Commit e19e574d authored by Vaanathi Sundaresan's avatar Vaanathi Sundaresan
Browse files

Data preprocessing

parent 6fd33611
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
# Truenet data preprocessing function
# Vaanathi Sundaresan
# 10-03-2021, Oxford
def preprocess_data(data):
Min-max intensity normalisation of data
:param data: input data
:return: normalised data
return (2 * data / np.amax(np.reshape(data,[-1,1]))) - 1
def preprocess_data_gauss(data):
Gaussian intensity normalisation of data
:param data: input data
:return: Gaussian normalised data
brain1 = data > 0
brain = brain1 > 0
data = data - np.mean(data[brain])
den = np.std(data[brain])
if den == 0:
den = 1
data = data/den
data[brain==0] = np.min(data)
return data
def cut_zeros1d(im_array):
Find the window for cropping the data closer to the brain
:param im_array: input array
:return: starting and end indices, and length of non-zero intensity values
im_list = list(im_array > 0)
start_index = im_list.index(1)
end_index = im_list[::-1].index(1)
length = len(im_array[start_index:])-end_index
return start_index, end_index, length
def tight_crop_data(img_data):
Crop the data tighter to the brain
:param img_data: input array
:return: cropped image and the bounding box coordinates and dimensions.
row_sum = np.sum(np.sum(img_data,axis=1),axis=1)
col_sum = np.sum(np.sum(img_data,axis=0),axis=1)
stack_sum = np.sum(np.sum(img_data,axis=1),axis=0)
rsid, reid, rlen = cut_zeros1d(row_sum)
csid, ceid, clen = cut_zeros1d(col_sum)
ssid, seid, slen = cut_zeros1d(stack_sum)
return img_data[rsid:rsid+rlen, csid:csid+clen, ssid:ssid+slen], [rsid, rlen, csid, clen, ssid, slen]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment