Commit c19d572d authored by Ying-Qiu Zheng's avatar Ying-Qiu Zheng
Browse files

Update 2021JUL21.md

parent 83b010e6
......@@ -23,7 +23,10 @@ In summary, in addition to finding the the hyper-parameters $`\pi, \mu, \Sigma_{
3. Initialise the transformation matrix $`\mathbf{U}`$ using Algorithm 3.
4. For iteration = $`1, 2, ...`$, do
- **E-step.** Evaluate the responsibilities using the current parameter values
- $`\gamma(y_{nk}) = \frac{\pi_{k}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}{\sum_{j=1}^{K}\pi_{j}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}`$
-
```math
\gamma(y_{nk}) = \frac{\pi_{k}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}{\sum_{j=1}^{K}\pi_{j}\mathcal{N}(\mathbf{x}^{L}_{n} | \mu_{k}, \Sigma_{k}^{L})\mathcal{N}(\mathbf{Ux}^{H}_{n} | \mu_{k}, \Sigma_{k}^{H})}
```
- **M-step.** Re-estimate the parameters using the current responsibilities by setting the derivatives to zero
- $`\mu_{k}^{\text{new}} = \frac{1}{N_{k}}((\Sigma^{H}_{k})^{-1} + (\Sigma^{L}_{k})^{-1} )^{-1}\sum_{n=1}^{N}\gamma(y_{nk})((\Sigma_{k}^{H})^{-1}\mathbf{Ux}^{H}_{n} + (\Sigma_{k}^{L})^{-1}\mathbf{x}_{n}^{L} )`$
- $`\Sigma_{k}^{L} = \frac{1}{N_{k}}\sum_{n=1}^{N}\gamma(y_{nk})(\mathbf{x}^{L}_{n} - \mathbf{\mu}_{k})(\mathbf{x}^{L}_{n} - \mathbf{\mu}_{k})^{T}`$
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment