Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Ying-Qiu Zheng
archive
Commits
7f9cb92e
Commit
7f9cb92e
authored
Jul 25, 2021
by
Ying-Qiu Zheng
Browse files
Update 2021JUL21.md
parent
c19d572d
Changes
1
Show whitespace changes
Inline
Side-by-side
2021JUL21.md
View file @
7f9cb92e
...
@@ -23,10 +23,7 @@ In summary, in addition to finding the the hyper-parameters $`\pi, \mu, \Sigma_{
...
@@ -23,10 +23,7 @@ In summary, in addition to finding the the hyper-parameters $`\pi, \mu, \Sigma_{
3.
Initialise the transformation matrix $
`\mathbf{U}`
$ using Algorithm 3.
3.
Initialise the transformation matrix $
`\mathbf{U}`
$ using Algorithm 3.
4.
For iteration = $
`1, 2, ...`
$, do
4.
For iteration = $
`1, 2, ...`
$, do
-
**E-step.**
Evaluate the responsibilities using the current parameter values
-
**E-step.**
Evaluate the responsibilities using the current parameter values
-
-
$
`\gamma(y_{nk}) = \frac{\pi_{k}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}{\sum_{j=1}^{K}\pi_{j}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}`
$
```
math
\gamma(y_{nk}) = \frac{\pi_{k}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}{\sum_{j=1}^{K}\pi_{j}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}
```
-
**M-step.**
Re-estimate the parameters using the current responsibilities by setting the derivatives to zero
-
**M-step.**
Re-estimate the parameters using the current responsibilities by setting the derivatives to zero
-
$
`\mu_{k}^{\text{new}} = \frac{1}{N_{k}}((\Sigma^{H}_{k})^{-1} + (\Sigma^{L}_{k})^{-1} )^{-1}\sum_{n=1}^{N}\gamma(y_{nk})((\Sigma_{k}^{H})^{-1}\mathbf{Ux}^{H}_{n} + (\Sigma_{k}^{L})^{-1}\mathbf{x}_{n}^{L} )`
$
-
$
`\mu_{k}^{\text{new}} = \frac{1}{N_{k}}((\Sigma^{H}_{k})^{-1} + (\Sigma^{L}_{k})^{-1} )^{-1}\sum_{n=1}^{N}\gamma(y_{nk})((\Sigma_{k}^{H})^{-1}\mathbf{Ux}^{H}_{n} + (\Sigma_{k}^{L})^{-1}\mathbf{x}_{n}^{L} )`
$
-
$
`\Sigma_{k}^{L} = \frac{1}{N_{k}}\sum_{n=1}^{N}\gamma(y_{nk})(\mathbf{x}^{L}_{n} - \mathbf{\mu}_{k})(\mathbf{x}^{L}_{n} - \mathbf{\mu}_{k})^{T}`
$
-
$
`\Sigma_{k}^{L} = \frac{1}{N_{k}}\sum_{n=1}^{N}\gamma(y_{nk})(\mathbf{x}^{L}_{n} - \mathbf{\mu}_{k})(\mathbf{x}^{L}_{n} - \mathbf{\mu}_{k})^{T}`
$
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment