Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • paulmc/fslpy
  • ndcn0236/fslpy
  • seanf/fslpy
3 results
Show changes
Showing
with 1339 additions and 545 deletions
``fsl.wrappers.epi_reg``
========================
.. automodule:: fsl.wrappers.epi_reg
:members:
:undoc-members:
:show-inheritance:
``fsl.wrappers.feat``
=====================
.. automodule:: fsl.wrappers.feat
:members:
:undoc-members:
:show-inheritance:
``fsl.wrappers.first``
======================
.. automodule:: fsl.wrappers.first
:members:
:undoc-members:
:show-inheritance:
``fsl.wrappers.fsl_sub``
========================
.. automodule:: fsl.wrappers.fsl_sub
:members:
:undoc-members:
:show-inheritance:
``fsl.wrappers.oxford_asl``
===========================
.. automodule:: fsl.wrappers.oxford_asl
:members:
:undoc-members:
:show-inheritance:
``fsl.wrappers.randomise``
==========================
.. automodule:: fsl.wrappers.randomise
:members:
:undoc-members:
:show-inheritance:
...@@ -4,17 +4,28 @@ ...@@ -4,17 +4,28 @@
.. toctree:: .. toctree::
:hidden: :hidden:
fsl.wrappers.avwutils
fsl.wrappers.bedpostx
fsl.wrappers.bet fsl.wrappers.bet
fsl.wrappers.bianca
fsl.wrappers.cluster_commands
fsl.wrappers.dtifit
fsl.wrappers.eddy fsl.wrappers.eddy
fsl.wrappers.epi_reg
fsl.wrappers.fast fsl.wrappers.fast
fsl.wrappers.feat
fsl.wrappers.first
fsl.wrappers.flirt fsl.wrappers.flirt
fsl.wrappers.fnirt fsl.wrappers.fnirt
fsl.wrappers.fsl_anat
fsl.wrappers.fsl_sub
fsl.wrappers.fslmaths fsl.wrappers.fslmaths
fsl.wrappers.fslstats fsl.wrappers.fslstats
fsl.wrappers.fsl_anat
fsl.wrappers.fugue fsl.wrappers.fugue
fsl.wrappers.melodic fsl.wrappers.melodic
fsl.wrappers.misc fsl.wrappers.misc
fsl.wrappers.oxford_asl
fsl.wrappers.randomise
fsl.wrappers.tbss fsl.wrappers.tbss
fsl.wrappers.wrapperutils fsl.wrappers.wrapperutils
......
deprecation deprecation
dill
h5py h5py
nibabel nibabel
nibabel.cifti2 nibabel.cifti2
......
...@@ -377,7 +377,7 @@ class AtlasLabel(object): ...@@ -377,7 +377,7 @@ class AtlasLabel(object):
) )
class AtlasDescription(object): class AtlasDescription:
"""An ``AtlasDescription`` instance parses and stores the information """An ``AtlasDescription`` instance parses and stores the information
stored in the FSL XML file that describes a single FSL atlas. An XML stored in the FSL XML file that describes a single FSL atlas. An XML
atlas specification file is assumed to have a structure that looks like atlas specification file is assumed to have a structure that looks like
...@@ -560,7 +560,7 @@ class AtlasDescription(object): ...@@ -560,7 +560,7 @@ class AtlasDescription(object):
imagefile = op.normpath(atlasDir + imagefile) imagefile = op.normpath(atlasDir + imagefile)
summaryimagefile = op.normpath(atlasDir + summaryimagefile) summaryimagefile = op.normpath(atlasDir + summaryimagefile)
i = fslimage.Image(imagefile, loadData=False, calcRange=False) i = fslimage.Image(imagefile)
self.images .append(imagefile) self.images .append(imagefile)
self.summaryImages.append(summaryimagefile) self.summaryImages.append(summaryimagefile)
...@@ -880,10 +880,17 @@ class LabelAtlas(Atlas): ...@@ -880,10 +880,17 @@ class LabelAtlas(Atlas):
of each present value. The proportions are returned as of each present value. The proportions are returned as
values between 0 and 100. values between 0 and 100.
.. note:: Calling this method will cause the atlas image data to be
loaded into memory.
.. note:: Use the :meth:`find` method to retrieve the ``AtlasLabel`` .. note:: Use the :meth:`find` method to retrieve the ``AtlasLabel``
associated with each returned value. associated with each returned value.
""" """
# Mask-based indexing requires the image
# data to be loaded into memory
self.data
# Extract the values that are in # Extract the values that are in
# the mask, and their corresponding # the mask, and their corresponding
# mask weights # mask weights
......
...@@ -22,7 +22,8 @@ log = logging.getLogger(__name__) ...@@ -22,7 +22,8 @@ log = logging.getLogger(__name__)
BITMAP_EXTENSIONS = ['.bmp', '.png', '.jpg', '.jpeg', BITMAP_EXTENSIONS = ['.bmp', '.png', '.jpg', '.jpeg',
'.tif', '.tiff', '.gif', '.rgba'] '.tif', '.tiff', '.gif', '.rgba',
'.jp2', '.jpg2', '.jp2k']
"""File extensions we understand. """ """File extensions we understand. """
...@@ -34,7 +35,10 @@ BITMAP_DESCRIPTIONS = [ ...@@ -34,7 +35,10 @@ BITMAP_DESCRIPTIONS = [
'TIFF', 'TIFF',
'TIFF', 'TIFF',
'Graphics Interchange Format', 'Graphics Interchange Format',
'Raw RGBA'] 'Raw RGBA',
'JPEG 2000',
'JPEG 2000',
'JPEG 2000']
"""A description for each :attr:`BITMAP_EXTENSION`. """ """A description for each :attr:`BITMAP_EXTENSION`. """
...@@ -54,9 +58,11 @@ class Bitmap(object): ...@@ -54,9 +58,11 @@ class Bitmap(object):
if isinstance(bmp, (pathlib.Path, str)): if isinstance(bmp, (pathlib.Path, str)):
try: try:
# Allow big images # Allow big/truncated images
import PIL.Image as Image import PIL.Image as Image
Image.MAX_IMAGE_PIXELS = 1e9 import PIL.ImageFile as ImageFile
Image .MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
except ImportError: except ImportError:
raise RuntimeError('Install Pillow to use the Bitmap class') raise RuntimeError('Install Pillow to use the Bitmap class')
...@@ -173,7 +179,7 @@ class Bitmap(object): ...@@ -173,7 +179,7 @@ class Bitmap(object):
for ci, ch in enumerate(dtype.names): for ci, ch in enumerate(dtype.names):
data[ch] = self.data[..., ci] data[ch] = self.data[..., ci]
data = np.array(data, order='F', copy=False) data = np.asarray(data, order='F')
return fslimage.Image(data, return fslimage.Image(data,
name=self.name, name=self.name,
......
...@@ -440,11 +440,12 @@ class BrainStructure(object): ...@@ -440,11 +440,12 @@ class BrainStructure(object):
secondary_str = 'AnatomicalStructureSecondary' secondary_str = 'AnatomicalStructureSecondary'
primary = "other" primary = "other"
secondary = None secondary = None
for meta in [gifti_obj] + gifti_obj.darrays:
if primary_str in meta.meta.metadata: for obj in [gifti_obj] + gifti_obj.darrays:
primary = meta.meta.metadata[primary_str] if primary_str in obj.meta:
if secondary_str in meta.meta.metadata: primary = obj.meta[primary_str]
secondary = meta.meta.metadata[secondary_str] if secondary_str in obj.meta:
secondary = obj.meta[secondary_str]
anatomy = cls.from_string(primary, issurface=True) anatomy = cls.from_string(primary, issurface=True)
anatomy.secondary = None if secondary is None else secondary.lower() anatomy.secondary = None if secondary is None else secondary.lower()
return anatomy return anatomy
......
...@@ -30,6 +30,7 @@ specification: ...@@ -30,6 +30,7 @@ specification:
NIFTI_XFORM_ALIGNED_ANAT NIFTI_XFORM_ALIGNED_ANAT
NIFTI_XFORM_TALAIRACH NIFTI_XFORM_TALAIRACH
NIFTI_XFORM_MNI_152 NIFTI_XFORM_MNI_152
NIFTI_XFORM_TEMPLATE_OTHER
""" """
...@@ -81,7 +82,14 @@ NIFTI_XFORM_MNI_152 = 4 ...@@ -81,7 +82,14 @@ NIFTI_XFORM_MNI_152 = 4
"""MNI 152 normalized coordinates.""" """MNI 152 normalized coordinates."""
NIFTI_XFORM_ANALYZE = 5 NIFTI_XFORM_TEMPLATE_OTHER = 5
"""Coordinates aligned to some template that is not MNI152 or Talairach.
See https://www.nitrc.org/forum/message.php?msg_id=26394 for details.
"""
NIFTI_XFORM_ANALYZE = 6
"""Code which indicates that this is an ANALYZE image, not a NIFTI image. """ """Code which indicates that this is an ANALYZE image, not a NIFTI image. """
......
...@@ -33,15 +33,17 @@ import sys ...@@ -33,15 +33,17 @@ import sys
import glob import glob
import json import json
import shlex import shlex
import shutil
import logging import logging
import binascii import binascii
import numpy as np import numpy as np
import nibabel as nib import nibabel as nib
import fsl.utils.tempdir as tempdir import fsl.utils.tempdir as tempdir
import fsl.utils.memoize as memoize import fsl.utils.memoize as memoize
import fsl.data.image as fslimage import fsl.utils.platform as fslplatform
import fsl.data.image as fslimage
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
...@@ -60,6 +62,25 @@ function). Versions prior to this require the series number to be passed. ...@@ -60,6 +62,25 @@ function). Versions prior to this require the series number to be passed.
""" """
def dcm2niix() -> str:
"""Tries to find an absolute path to the ``dcm2niix`` command. Returns
``'dcm2niix'`` (unqualified) if a specific executable cannot be found.
"""
fsldir = fslplatform.platform.fsldir
candidates = [
shutil.which('dcm2niix')
]
if fsldir is not None:
candidates.insert(0, op.join(fsldir, 'bin', 'dcm2niix'))
for c in candidates:
if c is not None and op.exists(c):
return c
return 'dcm2niix'
class DicomImage(fslimage.Image): class DicomImage(fslimage.Image):
"""The ``DicomImage`` is a volumetric :class:`.Image` with some associated """The ``DicomImage`` is a volumetric :class:`.Image` with some associated
DICOM metadata. DICOM metadata.
...@@ -105,7 +126,7 @@ def installedVersion(): ...@@ -105,7 +126,7 @@ def installedVersion():
- Day - Day
""" """
cmd = 'dcm2niix -h' cmd = f'{dcm2niix()} -h'
versionPattern = re.compile(r'v' versionPattern = re.compile(r'v'
r'(?P<major>[0-9]+)\.' r'(?P<major>[0-9]+)\.'
r'(?P<minor>[0-9]+)\.' r'(?P<minor>[0-9]+)\.'
...@@ -130,7 +151,7 @@ def installedVersion(): ...@@ -130,7 +151,7 @@ def installedVersion():
int(match.group('day'))) int(match.group('day')))
except Exception as e: except Exception as e:
log.debug('Error parsing dcm2niix version string: {}'.format(e)) log.debug(f'Error parsing dcm2niix version string: {e}')
return None return None
...@@ -177,7 +198,7 @@ def scanDir(dcmdir): ...@@ -177,7 +198,7 @@ def scanDir(dcmdir):
raise RuntimeError('dcm2niix is not available or is too old') raise RuntimeError('dcm2niix is not available or is too old')
dcmdir = op.abspath(dcmdir) dcmdir = op.abspath(dcmdir)
cmd = 'dcm2niix -b o -ba n -f %s -o . "{}"'.format(dcmdir) cmd = f'{dcm2niix()} -b o -ba n -f %s -o . "{dcmdir}"'
series = [] series = []
with tempdir.tempdir() as td: with tempdir.tempdir() as td:
...@@ -237,7 +258,7 @@ def seriesCRC(series): ...@@ -237,7 +258,7 @@ def seriesCRC(series):
crc32 = str(binascii.crc32(uid.encode())) crc32 = str(binascii.crc32(uid.encode()))
if echo is not None and echo > 1: if echo is not None and echo > 1:
crc32 = '{}.{}'.format(crc32, echo) crc32 = f'{crc32}.{echo}'
return crc32 return crc32
...@@ -272,14 +293,14 @@ def loadSeries(series): ...@@ -272,14 +293,14 @@ def loadSeries(series):
else: else:
ident = snum ident = snum
cmd = 'dcm2niix -b n -f %s -z n -o . -n "{}" "{}"'.format(ident, dcmdir) cmd = f'{dcm2niix()} -b n -f %s -z n -o . -n "{ident}" "{dcmdir}"'
with tempdir.tempdir() as td: with tempdir.tempdir() as td:
with open(os.devnull, 'wb') as devnull: with open(os.devnull, 'wb') as devnull:
sp.call(shlex.split(cmd), stdout=devnull, stderr=devnull) sp.call(shlex.split(cmd), stdout=devnull, stderr=devnull)
files = glob.glob(op.join(td, '{}*.nii'.format(snum))) files = glob.glob(op.join(td, f'{snum}*.nii'))
images = [nib.load(f, mmap=False) for f in files] images = [nib.load(f, mmap=False) for f in files]
# copy images so nibabel no longer # copy images so nibabel no longer
......
...@@ -22,10 +22,12 @@ following functions are provided: ...@@ -22,10 +22,12 @@ following functions are provided:
isFirstLevelAnalysis isFirstLevelAnalysis
loadDesign loadDesign
loadContrasts loadContrasts
loadFTests
loadFsf loadFsf
loadSettings loadSettings
getThresholds getThresholds
loadClusterResults loadClusterResults
loadFEATDesignFile
The following functions return the names of various files of interest: The following functions return the names of various files of interest:
...@@ -39,11 +41,14 @@ The following functions return the names of various files of interest: ...@@ -39,11 +41,14 @@ The following functions return the names of various files of interest:
getPEFile getPEFile
getCOPEFile getCOPEFile
getZStatFile getZStatFile
getZFStatFile
getClusterMaskFile getClusterMaskFile
getFClusterMaskFile
""" """
import collections import collections
import io
import logging import logging
import os.path as op import os.path as op
import numpy as np import numpy as np
...@@ -166,55 +171,69 @@ def loadContrasts(featdir): ...@@ -166,55 +171,69 @@ def loadContrasts(featdir):
:arg featdir: A FEAT directory. :arg featdir: A FEAT directory.
""" """
matrix = None filename = op.join(featdir, 'design.con')
numContrasts = 0
names = {}
designcon = op.join(featdir, 'design.con')
log.debug('Loading FEAT contrasts from {}'.format(designcon)) log.debug('Loading FEAT contrasts from %s', filename)
with open(designcon, 'rt') as f: try:
designcon = loadFEATDesignFile(filename)
contrasts = np.genfromtxt(io.StringIO(designcon['Matrix']), ndmin=2)
numContrasts = int(designcon['NumContrasts'])
names = []
while True: if numContrasts != contrasts.shape[0]:
line = f.readline().strip() raise RuntimeError(f'Matrix shape {contrasts.shape} does not '
f'match number of contrasts {numContrasts}')
if line.startswith('/ContrastName'): contrasts = [list(row) for row in contrasts]
tkns = line.split(None, 1)
num = [c for c in tkns[0] if c.isdigit()]
num = int(''.join(num))
# The /ContrastName field may not for i in range(numContrasts):
# actually have a name specified cname = designcon.get(f'ContrastName{i + 1}', '')
if len(tkns) > 1: if cname == '':
name = tkns[1].strip() cname = f'{i + 1}'
names[num] = name names.append(cname)
elif line.startswith('/NumContrasts'): except Exception as e:
numContrasts = int(line.split()[1]) log.debug('Error reading %s: %s', filename, e, exc_info=True)
raise RuntimeError(f'{filename} does not appear '
'to be a valid design.con file') from e
elif line == '/Matrix': return names, contrasts
break
matrix = np.loadtxt(f, ndmin=2)
if matrix is None or \ def loadFTests(featdir):
numContrasts != matrix.shape[0]: """Loads F-tests from a FEAT directory. Returns a list of f-test vectors
raise RuntimeError('{} does not appear to be a ' (each of which is a list itself), where each vector contains a 1 or a 0
'valid design.con file'.format(designcon)) denoting the contrasts included in the F-test.
# Fill in any missing contrast names :arg featdir: A FEAT directory.
if len(names) != numContrasts: """
for i in range(numContrasts):
if i + 1 not in names:
names[i + 1] = str(i + 1)
names = [names[c + 1] for c in range(numContrasts)] filename = op.join(featdir, 'design.fts')
contrasts = []
for row in matrix: if not op.exists(filename):
contrasts.append(list(row)) return []
return names, contrasts log.debug('Loading FEAT F-tests from %s', filename)
try:
desfts = loadFEATDesignFile(filename)
ftests = np.genfromtxt(io.StringIO(desfts['Matrix']), ndmin=2)
ncols = int(desfts['NumWaves'])
nrows = int(desfts['NumContrasts'])
if ftests.shape != (nrows, ncols):
raise RuntimeError(f'Matrix shape {ftests.shape} does not match '
f'number of EVs/FTests ({ncols}, {nrows})')
ftests = [list(row) for row in ftests]
except Exception as e:
log.debug('Error reading %s: %s', filename, e, exc_info=True)
raise RuntimeError(f'{filename} does not appear '
'to be a valid design.fts file') from e
return ftests
def loadFsf(designfsf): def loadFsf(designfsf):
...@@ -228,7 +247,7 @@ def loadFsf(designfsf): ...@@ -228,7 +247,7 @@ def loadFsf(designfsf):
settings = collections.OrderedDict() settings = collections.OrderedDict()
log.debug('Loading FEAT settings from {}'.format(designfsf)) log.debug('Loading FEAT settings from %s', designfsf)
with open(designfsf, 'rt') as f: with open(designfsf, 'rt') as f:
...@@ -310,19 +329,22 @@ def isFirstLevelAnalysis(settings): ...@@ -310,19 +329,22 @@ def isFirstLevelAnalysis(settings):
return settings['level'] == '1' return settings['level'] == '1'
def loadClusterResults(featdir, settings, contrast): def loadClusterResults(featdir, settings, contrast, ftest=False):
"""If cluster thresholding was used in the FEAT analysis, this function """If cluster thresholding was used in the FEAT analysis, this function
will load and return the cluster results for the specified (0-indexed) will load and return the cluster results for the specified (0-indexed)
contrast number. contrast or f-test.
If there are no cluster results for the given contrast, ``None`` is If there are no cluster results for the given contrast/f-test, ``None``
returned. is returned.
An error will be raised if the cluster file cannot be parsed. An error will be raised if the cluster file cannot be parsed.
:arg featdir: A FEAT directory. :arg featdir: A FEAT directory.
:arg settings: A FEAT settings dictionary. :arg settings: A FEAT settings dictionary.
:arg contrast: 0-indexed contrast number. :arg contrast: 0-indexed contrast or f-test number.
:arg ftest: If ``False`` (default), return cluster results for
the contrast numbered ``contrast``. Otherwise, return
cluster results for the f-test numbered ``contrast``.
:returns: A list of ``Cluster`` instances, each of which contains :returns: A list of ``Cluster`` instances, each of which contains
information about one cluster. A ``Cluster`` object has the information about one cluster. A ``Cluster`` object has the
...@@ -343,11 +365,16 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -343,11 +365,16 @@ def loadClusterResults(featdir, settings, contrast):
gravity. gravity.
``zcogz`` Z voxel coordinate of cluster centre of ``zcogz`` Z voxel coordinate of cluster centre of
gravity. gravity.
``copemax`` Maximum COPE value in cluster. ``copemax`` Maximum COPE value in cluster (not
``copemaxx`` X voxel coordinate of maximum COPE value. present for f-tests).
``copemaxx`` X voxel coordinate of maximum COPE value
(not present for f-tests).
``copemaxy`` Y voxel coordinate of maximum COPE value. ``copemaxy`` Y voxel coordinate of maximum COPE value.
(not present for f-tests).
``copemaxz`` Z voxel coordinate of maximum COPE value. ``copemaxz`` Z voxel coordinate of maximum COPE value.
(not present for f-tests).
``copemean`` Mean COPE of all voxels in the cluster. ``copemean`` Mean COPE of all voxels in the cluster.
(not present for f-tests).
============ ========================================= ============ =========================================
""" """
...@@ -357,8 +384,11 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -357,8 +384,11 @@ def loadClusterResults(featdir, settings, contrast):
# the ZMax/COG etc coordinates # the ZMax/COG etc coordinates
# are usually in voxel coordinates # are usually in voxel coordinates
coordXform = np.eye(4) coordXform = np.eye(4)
clusterFile = op.join(
featdir, 'cluster_zstat{}.txt'.format(contrast + 1)) if ftest: prefix = 'cluster_zfstat'
else: prefix = 'cluster_zstat'
clusterFile = op.join(featdir, f'{prefix}{contrast + 1}.txt')
if not op.exists(clusterFile): if not op.exists(clusterFile):
...@@ -367,8 +397,7 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -367,8 +397,7 @@ def loadClusterResults(featdir, settings, contrast):
# the cluster file will instead be called # the cluster file will instead be called
# 'cluster_zstatX_std.txt', so we'd better # 'cluster_zstatX_std.txt', so we'd better
# check for that too. # check for that too.
clusterFile = op.join( clusterFile = op.join(featdir, f'{prefix}{contrast + 1}_std.txt')
featdir, 'cluster_zstat{}_std.txt'.format(contrast + 1))
if not op.exists(clusterFile): if not op.exists(clusterFile):
return None return None
...@@ -377,12 +406,7 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -377,12 +406,7 @@ def loadClusterResults(featdir, settings, contrast):
# space, the cluster coordinates are in standard # space, the cluster coordinates are in standard
# space. We transform them to voxel coordinates. # space. We transform them to voxel coordinates.
# later on. # later on.
coordXform = fslimage.Image( coordXform = fslimage.Image(getDataFile(featdir)).worldToVoxMat
getDataFile(featdir),
loadData=False).worldToVoxMat
log.debug('Loading cluster results for contrast {} from {}'.format(
contrast, clusterFile))
# The cluster.txt file is converted # The cluster.txt file is converted
# into a list of Cluster objects, # into a list of Cluster objects,
...@@ -400,10 +424,18 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -400,10 +424,18 @@ def loadClusterResults(featdir, settings, contrast):
# if cluster thresholding was not used, # if cluster thresholding was not used,
# the cluster table will not contain # the cluster table will not contain
# P valuse. # P values.
if not hasattr(self, 'p'): self.p = 1.0 if not hasattr(self, 'p'): self.p = 1.0
if not hasattr(self, 'logp'): self.logp = 0.0 if not hasattr(self, 'logp'): self.logp = 0.0
# F-test cluster results will not have
# COPE-* results
if not hasattr(self, 'copemax'): self.copemax = np.nan
if not hasattr(self, 'copemaxx'): self.copemaxx = np.nan
if not hasattr(self, 'copemaxy'): self.copemaxy = np.nan
if not hasattr(self, 'copemaxz'): self.copemaxz = np.nan
if not hasattr(self, 'copemean'): self.copemean = np.nan
# This dict provides a mapping between # This dict provides a mapping between
# Cluster object attribute names, and # Cluster object attribute names, and
# the corresponding column name in the # the corresponding column name in the
...@@ -435,10 +467,9 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -435,10 +467,9 @@ def loadClusterResults(featdir, settings, contrast):
'COPE-MAX Z (mm)' : 'copemaxz', 'COPE-MAX Z (mm)' : 'copemaxz',
'COPE-MEAN' : 'copemean'} 'COPE-MEAN' : 'copemean'}
# An error will be raised if the log.debug('Loading cluster results for contrast %s from %s',
# cluster file does not exist (e.g. contrast, clusterFile)
# if the specified contrast index
# is invalid)
with open(clusterFile, 'rt') as f: with open(clusterFile, 'rt') as f:
# Get every line in the file, # Get every line in the file,
...@@ -460,12 +491,11 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -460,12 +491,11 @@ def loadClusterResults(featdir, settings, contrast):
colNames = colNames.split('\t') colNames = colNames.split('\t')
clusterLines = [cl .split('\t') for cl in clusterLines] clusterLines = [cl .split('\t') for cl in clusterLines]
# Turn each cluster line into a # Turn each cluster line into a Cluster
# Cluster instance. An error will # instance. An error will be raised if the
# be raised if the columm names # columm names are unrecognised (i.e. not
# are unrecognised (i.e. not in # in the colmap above), or if the file is
# the colmap above), or if the # poorly formed.
# file is poorly formed.
clusters = [Cluster(**dict(zip(colNames, cl))) for cl in clusterLines] clusters = [Cluster(**dict(zip(colNames, cl))) for cl in clusterLines]
# Make sure all coordinates are in voxels - # Make sure all coordinates are in voxels -
...@@ -491,6 +521,40 @@ def loadClusterResults(featdir, settings, contrast): ...@@ -491,6 +521,40 @@ def loadClusterResults(featdir, settings, contrast):
return clusters return clusters
def loadFEATDesignFile(filename):
"""Load a FEAT design file, e.g. ``design.mat``, ``design.con``, ``design.fts``.
These files contain key-value pairs, and are formatted according to an
undocumented structure where each key is of the form "/KeyName", and is
followed immediately by a whitespace character, and then the value.
:arg filename: File to load
:returns: A dictionary of key-value pairs. The values are all left
as strings.
"""
fields = {}
with open(filename, 'rt') as f:
content = f.read()
content = content.split('/')
for line in content:
line = line.strip()
if line == '':
continue
tokens = line.split(maxsplit=1)
if len(tokens) == 1:
name, value = tokens[0], ''
else:
name, value = tokens
fields[name] = value
return fields
def getDataFile(featdir): def getDataFile(featdir):
"""Returns the name of the file in the FEAT directory which contains """Returns the name of the file in the FEAT directory which contains
the model input data (typically called ``filtered_func_data.nii.gz``). the model input data (typically called ``filtered_func_data.nii.gz``).
...@@ -534,7 +598,7 @@ def getPEFile(featdir, ev): ...@@ -534,7 +598,7 @@ def getPEFile(featdir, ev):
:arg featdir: A FEAT directory. :arg featdir: A FEAT directory.
:arg ev: The EV number (0-indexed). :arg ev: The EV number (0-indexed).
""" """
pefile = op.join(featdir, 'stats', 'pe{}'.format(ev + 1)) pefile = op.join(featdir, 'stats', f'pe{ev + 1}')
return fslimage.addExt(pefile, mustExist=True) return fslimage.addExt(pefile, mustExist=True)
...@@ -546,7 +610,7 @@ def getCOPEFile(featdir, contrast): ...@@ -546,7 +610,7 @@ def getCOPEFile(featdir, contrast):
:arg featdir: A FEAT directory. :arg featdir: A FEAT directory.
:arg contrast: The contrast number (0-indexed). :arg contrast: The contrast number (0-indexed).
""" """
copefile = op.join(featdir, 'stats', 'cope{}'.format(contrast + 1)) copefile = op.join(featdir, 'stats', f'cope{contrast + 1}')
return fslimage.addExt(copefile, mustExist=True) return fslimage.addExt(copefile, mustExist=True)
...@@ -558,10 +622,22 @@ def getZStatFile(featdir, contrast): ...@@ -558,10 +622,22 @@ def getZStatFile(featdir, contrast):
:arg featdir: A FEAT directory. :arg featdir: A FEAT directory.
:arg contrast: The contrast number (0-indexed). :arg contrast: The contrast number (0-indexed).
""" """
zfile = op.join(featdir, 'stats', 'zstat{}'.format(contrast + 1)) zfile = op.join(featdir, 'stats', f'zstat{contrast + 1}')
return fslimage.addExt(zfile, mustExist=True) return fslimage.addExt(zfile, mustExist=True)
def getZFStatFile(featdir, ftest):
"""Returns the path of the Z-statistic file for the specified F-test.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
:arg ftest: The F-test number (0-indexed).
"""
zffile = op.join(featdir, 'stats', f'zfstat{ftest + 1}')
return fslimage.addExt(zffile, mustExist=True)
def getClusterMaskFile(featdir, contrast): def getClusterMaskFile(featdir, contrast):
"""Returns the path of the cluster mask file for the specified contrast. """Returns the path of the cluster mask file for the specified contrast.
...@@ -570,5 +646,17 @@ def getClusterMaskFile(featdir, contrast): ...@@ -570,5 +646,17 @@ def getClusterMaskFile(featdir, contrast):
:arg featdir: A FEAT directory. :arg featdir: A FEAT directory.
:arg contrast: The contrast number (0-indexed). :arg contrast: The contrast number (0-indexed).
""" """
mfile = op.join(featdir, 'cluster_mask_zstat{}'.format(contrast + 1)) mfile = op.join(featdir, f'cluster_mask_zstat{contrast + 1}')
return fslimage.addExt(mfile, mustExist=True)
def getFClusterMaskFile(featdir, ftest):
"""Returns the path of the cluster mask file for the specified f-test.
Raises a :exc:`~fsl.utils.path.PathError` if the file does not exist.
:arg featdir: A FEAT directory.
:arg contrast: The f-test number (0-indexed).
"""
mfile = op.join(featdir, f'cluster_mask_zfstat{ftest + 1}')
return fslimage.addExt(mfile, mustExist=True) return fslimage.addExt(mfile, mustExist=True)
...@@ -160,7 +160,7 @@ class FEATFSFDesign(object): ...@@ -160,7 +160,7 @@ class FEATFSFDesign(object):
# Print a warning if we're # Print a warning if we're
# using an old version of FEAT # using an old version of FEAT
if version < 6: if version < 6:
log.warning('Unsupported FEAT version: {}'.format(version)) log.warning('Unsupported FEAT version: %s', version)
# We need to parse the EVS a bit # We need to parse the EVS a bit
# differently depending on whether # differently depending on whether
...@@ -210,8 +210,7 @@ class FEATFSFDesign(object): ...@@ -210,8 +210,7 @@ class FEATFSFDesign(object):
continue continue
if (not self.__loadVoxEVs) or (ev.filename is None): if (not self.__loadVoxEVs) or (ev.filename is None):
log.warning('Voxel EV image missing ' log.warning('Voxel EV image missing for ev %s', ev.index)
'for ev {}'.format(ev.index))
continue continue
design[:, ev.index] = ev.getData(x, y, z) design[:, ev.index] = ev.getData(x, y, z)
...@@ -250,8 +249,7 @@ class VoxelwiseEVMixin(object): ...@@ -250,8 +249,7 @@ class VoxelwiseEVMixin(object):
if op.exists(filename): if op.exists(filename):
self.__filename = filename self.__filename = filename
else: else:
log.warning('Voxelwise EV file does not ' log.warning('Voxelwise EV file does not exist: %s', filename)
'exist: {}'.format(filename))
self.__filename = None self.__filename = None
self.__image = None self.__image = None
...@@ -502,11 +500,11 @@ def getFirstLevelEVs(featDir, settings, designMat): ...@@ -502,11 +500,11 @@ def getFirstLevelEVs(featDir, settings, designMat):
# - voxelwise EVs # - voxelwise EVs
for origIdx in range(origEVs): for origIdx in range(origEVs):
title = settings[ 'evtitle{}' .format(origIdx + 1)] title = settings[ f'evtitle{origIdx + 1}']
shape = int(settings[ 'shape{}' .format(origIdx + 1)]) shape = int(settings[ f'shape{origIdx + 1}'])
convolve = int(settings[ 'convolve{}' .format(origIdx + 1)]) convolve = int(settings[ f'convolve{origIdx + 1}'])
deriv = int(settings[ 'deriv_yn{}' .format(origIdx + 1)]) deriv = int(settings[ f'deriv_yn{origIdx + 1}'])
basis = int(settings.get('basisfnum{}'.format(origIdx + 1), -1)) basis = int(settings.get(f'basisfnum{origIdx + 1}', -1))
# Normal EV. This is just a column # Normal EV. This is just a column
# in the design matrix, defined by # in the design matrix, defined by
...@@ -525,8 +523,7 @@ def getFirstLevelEVs(featDir, settings, designMat): ...@@ -525,8 +523,7 @@ def getFirstLevelEVs(featDir, settings, designMat):
# The addExt function will raise an # The addExt function will raise an
# error if the file does not exist. # error if the file does not exist.
filename = op.join( filename = op.join(featDir, f'designVoxelwiseEV{origIdx + 1}')
featDir, 'designVoxelwiseEV{}'.format(origIdx + 1))
filename = fslimage.addExt(filename, True) filename = fslimage.addExt(filename, True)
evs.append(VoxelwiseEV(len(evs), origIdx, title, filename)) evs.append(VoxelwiseEV(len(evs), origIdx, title, filename))
...@@ -607,7 +604,7 @@ def getFirstLevelEVs(featDir, settings, designMat): ...@@ -607,7 +604,7 @@ def getFirstLevelEVs(featDir, settings, designMat):
startIdx = len(evs) + 1 startIdx = len(evs) + 1
if voxConfLocs != list(range(startIdx, startIdx + len(voxConfFiles))): if voxConfLocs != list(range(startIdx, startIdx + len(voxConfFiles))):
raise FSFError('Unsupported voxelwise confound ordering ' raise FSFError('Unsupported voxelwise confound ordering '
'({} -> {})'.format(startIdx, voxConfLocs)) f'({startIdx} -> {voxConfLocs})')
# Create the voxelwise confound EVs. # Create the voxelwise confound EVs.
# We make a name for the EV from the # We make a name for the EV from the
...@@ -680,7 +677,7 @@ def getHigherLevelEVs(featDir, settings, designMat): ...@@ -680,7 +677,7 @@ def getHigherLevelEVs(featDir, settings, designMat):
for origIdx in range(origEVs): for origIdx in range(origEVs):
# All we need is the title # All we need is the title
title = settings['evtitle{}'.format(origIdx + 1)] title = settings[f'evtitle{origIdx + 1}']
evs.append(NormalEV(len(evs), origIdx, title)) evs.append(NormalEV(len(evs), origIdx, title))
# Only the input file is specified for # Only the input file is specified for
...@@ -689,7 +686,7 @@ def getHigherLevelEVs(featDir, settings, designMat): ...@@ -689,7 +686,7 @@ def getHigherLevelEVs(featDir, settings, designMat):
# name. # name.
for origIdx in range(voxEVs): for origIdx in range(voxEVs):
filename = settings['evs_vox_{}'.format(origIdx + 1)] filename = settings[f'evs_vox_{origIdx + 1}']
title = op.basename(fslimage.removeExt(filename)) title = op.basename(fslimage.removeExt(filename))
evs.append(VoxelwiseEV(len(evs), origIdx, title, filename)) evs.append(VoxelwiseEV(len(evs), origIdx, title, filename))
...@@ -705,12 +702,12 @@ def loadDesignMat(designmat): ...@@ -705,12 +702,12 @@ def loadDesignMat(designmat):
:arg designmat: Path to the ``design.mat`` file. :arg designmat: Path to the ``design.mat`` file.
""" """
log.debug('Loading FEAT design matrix from {}'.format(designmat)) log.debug('Loading FEAT design matrix from %s', designmat)
matrix = np.loadtxt(designmat, comments='/', ndmin=2) matrix = np.loadtxt(designmat, comments='/', ndmin=2)
if matrix is None or matrix.size == 0 or len(matrix.shape) != 2: if matrix is None or matrix.size == 0 or len(matrix.shape) != 2:
raise FSFError('{} does not appear to be a ' raise FSFError(f'{designmat} does not appear '
'valid design.mat file'.format(designmat)) 'to be a valid design.mat file')
return matrix return matrix
...@@ -63,8 +63,8 @@ class FEATImage(fslimage.Image): ...@@ -63,8 +63,8 @@ class FEATImage(fslimage.Image):
path = op.join(path, 'filtered_func_data') path = op.join(path, 'filtered_func_data')
if not featanalysis.isFEATImage(path): if not featanalysis.isFEATImage(path):
raise ValueError('{} does not appear to be data ' raise ValueError(f'{path} does not appear to be '
'from a FEAT analysis'.format(path)) 'data from a FEAT analysis')
featDir = op.dirname(path) featDir = op.dirname(path)
settings = featanalysis.loadSettings( featDir) settings = featanalysis.loadSettings( featDir)
...@@ -72,9 +72,11 @@ class FEATImage(fslimage.Image): ...@@ -72,9 +72,11 @@ class FEATImage(fslimage.Image):
if featanalysis.hasStats(featDir): if featanalysis.hasStats(featDir):
design = featanalysis.loadDesign( featDir, settings) design = featanalysis.loadDesign( featDir, settings)
names, cons = featanalysis.loadContrasts(featDir) names, cons = featanalysis.loadContrasts(featDir)
ftests = featanalysis.loadFTests( featDir)
else: else:
design = None design = None
names, cons = [], [] names, cons = [], []
ftests = []
fslimage.Image.__init__(self, path, **kwargs) fslimage.Image.__init__(self, path, **kwargs)
...@@ -83,26 +85,31 @@ class FEATImage(fslimage.Image): ...@@ -83,26 +85,31 @@ class FEATImage(fslimage.Image):
self.__design = design self.__design = design
self.__contrastNames = names self.__contrastNames = names
self.__contrasts = cons self.__contrasts = cons
self.__ftests = ftests
self.__settings = settings self.__settings = settings
self.__residuals = None self.__residuals = None
self.__pes = [None] * self.numEVs() self.__pes = [None] * self.numEVs()
self.__copes = [None] * self.numContrasts() self.__copes = [None] * self.numContrasts()
self.__zstats = [None] * self.numContrasts() self.__zstats = [None] * self.numContrasts()
self.__zfstats = [None] * self.numFTests()
self.__clustMasks = [None] * self.numContrasts() self.__clustMasks = [None] * self.numContrasts()
self.__fclustMasks = [None] * self.numFTests()
if 'name' not in kwargs: if 'name' not in kwargs:
self.name = '{}: {}'.format(self.__analysisName, self.name) self.name = f'{self.__analysisName}: {self.name}'
def __del__(self): def __del__(self):
"""Clears references to any loaded images.""" """Clears references to any loaded images."""
self.__design = None self.__design = None
self.__residuals = None self.__residuals = None
self.__pes = None self.__pes = None
self.__copes = None self.__copes = None
self.__zstats = None self.__zstats = None
self.__clustMasks = None self.__zfstats = None
self.__clustMasks = None
self.__fclustMasks = None
def getFEATDir(self): def getFEATDir(self):
...@@ -191,6 +198,11 @@ class FEATImage(fslimage.Image): ...@@ -191,6 +198,11 @@ class FEATImage(fslimage.Image):
return len(self.__contrasts) return len(self.__contrasts)
def numFTests(self):
"""Returns the number of f-tests in the analysis."""
return len(self.__ftests)
def contrastNames(self): def contrastNames(self):
"""Returns a list containing the name of each contrast in the analysis. """Returns a list containing the name of each contrast in the analysis.
""" """
...@@ -206,6 +218,15 @@ class FEATImage(fslimage.Image): ...@@ -206,6 +218,15 @@ class FEATImage(fslimage.Image):
return [list(c) for c in self.__contrasts] return [list(c) for c in self.__contrasts]
def ftests(self):
"""Returns a list containing the analysis f-test vectors.
See :func:`.featanalysis.loadFTests`
"""
return [list(f) for f in self.__ftests]
def thresholds(self): def thresholds(self):
"""Returns the statistical thresholds used in the analysis. """Returns the statistical thresholds used in the analysis.
...@@ -214,14 +235,16 @@ class FEATImage(fslimage.Image): ...@@ -214,14 +235,16 @@ class FEATImage(fslimage.Image):
return featanalysis.getThresholds(self.__settings) return featanalysis.getThresholds(self.__settings)
def clusterResults(self, contrast): def clusterResults(self, contrast, ftest=False):
"""Returns the clusters found in the analysis. """Returns the clusters found in the analysis for the specified
contrast or f-test.
See :func:.featanalysis.loadClusterResults` See :func:.featanalysis.loadClusterResults`
""" """
return featanalysis.loadClusterResults(self.__featDir, return featanalysis.loadClusterResults(self.__featDir,
self.__settings, self.__settings,
contrast) contrast,
ftest)
def getPE(self, ev): def getPE(self, ev):
...@@ -229,12 +252,10 @@ class FEATImage(fslimage.Image): ...@@ -229,12 +252,10 @@ class FEATImage(fslimage.Image):
if self.__pes[ev] is None: if self.__pes[ev] is None:
pefile = featanalysis.getPEFile(self.__featDir, ev) pefile = featanalysis.getPEFile(self.__featDir, ev)
evname = self.evNames()[ev]
self.__pes[ev] = fslimage.Image( self.__pes[ev] = fslimage.Image(
pefile, pefile,
name='{}: PE{} ({})'.format( name=f'{self.__analysisName}: PE{ev + 1} ({evname})')
self.__analysisName,
ev + 1,
self.evNames()[ev]))
return self.__pes[ev] return self.__pes[ev]
...@@ -246,7 +267,7 @@ class FEATImage(fslimage.Image): ...@@ -246,7 +267,7 @@ class FEATImage(fslimage.Image):
resfile = featanalysis.getResidualFile(self.__featDir) resfile = featanalysis.getResidualFile(self.__featDir)
self.__residuals = fslimage.Image( self.__residuals = fslimage.Image(
resfile, resfile,
name='{}: residuals'.format(self.__analysisName)) name=f'{self.__analysisName}: residuals')
return self.__residuals return self.__residuals
...@@ -256,12 +277,10 @@ class FEATImage(fslimage.Image): ...@@ -256,12 +277,10 @@ class FEATImage(fslimage.Image):
if self.__copes[con] is None: if self.__copes[con] is None:
copefile = featanalysis.getCOPEFile(self.__featDir, con) copefile = featanalysis.getCOPEFile(self.__featDir, con)
conname = self.contrastNames()[con]
self.__copes[con] = fslimage.Image( self.__copes[con] = fslimage.Image(
copefile, copefile,
name='{}: COPE{} ({})'.format( name=f'{self.__analysisName}: COPE{con + 1} ({conname})')
self.__analysisName,
con + 1,
self.contrastNames()[con]))
return self.__copes[con] return self.__copes[con]
...@@ -270,35 +289,54 @@ class FEATImage(fslimage.Image): ...@@ -270,35 +289,54 @@ class FEATImage(fslimage.Image):
""" """
if self.__zstats[con] is None: if self.__zstats[con] is None:
zfile = featanalysis.getZStatFile(self.__featDir, con) zfile = featanalysis.getZStatFile(self.__featDir, con)
conname = self.contrastNames()[con]
self.__zstats[con] = fslimage.Image( self.__zstats[con] = fslimage.Image(
zfile, zfile,
name='{}: zstat{} ({})'.format( name=f'{self.__analysisName}: zstat{con + 1} ({conname})')
self.__analysisName,
con + 1,
self.contrastNames()[con]))
return self.__zstats[con] return self.__zstats[con]
def getZFStats(self, ftest):
"""Returns the Z statistic image for the given f-test (0-indexed). """
if self.__zfstats[ftest] is None:
zfile = featanalysis.getZFStatFile(self.__featDir, ftest)
self.__zfstats[ftest] = fslimage.Image(
zfile,
name=f'{self.__analysisName}: zfstat{ftest + 1}')
return self.__zfstats[ftest]
def getClusterMask(self, con): def getClusterMask(self, con):
"""Returns the cluster mask image for the given contrast (0-indexed). """Returns the cluster mask image for the given contrast (0-indexed).
""" """
if self.__clustMasks[con] is None: if self.__clustMasks[con] is None:
mfile = featanalysis.getClusterMaskFile(self.__featDir, con) mfile = featanalysis.getClusterMaskFile(self.__featDir, con)
conname = self.contrastNames()[con]
self.__clustMasks[con] = fslimage.Image( self.__clustMasks[con] = fslimage.Image(
mfile, mfile,
name='{}: cluster mask for zstat{} ({})'.format( name=f'{self.__analysisName}: cluster mask '
self.__analysisName, f'for zstat{con + 1} ({conname})')
con + 1,
self.contrastNames()[con]))
return self.__clustMasks[con] return self.__clustMasks[con]
def getFClusterMask(self, ftest):
"""Returns the cluster mask image for the given f-test (0-indexed).
"""
if self.__fclustMasks[ftest] is None:
mfile = featanalysis.getFClusterMaskFile(self.__featDir, ftest)
self.__fclustMasks[ftest] = fslimage.Image(
mfile,
name=f'{self.__analysisName}: cluster mask '
f'for zfstat{ftest + 1}')
return self.__fclustMasks[ftest]
def fit(self, contrast, xyz): def fit(self, contrast, xyz):
"""Calculates the model fit for the given contrast vector """Calculates the model fit for the given contrast vector
at the given voxel. See the :func:`modelFit` function. at the given voxel. See the :func:`modelFit` function.
......
...@@ -16,18 +16,21 @@ ...@@ -16,18 +16,21 @@
""" """
import os.path as op import itertools as it
import math
import os.path as op
def loadLabelFile(filename, def loadLabelFile(filename,
includeLabel=None, includeLabel=None,
excludeLabel=None, excludeLabel=None,
returnIndices=False): returnIndices=False,
"""Loads component labels from the specified file. The file is assuemd missingLabel='Unknown',
returnProbabilities=False):
"""Loads component labels from the specified file. The file is assumed
to be of the format generated by FIX, Melview or ICA-AROMA; such a file to be of the format generated by FIX, Melview or ICA-AROMA; such a file
should have a structure resembling the following:: should have a structure resembling the following::
filtered_func_data.ica filtered_func_data.ica
1, Signal, False 1, Signal, False
2, Unclassified Noise, True 2, Unclassified Noise, True
...@@ -39,7 +42,6 @@ def loadLabelFile(filename, ...@@ -39,7 +42,6 @@ def loadLabelFile(filename,
8, Signal, False 8, Signal, False
[2, 5, 6, 7] [2, 5, 6, 7]
.. note:: This function will also parse files which only contain a .. note:: This function will also parse files which only contain a
component list, e.g.:: component list, e.g.::
...@@ -66,31 +68,46 @@ def loadLabelFile(filename, ...@@ -66,31 +68,46 @@ def loadLabelFile(filename,
- One or more labels for the component (multiple labels must be - One or more labels for the component (multiple labels must be
comma-separated). comma-separated).
- ``'True'`` if the component has been classified as *bad*, - ``'True'`` if the component has been classified as *bad*, ``'False'``
``'False'`` otherwise. This field is optional - if the last otherwise. This field is optional - if the last non-numeric
comma-separated token on a line is not equal (case-insensitive) comma-separated token on a line is not equal to ``True`` or ``False``
to ``True`` or ``False``, it is interpreted as a component label. (case-insensitive) , it is interpreted as a component label.
- A value between 0 and 1, which gives the probability of the component
being signal, as generated by an automatic classifier (e.g. FIX). This
field is optional - it is output by some versions of FIX.
The last line of the file contains the index (starting from 1) of all The last line of the file contains the index (starting from 1) of all
*bad* components, i.e. those components which are not classified as *bad* components, i.e. those components which are not classified as
signal or unknown. signal or unknown.
:arg filename: Name of the label file to load. :arg filename: Name of the label file to load.
:arg includeLabel: If the file contains a single line containing a
list component indices, this label will be used
for the components in the list. Defaults to
``'Unclassified noise'`` for FIX-like files, and
``'Movement'`` for ICA-AROMA-like files.
:arg includeLabel: If the file contains a single line containing a list :arg excludeLabel: If the file contains a single line containing
component indices, this label will be used for the component indices, this label will be used for
components in the list. Defaults to 'Unclassified the components that are not in the list.
noise' for FIX-like files, and 'Movement' for Defaults to ``'Signal'`` for FIX-like files, and
ICA-AROMA-like files. ``'Unknown'`` for ICA-AROMA-like files.
:arg excludeLabel: If the file contains a single line containing component :arg returnIndices: Defaults to ``False``. If ``True``, a list
indices, this label will be used for the components containing the noisy component numbers that were
that are not in the list. Defaults to 'Signal' for listed in the file is returned.
FIX-like files, and 'Unknown' for ICA-AROMA-like files.
:arg returnIndices: Defaults to ``False``. If ``True``, a list containing :arg missingLabel: Label to use for any components which are not
the noisy component numbers that were listed in the present (only used for label files, not for noise
file is returned. component files).
:arg returnProbabilities: Defaults to ``False``. If ``True``, a list
containing the component classification
probabilities is returned. If the file does not
contain probabilities, every value in this list
will be nan.
:returns: A tuple containing: :returns: A tuple containing:
...@@ -102,72 +119,55 @@ def loadLabelFile(filename, ...@@ -102,72 +119,55 @@ def loadLabelFile(filename,
- If ``returnIndices is True``, a list of the noisy component - If ``returnIndices is True``, a list of the noisy component
indices (starting from 1) that were specified in the file. indices (starting from 1) that were specified in the file.
- If ``returnProbabilities is True``, a list of the component
classification probabilities that were specified in the
file (all nan if they are not in the file).
.. note:: Some label files generated by old versions of FIX/Melview do
not contain a line for every component (unknown/unlabelled
components may not be listed). For these files, and also for
files which only contain a component list, there is no way of
knowing how many components were in the data, so the returned
list may contain fewer entries than there are components.
""" """
signalLabels = None filename = op.abspath(filename)
filename = op.abspath(filename) probabilities = None
signalLabels = None
with open(filename, 'rt') as f: with open(filename, 'rt') as f:
lines = f.readlines() lines = f.readlines()
if len(lines) < 1: if len(lines) < 1:
raise InvalidLabelFileError('Invalid FIX classification ' raise InvalidLabelFileError(f'{filename}: Invalid FIX classification '
'file - not enough lines') 'file - not enough lines')
lines = [l.strip() for l in lines] lines = [l.strip() for l in lines]
lines = [l for l in lines if l != ''] lines = [l for l in lines if l != '']
# If the file contains a single # If the file contains one or two lines, we
# line, we assume that it is just # assume that it is just a comma-separated list
# a comma-separated list of noise # of noise components (possibly preceeded by
# components. # the MELODIC directory path)
if len(lines) == 1: if len(lines) <= 2:
melDir, noisyComps, allLabels, signalLabels = \
line = lines[0] _parseSingleLineLabelFile(lines, includeLabel, excludeLabel)
probabilities = [math.nan] * len(allLabels)
# if the list is contained in
# square brackets, we assume
# that it is a FIX output file,
# where included components have
# been classified as noise, and
# excluded components as signal.
#
# Otherwise we assume that it
# is an AROMA file, where
# included components have
# been classified as being due
# to motion, and excluded
# components unclassified.
if includeLabel is None:
if line[0] == '[': includeLabel = 'Unclassified noise'
else: includeLabel = 'Movement'
if excludeLabel is None:
if line[0] == '[': excludeLabel = 'Signal'
else: excludeLabel = 'Unknown'
else:
signalLabels = [excludeLabel]
# Remove any leading/trailing
# whitespace or brackets.
line = lines[0].strip(' []')
melDir = None
noisyComps = [int(i) for i in line.split(',')]
allLabels = []
for i in range(max(noisyComps)):
if (i + 1) in noisyComps: allLabels.append([includeLabel])
else: allLabels.append([excludeLabel])
# Otherwise, we assume that
# it is a full label file.
else:
melDir = lines[0] # Otherwise, we assume that it is a full label file.
noisyComps = lines[-1].strip(' []').split(',') else:
noisyComps = [c for c in noisyComps if c != ''] melDir, noisyComps, allLabels, probabilities = \
noisyComps = [int(c) for c in noisyComps] _parseFullLabelFile(filename, lines, missingLabel)
# There's no way to validate
# the melodic directory path,
# but let's try anyway.
if melDir is not None:
if len(melDir.split(',')) >= 3:
raise InvalidLabelFileError(
f'{filename}: First line does not look like '
f'a MELODIC directory path: {melDir}')
# The melodic directory path should # The melodic directory path should
# either be an absolute path, or # either be an absolute path, or
...@@ -176,38 +176,6 @@ def loadLabelFile(filename, ...@@ -176,38 +176,6 @@ def loadLabelFile(filename,
if not op.isabs(melDir): if not op.isabs(melDir):
melDir = op.join(op.dirname(filename), melDir) melDir = op.join(op.dirname(filename), melDir)
# Parse the labels for every component
allLabels = []
for i, compLine in enumerate(lines[1:-1]):
tokens = compLine.split(',')
tokens = [t.strip() for t in tokens]
if len(tokens) < 3:
raise InvalidLabelFileError(
'Invalid FIX classification file - '
'line {}: {}'.format(i + 1, compLine))
try:
compIdx = int(tokens[0])
except ValueError:
raise InvalidLabelFileError(
'Invalid FIX classification file - '
'line {}: {}'.format(i + 1, compLine))
if tokens[-1].lower() in ('true', 'false'):
compLabels = tokens[1:-1]
else:
compLabels = tokens[1:]
if compIdx != i + 1:
raise InvalidLabelFileError(
'Invalid FIX classification file - wrong component '
'number at line {}: {}'.format(i + 1, compLine))
allLabels.append(compLabels)
# Validate the labels against # Validate the labels against
# the noisy list - all components # the noisy list - all components
# in the noisy list should not # in the noisy list should not
...@@ -218,8 +186,8 @@ def loadLabelFile(filename, ...@@ -218,8 +186,8 @@ def loadLabelFile(filename,
noise = isNoisyComponent(labels, signalLabels) noise = isNoisyComponent(labels, signalLabels)
if noise and (comp not in noisyComps): if noise and (comp not in noisyComps):
raise InvalidLabelFileError('Noisy component {} has invalid ' raise InvalidLabelFileError(f'{filename}: Noisy component {comp} '
'labels: {}'.format(comp, labels)) f'has invalid labels: {labels}')
for comp in noisyComps: for comp in noisyComps:
...@@ -228,44 +196,187 @@ def loadLabelFile(filename, ...@@ -228,44 +196,187 @@ def loadLabelFile(filename,
noise = isNoisyComponent(labels, signalLabels) noise = isNoisyComponent(labels, signalLabels)
if not noise: if not noise:
raise InvalidLabelFileError('Noisy component {} is missing ' raise InvalidLabelFileError(f'{filename}: Noisy component {comp} '
'a noise label'.format(comp)) 'is missing a noise label')
retval = [melDir, allLabels]
if returnIndices: return melDir, allLabels, noisyComps if returnIndices: retval.append(noisyComps)
else: return melDir, allLabels if returnProbabilities: retval.append(probabilities)
return tuple(retval)
def _parseSingleLineLabelFile(lines, includeLabel, excludeLabel):
"""Called by :func:`loadLabelFile`. Parses the contents of an
ICA-AROMA-style label file which just contains a list of noise
components (and possibly the MELODIC directory path), e.g.::
filtered_func_data.ica
[2, 5, 6, 7]
"""
signalLabels = None
noisyComps = lines[-1]
if len(lines) == 2: melDir = lines[0]
else: melDir = None
# if the list is contained in
# square brackets, we assume
# that it is a FIX output file,
# where included components have
# been classified as noise, and
# excluded components as signal.
#
# Otherwise we assume that it
# is an AROMA file, where
# included components have
# been classified as being due
# to motion, and excluded
# components unclassified.
if includeLabel is None:
if noisyComps[0] == '[': includeLabel = 'Unclassified noise'
else: includeLabel = 'Movement'
if excludeLabel is None:
if noisyComps[0] == '[': excludeLabel = 'Signal'
else: excludeLabel = 'Unknown'
else:
signalLabels = [excludeLabel]
# Remove any leading/trailing
# whitespace or brackets.
noisyComps = noisyComps.strip(' []')
noisyComps = [int(i) for i in noisyComps.split(',')]
allLabels = []
for i in range(max(noisyComps)):
if (i + 1) in noisyComps: allLabels.append([includeLabel])
else: allLabels.append([excludeLabel])
return melDir, noisyComps, allLabels, signalLabels
def _parseFullLabelFile(filename, lines, missingLabel):
"""Called by :func:`loadLabelFile`. Parses the contents of a
FIX/Melview-style label file which contains labels for each component,
e.g.:
filtered_func_data.ica
1, Signal, False
2, Unclassified Noise, True
3, Unknown, False
4, Signal, False
5, Unclassified Noise, True
6, Unclassified Noise, True
7, Unclassified Noise, True
8, Signal, False
[2, 5, 6, 7]
"""
melDir = lines[0]
noisyComps = lines[-1].strip(' []').split(',')
noisyComps = [c for c in noisyComps if c != '']
noisyComps = [int(c) for c in noisyComps]
# Parse the labels for every component.
# Initially store as a {comp : ([labels], probability)} dict.
allLabels = {}
for i, compLine in enumerate(lines[1:-1]):
tokens = compLine.split(',')
tokens = [t.strip() for t in tokens]
if len(tokens) < 3:
raise InvalidLabelFileError(
f'{filename}: Invalid FIX classification '
f'file - line: {i + 1}: {compLine}')
try:
compIdx = int(tokens[0])
if compIdx in allLabels:
raise ValueError()
except ValueError:
raise InvalidLabelFileError(
f'{filename}: Invalid FIX classification '
f'file - line {i + 1}: {compLine}')
tokens = tokens[1:]
probability = math.nan
# last token could be classification probability
if _isfloat(tokens[-1]):
probability = float(tokens[-1])
tokens = tokens[:-1]
# true/false is ignored as it is superfluous
if tokens[-1].lower() in ('true', 'false'):
tokens = tokens[:-1]
allLabels[compIdx] = tokens, probability
# Convert {comp : [labels]} into a list
# of lists, filling in missing components
allLabelsList = []
probabilities = []
for i in range(max(it.chain(allLabels.keys(), noisyComps))):
labels, prob = allLabels.get(i + 1, ([missingLabel], math.nan))
allLabelsList.append(labels)
probabilities.append(prob)
allLabels = allLabelsList
return melDir, noisyComps, allLabels, probabilities
def _isfloat(s):
"""Returns True if the given string appears to contain a floating
point number, False otherwise.
"""
try:
float(s)
return True
except Exception:
return False
def saveLabelFile(allLabels, def saveLabelFile(allLabels,
filename, filename,
dirname=None, dirname=None,
listBad=True, listBad=True,
signalLabels=None): signalLabels=None,
probabilities=None):
"""Saves the given classification labels to the specified file. The """Saves the given classification labels to the specified file. The
classifications are saved in the format described in the classifications are saved in the format described in the
:func:`loadLabelFile` method. :func:`loadLabelFile` method.
:arg allLabels: A list of lists, one list for each component, where :arg allLabels: A list of lists, one list for each component, where
each list contains the labels for the corresponding each list contains the labels for the corresponding
component. component.
:arg filename: Name of the file to which the labels should be saved. :arg filename: Name of the file to which the labels should be saved.
:arg dirname: If provided, is output as the first line of the file. :arg dirname: If provided, is output as the first line of the file.
Intended to be a relative path to the MELODIC analysis Intended to be a relative path to the MELODIC analysis
directory with which this label file is associated. If directory with which this label file is associated. If
not provided, a ``'.'`` is output as the first line. not provided, a ``'.'`` is output as the first line.
:arg listBad: If ``True`` (the default), the last line of the file :arg listBad: If ``True`` (the default), the last line of the file
will contain a comma separated list of components which will contain a comma separated list of components which
are deemed 'noisy' (see :func:`isNoisyComponent`). are deemed 'noisy' (see :func:`isNoisyComponent`).
:arg signalLabels: Labels which should be deemed 'signal' - see the :arg signalLabels: Labels which should be deemed 'signal' - see the
:func:`isNoisyComponent` function. :func:`isNoisyComponent` function.
:arg probabilities: Classification probabilities. If provided, the
probability for each component is saved to the file.
""" """
lines = [] lines = []
noisyComps = [] noisyComps = []
if probabilities is not None and len(probabilities) != len(allLabels):
raise ValueError('len(probabilities) != len(allLabels)')
# The first line - the melodic directory name # The first line - the melodic directory name
if dirname is None: if dirname is None:
dirname = '.' dirname = '.'
...@@ -283,6 +394,9 @@ def saveLabelFile(allLabels, ...@@ -283,6 +394,9 @@ def saveLabelFile(allLabels,
labels = [l.replace(',', '_') for l in labels] labels = [l.replace(',', '_') for l in labels]
tokens = [str(comp)] + labels + [str(noise)] tokens = [str(comp)] + labels + [str(noise)]
if probabilities is not None:
tokens.append(f'{probabilities[i]:0.6f}')
lines.append(', '.join(tokens)) lines.append(', '.join(tokens))
if noise: if noise:
...@@ -318,4 +432,3 @@ class InvalidLabelFileError(Exception): ...@@ -318,4 +432,3 @@ class InvalidLabelFileError(Exception):
"""Exception raised by the :func:`loadLabelFile` function when an attempt """Exception raised by the :func:`loadLabelFile` function when an attempt
is made to load an invalid label file. is made to load an invalid label file.
""" """
pass
...@@ -67,7 +67,8 @@ CORE_GEOMETRY_FILES = ['?h.orig', ...@@ -67,7 +67,8 @@ CORE_GEOMETRY_FILES = ['?h.orig',
'?h.pial', '?h.pial',
'?h.white', '?h.white',
'?h.inflated', '?h.inflated',
'?h.sphere'] '?h.sphere',
'?h.pial_semi_inflated']
"""File patterns for identifying the core Freesurfer geometry files. """ """File patterns for identifying the core Freesurfer geometry files. """
...@@ -76,7 +77,8 @@ CORE_GEOMETRY_DESCRIPTIONS = [ ...@@ -76,7 +77,8 @@ CORE_GEOMETRY_DESCRIPTIONS = [
"Freesurfer surface (pial)", "Freesurfer surface (pial)",
"Freesurfer surface (white matter)", "Freesurfer surface (white matter)",
"Freesurfer surface (inflated)", "Freesurfer surface (inflated)",
"Freesurfer surface (sphere)"] "Freesurfer surface (sphere)",
"Freesurfer surface (pial semi-inflated)"]
"""A description for each extension in :attr:`GEOMETRY_EXTENSIONS`. """ """A description for each extension in :attr:`GEOMETRY_EXTENSIONS`. """
......
...@@ -101,9 +101,24 @@ class GiftiMesh(fslmesh.Mesh): ...@@ -101,9 +101,24 @@ class GiftiMesh(fslmesh.Mesh):
for i, v in enumerate(vertices): for i, v in enumerate(vertices):
if i == 0: key = infile if i == 0: key = infile
else: key = '{}_{}'.format(infile, i) else: key = f'{infile}_{i}'
self.addVertices(v, key, select=(i == 0), fixWinding=fixWinding) self.addVertices(v, key, select=(i == 0), fixWinding=fixWinding)
self.setMeta(infile, surfimg) self.meta[infile] = surfimg
# Copy all metadata entries for the GIFTI image
for k, v in surfimg.meta.items():
self.meta[k] = v
# and also for each GIFTI data array - triangles
# are stored under "faces", and pointsets are
# stored under "vertices"/[0,1,2...] (as there may
# be multiple pointsets in a file)
self.meta['vertices'] = {}
for i, arr in enumerate(surfimg.darrays):
if arr.intent == constants.NIFTI_INTENT_POINTSET:
self.meta['vertices'][i] = dict(arr.meta)
elif arr.intent == constants.NIFTI_INTENT_TRIANGLE:
self.meta['faces'] = dict(arr.meta)
if vdata is not None: if vdata is not None:
self.addVertexData(infile, vdata) self.addVertexData(infile, vdata)
...@@ -130,7 +145,7 @@ class GiftiMesh(fslmesh.Mesh): ...@@ -130,7 +145,7 @@ class GiftiMesh(fslmesh.Mesh):
continue continue
self.addVertices(vertices[0], sfile, select=False) self.addVertices(vertices[0], sfile, select=False)
self.setMeta(sfile, surfimg) self.meta[sfile] = surfimg
def loadVertices(self, infile, key=None, *args, **kwargs): def loadVertices(self, infile, key=None, *args, **kwargs):
...@@ -154,10 +169,10 @@ class GiftiMesh(fslmesh.Mesh): ...@@ -154,10 +169,10 @@ class GiftiMesh(fslmesh.Mesh):
for i, v in enumerate(vertices): for i, v in enumerate(vertices):
if i == 0: key = infile if i == 0: key = infile
else: key = '{}_{}'.format(infile, i) else: key = f'{infile}_{i}'
vertices[i] = self.addVertices(v, key, *args, **kwargs) vertices[i] = self.addVertices(v, key, *args, **kwargs)
self.setMeta(infile, surfimg) self.meta[infile] = surfimg
return vertices return vertices
...@@ -221,12 +236,12 @@ def loadGiftiMesh(filename): ...@@ -221,12 +236,12 @@ def loadGiftiMesh(filename):
vdata = [d for d in gimg.darrays if d.intent not in (pscode, tricode)] vdata = [d for d in gimg.darrays if d.intent not in (pscode, tricode)]
if len(triangles) != 1: if len(triangles) != 1:
raise ValueError('{}: GIFTI surface files must contain ' raise ValueError(f'{filename}: GIFTI surface files must '
'exactly one triangle array'.format(filename)) 'contain exactly one triangle array')
if len(pointsets) == 0: if len(pointsets) == 0:
raise ValueError('{}: GIFTI surface files must contain ' raise ValueError(f'{filename}: GIFTI surface files must '
'at least one pointset array'.format(filename)) 'contain at least one pointset array')
vertices = [ps.data for ps in pointsets] vertices = [ps.data for ps in pointsets]
indices = np.atleast_2d(triangles[0].data) indices = np.atleast_2d(triangles[0].data)
...@@ -276,14 +291,14 @@ def prepareGiftiVertexData(darrays, filename=None): ...@@ -276,14 +291,14 @@ def prepareGiftiVertexData(darrays, filename=None):
intents = {d.intent for d in darrays} intents = {d.intent for d in darrays}
if len(intents) != 1: if len(intents) != 1:
raise ValueError('{} contains multiple (or no) intents' raise ValueError(f'{filename} contains multiple '
': {}'.format(filename, intents)) f'(or no) intents: {intents}')
intent = intents.pop() intent = intents.pop()
if intent in (constants.NIFTI_INTENT_POINTSET, if intent in (constants.NIFTI_INTENT_POINTSET,
constants.NIFTI_INTENT_TRIANGLE): constants.NIFTI_INTENT_TRIANGLE):
raise ValueError('{} contains surface data'.format(filename)) raise ValueError(f'{filename} contains surface data')
# Just a single array - return it as-is. # Just a single array - return it as-is.
# n.b. Storing (M, N) data in a single # n.b. Storing (M, N) data in a single
...@@ -298,8 +313,8 @@ def prepareGiftiVertexData(darrays, filename=None): ...@@ -298,8 +313,8 @@ def prepareGiftiVertexData(darrays, filename=None):
vdata = [d.data for d in darrays] vdata = [d.data for d in darrays]
if any([len(d.shape) != 1 for d in vdata]): if any([len(d.shape) != 1 for d in vdata]):
raise ValueError('{} contains one or more non-vector ' raise ValueError(f'{filename} contains one or '
'darrays'.format(filename)) 'more non-vector darrays')
vdata = np.vstack(vdata).T vdata = np.vstack(vdata).T
vdata = vdata.reshape(vdata.shape[0], -1) vdata = vdata.reshape(vdata.shape[0], -1)
...@@ -374,7 +389,7 @@ def relatedFiles(fname, ftypes=None): ...@@ -374,7 +389,7 @@ def relatedFiles(fname, ftypes=None):
def searchhcp(match, ftype): def searchhcp(match, ftype):
prefix, space = match prefix, space = match
template = '{}.*.{}{}'.format(prefix, space, ftype) template = f'{prefix}.*.{space}{ftype}'
return glob.glob(op.join(dirname, template)) return glob.glob(op.join(dirname, template))
# BIDS style - extract all entities (kv # BIDS style - extract all entities (kv
......
This diff is collapsed.