead_fast bighead_slices') render('-vl 80 112 91 -xh -yh ' 'bighead_cropped ' 'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 ' 'bighead_fast_seg.nii.gz -ot label -o') ``` ### Submitting to the cluster Both the `run` and `runfsl` accept an argument called `submit`, which allows you to submit jobs to be executed on the cluster via the FSL `fsl_sub` command. > Cluster submission is handled by the > [`fsl.utils.fslsub`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html) > module - it contains lower level functions for managing and querying jobs > that have been submitted to the cluster. The functions defined in this > module can be used directly if you have more complicated requirements. The semantics of the `run` and `runfsl` functions are slightly different when you use the `submit` option - when you submit a job, the `run`/`runfsl` functions will return immediately, and will return a string containing the job ID: ``` jobid = run('ls', submit=True) print('Job ID:', jobid) ``` Once the job finishes, we should be able to read the usual `.o` and `.e` files: ``` stdout = f'ls.o{jobid}' print('Job output') print(open(stdout).read()) ``` All of the `fsl.wrappers` functions also accept the `submit` argument: ``` jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True) print('Job ID:', jobid) ``` > But an error will occur if you try to pass in-memory images, or `LOAD` any > outputs when you call a wrapper function with `submit=True`. After submitting a job, you can use the `wait` function to wait until a job has completed: ``` from fsl.utils.run import wait jobid = bet('08_fslpy/bighead', 'bighead_brain', submit=True) print('Job ID:', jobid) wait(jobid) print('Done!') render('08_fslpy/bighead bighead_brain -cm hot') ``` When you use `submit=True`, you can also specify cluster submission options - you can include any arguments that are accepted by the [`fslsub.submit`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.utils.fslsub.html#fsl.utils.fslsub.submit) function ``` jobs = [] jobs.append(runfsl('robustfov -i 08_fslpy/bighead -r bighead_cropped', submit=True, queue='short.q')) jobs.append(runfsl('bet bighead_cropped bighead_brain', submit=True, queue='short.q', wait_for=jobs[-1])) jobs.append(runfsl('fslroi bighead_brain bighead_slices 0 -1 111 3 0 -1', submit=True, queue='short.q', wait_for=jobs[-1])) jobs.append(runfsl('fast -o bighead_fast bighead_slices', submit=True, queue='short.q', wait_for=jobs[-1])) print('Waiting for', jobs, '...') wait(jobs) render('-vl 80 112 91 -xh -zh -hc ' 'bighead_brain ' 'bighead_slices.nii.gz -cm brain_colours_1hot -b 30 ' 'bighead_fast_seg.nii.gz -ot label -o') ``` ### Redirecting output The `log` option, accepted by both `run` and `fslrun`, allows for more fine-grained control over what is done with the standard output and error streams. You can use `'tee'` to redirect the standard output and error streams of the command to the standard output and error streams of the calling command (your python script): ``` print('Teeing:') _ = run('./mycmd 0', log={'tee' : True}) ``` Or you can use `'stdout'` and `'stderr'` to redirect the standard output and error streams of the command to files: ``` with open('stdout.log', 'wt') as o, \ open('stderr.log', 'wt') as e: run('./mycmd 0', log={'stdout' : o, 'stderr' : e}) print('\nRedirected stdout:') !cat stdout.log print('\nRedirected stderr:') !cat stderr.log ``` Finally, you can use `'cmd'` to log the command itself to a file (useful for pipeline logging): ``` with open('commands.log', 'wt') as cmdlog: run('./mycmd 0', log={'cmd' : cmdlog}) run('wc -l 08_fslpy.md', log={'cmd' : cmdlog}) print('\nCommand log:') !cat commands.log ``` ## FSL atlases The [`fsl.data.atlases`](https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/fslpy/latest/fsl.data.atlases.html) module provides access to all of the atlas images that are stored in the `$FSLDIR/data/atlases/` directory of a standard FSL installation. It can be used to load and query probabilistic and label-based atlases. The `atlases` module needs to be initialised using the `rescanAtlases` function: ``` import fsl.data.atlases as atlases atlases.rescanAtlases() ``` ### Querying atlases You can list all of the available atlases using `listAtlases`: ``` for desc in atlases.listAtlases(): print(desc) ``` `listAtlases` returns a list of `AtlasDescription` objects, each of which contains descriptive information about one atlas. You can retrieve the `AtlasDescription` for a specific atlas via the `getAtlasDescription` function: ``` desc = atlases.getAtlasDescription('harvardoxford-cortical') print(desc.name) print(desc.atlasID) print(desc.specPath) print(desc.atlasType) ``` Each `AtlasDescription` maintains a list of `AtlasLabel` objects, each of which represents one region that is defined in the atlas. You can access all of the `AtlasLabel` objects via the `labels` attribute: ``` for lbl in desc.labels[:5]: print(lbl) ``` Or you can retrieve a specific label using the `find` method: ``` # search by region name print(desc.find(name='Occipital Pole')) # or by label value print(desc.find(value=48)) ``` ### Loading atlas images The `loadAtlas` function can be used to load the atlas image: ``` # For probabilistic atlases, you # can ask for the 3D ROI image # by setting loadSummary=True. # You can also request a # resolution - by default the # highest resolution version # will be loaded. lblatlas = atlases.loadAtlas('harvardoxford-cortical', loadSummary=True, resolution=2) # By default you will get the 4D # probabilistic atlas image (for # atlases for which this is # available). probatlas = atlases.loadAtlas('harvardoxford-cortical', resolution=2) print(lblatlas) print(probatlas) ``` ### Working with atlases Both `LabelAtlas` and `ProbabilisticAtlas` objects have a method called `get`, which can be used to extract ROI images for a specific region: ``` stddir = op.expandvars('${FSLDIR}/data/standard/') std2mm = Image(op.join(stddir, 'MNI152_T1_2mm')) frontal = lblatlas.get(name='Frontal Pole').data frontal = np.ma.masked_where(frontal < 1, frontal) fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray) fig = ortho(frontal, (45, 54, 45), cmap=plt.cm.winter, fig=fig) ``` Calling `get` on a `ProbabilisticAtlas` will return a probability image: ``` stddir = op.expandvars('${FSLDIR}/data/standard/') std2mm = Image(op.join(stddir, 'MNI152_T1_2mm')) frontal = probatlas.get(name='Frontal Pole').data frontal = np.ma.masked_where(frontal < 1, frontal) fig = ortho(std2mm.data, (45, 54, 45), cmap=plt.cm.gray) fig = ortho(frontal, (45, 54, 45), cmap=plt.cm.inferno, fig=fig) ``` The `get` method can be used to retrieve an image for a region by: - an `AtlasLabel` object - The region index - The region value - The region name `LabelAtlas` objects have a method called `label`, which can be used to interrogate the atlas at specific locations: ``` # The label method accepts 3D # voxel or world coordinates val = lblatlas.label((25, 52, 43), voxel=True) lbl = lblatlas.find(value=val) print('Region at voxel [25, 52, 43]: {} [{}]'.format(val, lbl.name)) # or a 3D weighted or binary mask mask = np.zeros(lblatlas.shape) mask[30:60, 30:60, 30:60] = 1 mask = Image(mask, header=lblatlas.header) lbls, props = lblatlas.label(mask) print('Labels in mask:') for lbl, prop in zip(lbls, props): lblname = lblatlas.find(value=lbl).name print(' {} [{}]: {:0.2f}%'.format(lbl, lblname, prop)) ``` `ProbabilisticAtlas` objects have an analogous method called `values`: ``` vals = probatlas.values((25, 52, 43), voxel=True) print('Regions at voxel [25, 52, 43]:') for idx, val in enumerate(vals): if val > 0: lbl = probatlas.find(index=idx) print(' {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val)) print('Average proportions of regions within mask:') vals = probatlas.values(mask) for idx, val in enumerate(vals): if val > 0: lbl = probatlas.find(index=idx) print(' {} [{}]: {:0.2f}%'.format(lbl.value, lbl.name, val)) ```