Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Ying-Qiu Zheng
archive
Commits
8ca43c8a
Commit
8ca43c8a
authored
Jul 25, 2021
by
Ying-Qiu Zheng
Browse files
Update 2021JUL21.md
parent
bd5f874d
Changes
1
Hide whitespace changes
Inline
Side-by-side
2021JUL21.md
View file @
8ca43c8a
...
...
@@ -29,6 +29,10 @@ Algorithm 1. EM for the Fusion of GMMs
```
math
\gamma(y_{nk}) = \frac{\pi_{k}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}{\sum_{j=1}^{K}\pi_{j}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}
```
-
**M-step.**
Re-estimate the parameters using the current responsibilities by setting the derivatives to zero
```
math
\mu_{k}^{\text{new}} = \frac{1}{N_{k}}(\Sigma^{H}_{k} + \Sigma^{L}_{k} )^{-1}\sum_{n=1}^{N}\gamma(y_{nk})(\Sigma_{k}^{H}\mathbf{Ux}^{H}_{n} + \Sigma_{k}^{L}\mathbf{x}_{n}^{L} )
```
### Simulation results
#### We considered three scenarios
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment