Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/* rubixvox.h: Classes utilized in RubiX */
/* Stam Sotiropoulos, FMRIB Analysis Group */
/* Copyright (C) 2012 University of Oxford */
/* CCOPYRIGHT */
#if !defined(rubixvox_h)
#define rubixvox_h
#include <iostream>
#include <fstream>
#include <iomanip>
#define WANT_STREAM
#define WANT_MATH
#include <string>
#include <math.h>
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "stdlib.h"
#include "utils/log.h"
using namespace std;
using namespace NEWMAT;
using namespace MISCMATHS;
namespace RUBIX{
const float maxfloat=1e10;
const float minfloat=1e-10;
const float maxlogfloat=23;
const float minlogfloat=-23;
//////////////////////////////////////////////////////////////////////
// RFibre: Models one anisotropic compartment in an HR voxel
//////////////////////////////////////////////////////////////////////
class RFibre{
float m_th; //Current/candidate MCMC state
float m_ph;
float m_f;
ColumnVector m_vec; //Holds the current/candidate orientation in cartesian coordinates
ColumnVector m_vec_old;
float m_th_prop; //Standard deviation for Gaussian proposal distributions of parameters
float m_ph_prop;
float m_f_prop;
float m_th_old; //Last accepted value. If a sample is rejected this value is restored
float m_ph_old;
float m_f_old;
float m_th_ph_prior; //Priors for the model parameters
float m_f_prior;
float m_th_ph_old_prior;
float m_f_old_prior;
float m_prior_en; //Joint Prior
float m_old_prior_en;
int m_th_acc;
int m_th_rej;
int m_ph_acc;
int m_ph_rej;
int m_f_acc;
int m_f_rej;
bool f_ard; //By default ARD is on, on the volume fraction f
ColumnVector m_SignalHR; //Vector that stores the predicted signal from the anisotropic compartment during the candidate/current MCMC state at High-Res measurement points
ColumnVector m_SignalHR_old;
ColumnVector m_SignalLR; //Vector that stores the predicted signal from the anisotropic compartment during the candidate/current MCMC state at Low-Res measurement points
ColumnVector m_SignalLR_old;
const Matrix& m_Orient_hyp_prior;//Matrix Nmodes x 5 that contains the hyperparameters for the orientation prior
//columns 1-3 contains the (x,y,z) coordinates for the mode, 4th column contains the invkappa value, 5th the Watson normalization constant
const float m_ardfudge;
const float& m_d;
const float& m_d_std;
const Matrix& m_bvecsHR; //bvecs at High-Res (3 x HR_NumPoints)
const Matrix& m_bvalsHR; //bvalues at High-Res (1 x HR_NumPoints)
const Matrix& m_bvecsLR; //bvecs at Low-Res (3 x LR_NumPoints)
const Matrix& m_bvalsLR; //bvalues at Low-Res (1 x HR_NumPoints)
const int m_modelnum; //1 for single-shell, 2 for multi-shell model
public:
//constructor
RFibre(const float th, const float ph,const float f, const Matrix& bvecsHR, const Matrix& bvalsHR,
const Matrix& bvecsLR, const Matrix& bvalsLR, const Matrix& Orient_hyp_prior,
const float& d, const float& d_std, const bool ard=true, const int modelnum=1,const float ardfudge=1):
m_th(th), m_ph(ph), m_f(f), f_ard(ard), m_Orient_hyp_prior(Orient_hyp_prior), m_ardfudge(ardfudge), m_d(d),
m_d_std(d_std),m_bvecsHR(bvecsHR), m_bvalsHR(bvalsHR), m_bvecsLR(bvecsLR), m_bvalsLR(bvalsLR), m_modelnum(modelnum){
m_th_old=m_th; m_ph_old=m_ph;
m_vec.ReSize(3);
m_vec<<sin(m_th)*cos(m_ph) <<sin(m_th)*sin(m_ph) <<cos(m_th);
m_vec_old=m_vec;
m_f_old=m_f;
m_th_prop=0.2; m_ph_prop=0.2; m_f_prop=m_f/5.0;
m_th_ph_prior=0; m_th_ph_old_prior=0;
m_f_prior=0; m_f_old_prior=0;
m_SignalHR.ReSize(m_bvecsHR.Ncols()); m_SignalHR=0; m_SignalHR_old=m_SignalHR;
m_SignalLR.ReSize(m_bvecsLR.Ncols()); m_SignalLR=0; m_SignalLR_old=m_SignalLR;
m_th_acc=0; m_th_rej=0;
m_ph_acc=0; m_ph_rej=0;
m_f_acc=0; m_f_rej=0;
}
~RFibre(){}
inline float get_th() const{ return m_th;}
inline float get_ph() const{ return m_ph;}
inline const ColumnVector& getVec() const { return m_vec; }
inline float get_f() const{ return m_f;}
//inline void set_th(const float th){ m_th=th; m_vec<<sin(m_th)*cos(m_ph) <<sin(m_th)*sin(m_ph) <<cos(m_th); }
//inline void set_ph(const float ph){ m_ph=ph; m_vec<<sin(m_th)*cos(m_ph) <<sin(m_th)*sin(m_ph) <<cos(m_th); }
//inline void set_f(const float f){ m_f=f; }
inline const ColumnVector& getSignalHR() const{ return m_SignalHR; }
inline const ColumnVector& getSignalLR() const{ return m_SignalLR; }
inline void restoreSignals() { m_SignalHR=m_SignalHR_old; m_SignalLR=m_SignalLR_old; }
inline float get_prior() const{ return m_prior_en;}
void initialise_energies(); //Initialize energies, signals
void update_proposals();
bool compute_th_ph_prior();
bool compute_f_prior();
void compute_prior();
void compute_signal(); //Compute model predicted signal, only due to the anisotropic compartment
void restore_th_ph_prior();
bool propose_th();
inline void accept_th(){ m_th_acc++; }
void reject_th();
bool propose_ph();
inline void accept_ph(){ m_ph_acc++; }
void reject_ph();
bool propose_f();
inline void accept_f(){ m_f_acc++; }
void reject_f();
void report() const;
RFibre& operator=(const RFibre& rhs){
m_th=rhs.m_th; m_ph=rhs.m_ph; m_f=rhs.m_f;
m_vec=rhs.m_vec; m_vec_old=rhs.m_vec_old;
m_th_prop=rhs.m_th_prop; m_ph_prop=rhs.m_ph_prop; m_f_prop=rhs.m_f_prop;
m_th_old=rhs.m_th_old; m_ph_old=rhs.m_ph_old; m_f_old=rhs.m_f_old;
m_th_ph_prior=rhs.m_th_ph_prior; m_f_prior=rhs.m_f_prior;
m_th_ph_old_prior=rhs.m_th_ph_old_prior; m_f_old_prior=rhs.m_f_old_prior;
m_prior_en=rhs.m_prior_en; m_old_prior_en=rhs.m_old_prior_en;
m_th_acc=rhs.m_th_acc; m_th_rej=rhs.m_th_rej;
m_ph_acc=rhs.m_ph_acc; m_ph_rej=rhs.m_ph_rej;
m_f_acc=rhs.m_f_acc; m_f_rej=rhs.m_f_rej;
f_ard=rhs.f_ard;
m_SignalHR=rhs.m_SignalHR; m_SignalHR_old=rhs.m_SignalHR_old;
m_SignalLR=rhs.m_SignalLR; m_SignalLR_old=rhs.m_SignalLR_old;
return *this;
}
};
//////////////////////////////
// HRvoxel //
//////////////////////////////
class HRvoxel{
vector<RFibre> m_fibres;
float m_d;
float m_d_old;
float m_d_prop;
float m_d_prior;
float m_d_old_prior;
float m_d_acc;
float m_d_rej;
float m_d_std;
float m_d_std_old;
float m_d_std_prop;
float m_d_std_prior;
float m_d_std_old_prior;
float m_d_std_acc;
float m_d_std_rej;
float m_S0;
float m_S0_old;
float m_S0_prop;
float m_S0_prior;
float m_S0_old_prior;
float m_S0_acc;
float m_S0_rej;
float m_tau; //Noise at a High-res voxel (precision)
float m_tau_old;
float m_tau_prop;
float m_tau_prior;
float m_tau_old_prior;
float m_tau_acc;
float m_tau_rej;
const float& m_mean_d; //hyperparameters for d prior
const float& m_stdev_d;
const float& m_mean_fsum; //hyperparameters for fsum prior
const float& m_stdev_fsum;
float m_fsum_prior;
float m_fsum_old_prior;
float m_prior_en; //Joint Prior
float m_old_prior_en;
ColumnVector m_iso_SignalHR; //Vector that stores the predicted signal from the isotropic compartment only
ColumnVector m_iso_SignalHR_old;
ColumnVector m_iso_SignalLR; //Vector that stores the predicted signal from the isotropic compartment only
ColumnVector m_iso_SignalLR_old;
ColumnVector m_SignalHR; //Vector that stores the total predicted signal from the specific voxel at High-Res measurement points
ColumnVector m_SignalHR_old;
ColumnVector m_SignalLR; //Vector that stores the total predicted signal from the specific voxel at Low-Res measurement points
ColumnVector m_SignalLR_old;
const Matrix& m_Orient_hyp_prior;//Matrix Nmodes x 5 that contains the hyperparameters for the orientation prior
const Matrix& m_bvecsHR; //bvecs at High-Res (3 x HR_NumPoints)
const Matrix& m_bvalsHR; //bvalues at High-Res (1 x HR_NumPoints)
const Matrix& m_bvecsLR; //bvecs at Low-Res (3 x LR_NumPoints)
const Matrix& m_bvalsLR; //bvalues at Low-Res (1 x HR_NumPoints)
const int m_modelnum; //1 for single-shell, 2 for multi-shell model
const int m_numfibres; //number of fibres in this HR voxel
const float m_ardfudge;
const bool m_fsumPrior_ON; //Flag that indicates whether a prior on the fsum will be imposed (based on the LRvox neighbourhood mean)
const bool m_dPrior_ON; //Flag that indicates whether a prior on diffusivity will be imposed (based on the LRvox neighbourhood mean)
const bool m_rician; //indicates whether Rician Noise model is used
//const ColumnVector& LRvox_inter; //array with indices on LR voxels intersected by this HR
public:
//Constructor
HRvoxel(const Matrix& bvecsHR, const Matrix& bHR,
const Matrix& bvecsLR, const Matrix& bLR,
const Matrix& Orient_hyp_prior,
const float& mean_d, const float& stdev_d, const float& mean_fsum, const float& stdev_fsum,
const int N, const int modelnum=1,const float ardfudge=1, const bool fsumPrior_ON=false, const bool dPrior_ON=false, const bool rician=false):
m_mean_d(mean_d), m_stdev_d(stdev_d), m_mean_fsum(mean_fsum), m_stdev_fsum(stdev_fsum),
m_Orient_hyp_prior(Orient_hyp_prior),
m_bvecsHR(bvecsHR), m_bvalsHR(bHR), m_bvecsLR(bvecsLR), m_bvalsLR(bLR), m_modelnum(modelnum), m_numfibres(N), m_ardfudge(ardfudge), m_fsumPrior_ON(fsumPrior_ON), m_dPrior_ON(dPrior_ON), m_rician(rician) {
//Initialize vectors that keep the signal from the isotropic compartment
m_iso_SignalHR.ReSize(m_bvecsHR.Ncols()); m_iso_SignalHR=0; m_iso_SignalHR_old=m_iso_SignalHR;
m_SignalHR.ReSize(m_bvecsHR.Ncols()); m_SignalHR=0; m_SignalHR_old=m_SignalHR;
m_iso_SignalLR.ReSize(m_bvecsLR.Ncols()); m_iso_SignalLR=0; m_iso_SignalLR_old=m_iso_SignalLR;
m_SignalLR.ReSize(m_bvecsLR.Ncols()); m_SignalLR=0; m_SignalLR_old=m_SignalLR;
m_d_acc=0; m_d_rej=0; m_d_prior=0; m_d_old_prior=0;
m_d_std_acc=0; m_d_std_rej=0; m_d_std_prior=0; m_d_std_old_prior=0;
m_S0_acc=0; m_S0_rej=0; m_S0_prior=0; m_S0_old_prior=0;
m_d=0; m_d_old=0; m_d_std=0; m_d_std_old=0; m_S0=0; m_S0_old=0;
m_tau_acc=0; m_tau_rej=0; m_tau_prior=0; m_tau_old_prior=0; m_tau=0; m_tau_old=0;
m_prior_en=0; m_old_prior_en=0;
m_fsum_prior=0; m_fsum_old_prior=0;
}
//Destructor
~HRvoxel(){}
const vector<RFibre>& fibres() const{ return m_fibres; }
void addfibre(const float th, const float ph, const float f,const bool use_ard=true) {
RFibre fib(th,ph,f,m_bvecsHR,m_bvalsHR,m_bvecsLR,m_bvalsLR,m_Orient_hyp_prior,m_d,m_d_std,use_ard,m_modelnum,m_ardfudge);
m_fibres.push_back(fib);
}
void initialise_energies_props(); //Initialize energies, signals and standard deviations for the proposal distributions
inline float get_d() const{ return m_d;}
inline void set_d(const float d){ m_d=d; }
inline float get_d_std() const{ return m_d_std; }
inline void set_d_std(const float d_std){ m_d_std=d_std; }
inline float get_S0() const{ return m_S0; }
inline void set_S0(const float S0){ m_S0=S0; }
inline float get_tau() const{ return m_tau; }
inline void set_tau(const float tau){ m_tau=tau; }
inline float get_prior() const { return m_prior_en; }
inline const ColumnVector& getSignalHR() const{ return m_SignalHR; }
inline const ColumnVector& getSignalLR() const{ return m_SignalLR; }
bool compute_d_prior();
bool compute_d_std_prior();
bool compute_S0_prior();
bool compute_tau_prior();
bool reject_f_sum(); //Check if sum of volume fractions is >1
void update_d_prior();
void restore_d_prior();
void compute_fsum_prior();
void update_fsum_prior();
void restore_fsum_prior();
void compute_prior(); //Compute Joint Prior energy
void compute_iso_signal(); //Compute the predicted signal from the isotropic compartment only
void compute_signal(); //Compute the total predicted signal
bool propose_d();
void accept_d(){ m_d_acc++; }
void reject_d();
bool propose_d_std();
void accept_d_std(){ m_d_std_acc++; }
void reject_d_std();
bool propose_S0();
void accept_S0(){ m_S0_acc++; }
void reject_S0();
bool propose_tau();
void accept_tau(){ m_tau_acc++; }
void reject_tau();
bool propose_th(int n){ return m_fibres[n].propose_th(); } //n is the fibre index from 0 to N-1
void accept_th(int n) { m_fibres[n].accept_th(); }
void reject_th(int n) { m_fibres[n].reject_th(); }
bool propose_ph(int n){ return m_fibres[n].propose_ph(); }
void accept_ph(int n) { m_fibres[n].accept_ph(); }
void reject_ph(int n) { m_fibres[n].reject_ph(); }
bool propose_f(int n) { return m_fibres[n].propose_f(); }
void accept_f(int n) { m_fibres[n].accept_f(); }
void reject_f(int n) { m_fibres[n].reject_f(); }
void restore_prior_totsignal();
void restore_prior();
void update_th_ph_prior(); //Used to update the conditional orientation prior when the prior parameters are jumped
void restore_th_ph_prior();
void update_proposals(); //Adapt standard deviation of proposal distributions during MCMC execution
void report() const;
HRvoxel& operator=(const HRvoxel& rhs){
m_fibres=rhs.m_fibres;
m_d=rhs.m_d; m_d_old=rhs.m_d_old; m_d_prop=rhs.m_d_prop;
m_d_prior=rhs.m_d_prior; m_d_old_prior=rhs.m_d_old_prior;
m_d_acc=rhs.m_d_acc; m_d_rej=rhs.m_d_rej;
m_d_std=rhs.m_d_std; m_d_std_old=rhs.m_d_std_old; m_d_std_prop=rhs.m_d_std_prop;
m_d_std_prior=rhs.m_d_std_prior; m_d_std_old_prior=rhs.m_d_std_old_prior;
m_d_std_acc=rhs.m_d_std_acc; m_d_std_rej=rhs.m_d_std_rej;
m_fsum_prior=rhs.m_fsum_prior; m_fsum_old_prior=rhs.m_fsum_old_prior;
m_S0=rhs.m_S0; m_S0_old=rhs.m_S0_old; m_S0_prop=rhs.m_S0_prop;
m_S0_prior=rhs.m_S0_prior; m_S0_old_prior=rhs.m_S0_old_prior;
m_S0_acc=rhs.m_S0_acc; m_S0_rej=rhs.m_S0_rej;
m_tau=rhs.m_tau; m_tau_old=rhs.m_tau_old; m_tau_prop=rhs.m_tau_prop;
m_tau_prior=rhs.m_tau_prior; m_tau_old_prior=rhs.m_tau_old_prior;
m_tau_acc=rhs.m_tau_acc; m_tau_rej=rhs.m_tau_rej;
m_prior_en=rhs.m_prior_en; m_old_prior_en=rhs.m_old_prior_en;
m_iso_SignalHR=rhs.m_iso_SignalHR; m_iso_SignalHR_old=rhs.m_iso_SignalHR_old;
m_iso_SignalLR=rhs.m_iso_SignalLR; m_iso_SignalLR_old=rhs.m_iso_SignalLR_old;
m_SignalHR=rhs.m_SignalHR; m_SignalHR_old=rhs.m_SignalHR_old;
m_SignalLR=rhs.m_SignalLR; m_SignalLR_old=rhs.m_SignalLR_old;
return *this;
}
};
/////////////////////////////////////////////////////////////////////////////
// Orient_Prior_Mode: Models a single mode of the orientation prior ///
// The orientation prior is a sum of Watson distributions centred ///
// around different modes ///
/////////////////////////////////////////////////////////////////////////////
class Orient_Prior_Mode{
float m_th;
float m_th_old;
float m_th_prop;
float m_th_prior;
float m_th_old_prior;
float m_th_acc;
float m_th_rej;
float m_ph;
float m_ph_old;
float m_ph_prop;
float m_ph_prior;
float m_ph_old_prior;
float m_ph_acc;
float m_ph_rej;
float m_invkappa; //Dispersion Index of a Watson distribution (1/kappa actually)
float m_invkappa_old;
float m_invkappa_prop;
float m_invkappa_prior;
float m_invkappa_old_prior;
float m_invkappa_acc;
float m_invkappa_rej;
float m_Watson_norm; //this is a function of current m_kappa
float m_Watson_norm_old;
ColumnVector m_vec;
ColumnVector m_vec_old;
float m_prior_en; //Joint HyperPrior
float m_old_prior_en;
const bool m_kappa_ard; //Flag for setting ARD on the dispersion index
public:
//Constructor
Orient_Prior_Mode(bool kappa_ard): m_kappa_ard(kappa_ard) {
m_th=M_PI/2; m_th_old=m_th;
m_ph=0; m_ph_old=m_ph;
m_vec.ReSize(3);
m_vec<<sin(m_th)*cos(m_ph) <<sin(m_th)*sin(m_ph) <<cos(m_th);
m_vec_old=m_vec;
m_invkappa=0.02; m_invkappa_old=m_invkappa;
m_Watson_norm=compute_Watson_norm(); m_Watson_norm_old=m_Watson_norm;
m_th_prop=0.2; m_ph_prop=0.2; m_invkappa_prop=0.2;
m_th_prior=0; m_th_old_prior=0;
m_ph_prior=0; m_ph_old_prior=0;
m_invkappa_prior=0; m_invkappa_old_prior=0;
m_prior_en=0; m_old_prior_en=0;
m_th_acc=0; m_th_rej=0;
m_ph_acc=0; m_ph_rej=0;
m_invkappa_acc=0; m_invkappa_rej=0;
}
//Destructor
~Orient_Prior_Mode(){}
inline float get_th() const{ return m_th;}
inline float get_ph() const{ return m_ph;}
inline float get_invkappa() const{ return m_invkappa;}
inline void set_th(const float th) { m_th=th; m_vec<< sin(m_th)*cos(m_ph) << sin(m_th)*sin(m_ph) << cos(m_th);}
inline void set_ph(const float ph) { m_ph=ph; m_vec<< sin(m_th)*cos(m_ph) << sin(m_th)*sin(m_ph) << cos(m_th);}
inline void set_invkappa(const float invkappa) { m_invkappa=invkappa; filter_invkappa(); m_Watson_norm=compute_Watson_norm(); }
void filter_invkappa(); //Filter out extreme values of invkappa to ensure calculations are numerically stable
inline float get_prior() const{ return m_prior_en;}
inline const ColumnVector& getVec() const { return m_vec; }
inline float get_Watson_norm() const{ return m_Watson_norm; }
float compute_Watson_norm();
void initialise_energies();
bool compute_th_prior();
bool compute_ph_prior();
bool compute_invkappa_prior();
void compute_prior(); //Compute Joint Prior energy
void update_proposals();
bool propose_th();
inline void accept_th(){ m_th_acc++; }
void reject_th();
bool propose_ph();
inline void accept_ph(){ m_ph_acc++; }
void reject_ph();
bool propose_invkappa();
inline void accept_invkappa(){ m_invkappa_acc++; }
void reject_invkappa();
Orient_Prior_Mode& operator=(const Orient_Prior_Mode& rhs){
m_th=rhs.m_th;
m_th_old=rhs.m_th_old;
m_th_prop=rhs.m_th_prop;
m_th_prior=rhs.m_th_prior; m_th_old_prior=rhs.m_th_old_prior;
m_th_acc=rhs.m_th_acc; m_th_rej=rhs.m_th_rej;
m_ph=rhs.m_ph; m_ph_old=rhs.m_ph_old; m_ph_prop=rhs.m_ph_prop;
m_ph_prior=rhs.m_ph_prior; m_ph_old_prior=rhs.m_ph_old_prior;
m_ph_acc=rhs.m_ph_acc; m_ph_rej=rhs.m_ph_rej;
m_invkappa=rhs.m_invkappa; m_invkappa_old=rhs.m_invkappa_old; m_invkappa_prop=rhs.m_invkappa_prop;
m_invkappa_prior=rhs.m_invkappa_prior; m_invkappa_old_prior=rhs.m_invkappa_old_prior;
m_invkappa_acc=rhs.m_invkappa_acc; m_invkappa_rej=rhs.m_invkappa_rej;
m_Watson_norm=rhs.m_Watson_norm; m_Watson_norm_old=rhs.m_Watson_norm_old;
m_vec=rhs.m_vec; m_vec_old=rhs.m_vec_old;
m_prior_en=rhs.m_prior_en; m_old_prior_en=rhs.m_old_prior_en;
return *this;
}
};
//////////////////////////////
// LRvoxel //
//////////////////////////////
class LRvoxel{
vector<HRvoxel> m_HRvoxels;
vector<Orient_Prior_Mode> m_PModes;
float m_tauLR; //models noise at Low-res
float m_tauLR_old;
float m_tauLR_prop;
float m_tauLR_prior;
float m_tauLR_old_prior;
float m_tauLR_acc;
float m_tauLR_rej;
float m_S0LR; //models S0 intensity at the Low-Res acquisition
float m_S0LR_old;
float m_S0LR_prop;
float m_S0LR_prior;
float m_S0LR_old_prior;
float m_S0LR_acc;
float m_S0LR_rej;
Matrix m_Orient_hyp_prior; //Matrix Nmodes x 5 that contains the hyperparameters for the orientation prior
//columns 1-3 contains the (x,y,z) coordinates for the mode, 4th column contains the invkappa value, 5th the Watson normalization constant
float m_mean_d; //models mean of d hyperprior for the High-Res voxels intersected by the LR_voxel
float m_mean_d_old;
float m_mean_d_prop;
float m_mean_d_prior;
float m_mean_d_old_prior;
float m_mean_d_acc;
float m_mean_d_rej;
float m_stdev_d; //models std_dev of d hyperprior for the High-Res voxels intersected by the LR_voxel
float m_stdev_d_old;
float m_stdev_d_prop;
float m_stdev_d_prior;
float m_stdev_d_old_prior;
float m_stdev_d_acc;
float m_stdev_d_rej;
float m_mean_fsum; //models mean of fsum hyperprior for the High-Res voxels intersected by the LR_voxel
float m_mean_fsum_old;
float m_mean_fsum_prop;
float m_mean_fsum_prior;
float m_mean_fsum_old_prior;
float m_mean_fsum_acc;
float m_mean_fsum_rej;
float m_stdev_fsum; //models std_dev of fsum hyperprior for the High-Res voxels intersected by the LR_voxel
float m_stdev_fsum_old;
float m_stdev_fsum_prop;
float m_stdev_fsum_prior;
float m_stdev_fsum_old_prior;
float m_stdev_fsum_acc;
float m_stdev_fsum_rej;
float m_prior_en; //Joint Prior Energy
float m_old_prior_en;
float m_likelihood_en; //Likelihood Energy
float m_old_likelihood_en;
float m_posterior_en; //Posterior Energy
float m_old_posterior_en;
ColumnVector m_logdataLR; //Log of Low-Res Data for the specific LR voxel (use it in Rician Energy)
vector<ColumnVector> m_logdataHR; //Log of High-Res Data for all contained HR voxels (use it in Rician Energy)
const ColumnVector& m_dataLR; //Low-Res Data for the specific LR voxel
const vector<ColumnVector>& m_dataHR; //High-Res Data for all contained HR voxels
const Matrix& m_bvecsHR; //bvecs at High-Res (3 x HR_NumPoints)
const Matrix& m_bvalsHR; //bvalues at High-Res (1 x HR_NumPoints)
const Matrix& m_bvecsLR; //bvecs at Low-Res (3 x LR_NumPoints)
const Matrix& m_bvalsLR; //bvalues at Low-Res (1 x HR_NumPoints)
const int m_modelnum; //1 for single-shell, 2 for multi-shell model
const int m_numfibres; //Number of fibres in each HR voxel
const int m_Nmodes; //Number of modes for the Orientation Prior
const float m_ardfudge;
const bool m_allard; //Flag for setting ARD on for all fibres in all HR voxels
const bool m_Noard; //Flag for setting ARD off for all fibres in all HR voxels
const bool m_kappa_ard; //Flag for setting ARD on the dispersion index
const bool m_fsumPrior_ON; //Flag for setting on a prior on fsums across intersected HR voxels
const bool m_dPrior_ON; //Flag for setting on a prior on the diffusivity across intersected HR voxels
const bool m_rician; //Flag for using a Rician noise model
const ColumnVector& m_HRweights;//Holds the volume fraction each HR voxel occupies out of the LR one
public:
//Constructor
LRvoxel(const Matrix& bvecsHR, const Matrix& bHR,
const Matrix& bvecsLR, const Matrix& bLR,
const ColumnVector& dataLR, const vector<ColumnVector>& dataHR, const int N, const int Nmodes, const ColumnVector& HRweights, const int modelnum=1, const float ardfudge=1, const bool allard=false, const bool Noard=false, const bool kappa_ard=false, const bool fsumPrior_ON=false, const bool dPrior_ON=false, const bool rician=false):
m_dataLR(dataLR), m_dataHR(dataHR),m_bvecsHR(bvecsHR), m_bvalsHR(bHR), m_bvecsLR(bvecsLR), m_bvalsLR(bLR),
m_modelnum(modelnum), m_numfibres(N), m_Nmodes(Nmodes), m_ardfudge(ardfudge), m_allard(allard), m_Noard(Noard), m_kappa_ard(kappa_ard), m_fsumPrior_ON(fsumPrior_ON), m_dPrior_ON(dPrior_ON), m_rician(rician), m_HRweights(HRweights) {
m_S0LR=0; m_S0LR_old=0; m_S0LR_prior=0; m_S0LR_old_prior=0; m_S0LR_acc=0; m_S0LR_rej=0; m_S0LR_prop=0.2;
m_tauLR=0; m_tauLR_old=0; m_tauLR_prior=0; m_tauLR_old_prior=0; m_tauLR_acc=0; m_tauLR_rej=0; m_tauLR_prop=0.2;
m_mean_d=0; m_mean_d_old=0; m_mean_d_prior=0; m_mean_d_old_prior=0; m_mean_d_acc=0; m_mean_d_rej=0; m_mean_d_prop=0.001;
m_stdev_d=0; m_stdev_d_old=0; m_stdev_d_prior=0; m_stdev_d_old_prior=0; m_stdev_d_acc=0; m_stdev_d_rej=0; m_stdev_d_prop=0.001;
m_mean_fsum=0; m_mean_fsum_old=0; m_mean_fsum_prior=0; m_mean_fsum_old_prior=0; m_mean_fsum_acc=0; m_mean_fsum_rej=0; m_mean_fsum_prop=0.1;
m_stdev_fsum=0; m_stdev_fsum_old=0; m_stdev_fsum_prior=0; m_stdev_fsum_old_prior=0; m_stdev_fsum_acc=0; m_stdev_fsum_rej=0; m_stdev_fsum_prop=0.1;
m_prior_en=0; m_old_prior_en=0;
m_likelihood_en=0; m_old_likelihood_en=0;
m_posterior_en=0; m_old_posterior_en=0;
for (int m=1; m<=m_Nmodes; m++){ //Add Modes for the orientation Prior
Orient_Prior_Mode pMod(m_kappa_ard);
m_PModes.push_back(pMod);
}
m_Orient_hyp_prior.ReSize(m_Nmodes,5);
for (unsigned int m=1; m<=m_dataHR.size(); m++){ //Add HRvoxel Objects
HRvoxel HRv(m_bvecsHR, m_bvalsHR, m_bvecsLR, m_bvalsLR, m_Orient_hyp_prior, m_mean_d, m_stdev_d, m_mean_fsum, m_stdev_fsum, m_numfibres, m_modelnum, m_ardfudge, m_fsumPrior_ON, m_dPrior_ON, m_rician);
m_HRvoxels.push_back(HRv);
}
// ofstream myfile; //Debugging code
//myfile.open("/Users/stam/Rubix_data/Energies.txt", ios::trunc);
//myfile.close();
if (m_rician){//Store the log of the data for energy calculations
m_logdataLR=dataLR; m_logdataHR=dataHR;
for (int m=1; m<=dataLR.Nrows(); m++){
if (dataLR(m)!=0)
m_logdataLR(m)=log(dataLR(m));
else
m_logdataLR(m)=minlogfloat;
}
for (unsigned int n=0; n<dataHR.size(); n++)
for (int m=1; m<=dataHR[n].Nrows(); m++){
if (dataHR[n](m)!=0)
m_logdataHR[n](m)=log(dataHR[n](m));
else
m_logdataHR[n](m)=minlogfloat;
}
}
}
//Destructor
~LRvoxel(){ }
const vector<HRvoxel>& HRvoxels() const {return m_HRvoxels;}
const vector<Orient_Prior_Mode>& PModes() const {return m_PModes;}
void update_Orient_hyp_prior(); //Update the matrix that keeps information on the orientation prior parameters
void update_Orient_hyp_prior(int M); //Update the entry only for a specific Mode 0<=M<N_modes
void set_HRparams(const int n, const float d, const float S0, const ColumnVector& th, const ColumnVector& ph, const ColumnVector& f); //Set params for a single HR voxel
void set_HRparams(const int n, const float d, const float d_std,const float S0, const ColumnVector& th, const ColumnVector& ph, const ColumnVector& f); //Set params for a single HR voxel
void set_Priorparams(const ColumnVector& th, const ColumnVector& ph, const ColumnVector& invkappa); //Set params for all modes of orientation priors
float get_S0LR() const { return m_S0LR; }
void set_S0LR(const float S0) { m_S0LR=S0; }
float get_tauLR() const { return m_tauLR; }
void set_tauLR(const float tau) { m_tauLR=tau; }
void set_tauHR(const int n, const float tau) { m_HRvoxels[n].set_tau(tau); }
float get_likelihood_energy() const { return m_likelihood_en; }
float get_prior_energy() const { return m_prior_en; }
void initialise_energies();
bool propose_S0LR();
void accept_S0LR(){ m_S0LR_acc++; }
void reject_S0LR();
bool compute_S0LR_prior();
bool propose_tauLR();
void accept_tauLR(){ m_tauLR_acc++; }
void reject_tauLR();
bool compute_tauLR_prior();
void compute_prior();
void compute_likelihood();
void compute_posterior();
bool test_energy() const;
void restore_energies();
void restore_Prior_Posterior();
void update_proposals();
void jump(); //Single MCMC iteration with all parameters jumped
bool propose_meand();
void accept_meand(){ m_mean_d_acc++; }
void reject_meand();
bool compute_meand_prior();
bool propose_stdevd();
void accept_stdevd(){ m_stdev_d_acc++; }
void reject_stdevd();
bool compute_stdevd_prior();
void set_meand(const float meand) { m_mean_d=meand; }
void set_stdevd(const float stdevd) { m_stdev_d=stdevd; }
float get_meand() const{ return m_mean_d;}
float get_stdevd() const{ return m_stdev_d;}
bool propose_mean_fsum();
void accept_mean_fsum(){ m_mean_fsum_acc++; }
void reject_mean_fsum();
bool compute_mean_fsum_prior();
bool propose_stdev_fsum();
void accept_stdev_fsum(){ m_stdev_fsum_acc++; }
void reject_stdev_fsum();
bool compute_stdev_fsum_prior();
void set_mean_fsum(const float fsum) { m_mean_fsum=fsum; }
void set_stdev_fsum(const float stdev_fsum) { m_stdev_fsum=stdev_fsum; }
float get_mean_fsum() const{ return m_mean_fsum;}
float get_stdev_fsum() const{ return m_stdev_fsum;}
LRvoxel& operator=(const LRvoxel& rhs){
m_HRvoxels=rhs.m_HRvoxels; m_PModes=rhs.m_PModes;
m_tauLR=rhs.m_tauLR; m_tauLR_old=rhs.m_tauLR_old;
m_tauLR_prop=rhs.m_tauLR_prop;
m_tauLR_prior=rhs.m_tauLR_prior; m_tauLR_old_prior=rhs.m_tauLR_old_prior;
m_tauLR_acc=rhs.m_tauLR_acc; m_tauLR_rej=rhs.m_tauLR_rej;
m_S0LR=rhs.m_S0LR; m_S0LR_old=rhs.m_S0LR_old;
m_S0LR_prop=rhs.m_S0LR_prop;
m_S0LR_prior=rhs.m_S0LR_prior; m_S0LR_old_prior=rhs.m_S0LR_old_prior;
m_S0LR_acc=rhs.m_S0LR_acc; m_S0LR_rej=rhs.m_S0LR_rej;
m_Orient_hyp_prior=rhs.m_Orient_hyp_prior;
m_prior_en=rhs.m_prior_en; m_old_prior_en=rhs.m_old_prior_en;
m_likelihood_en=rhs.m_likelihood_en; m_old_likelihood_en=rhs.m_old_likelihood_en;
m_posterior_en=rhs.m_posterior_en; m_old_posterior_en=rhs.m_old_posterior_en;
m_logdataLR=rhs.m_logdataLR; m_logdataHR=rhs.m_logdataHR;
m_mean_d=rhs.m_mean_d; m_mean_d_old=rhs.m_mean_d_old;
m_mean_d_prop=rhs.m_mean_d_prop;
m_mean_d_prior=rhs.m_mean_d_prior; m_mean_d_old_prior=rhs.m_mean_d_old_prior;
m_mean_d_acc=rhs.m_mean_d_acc; m_mean_d_rej=rhs.m_mean_d_rej;
m_stdev_d=rhs.m_stdev_d; m_stdev_d_old=rhs.m_stdev_d_old;
m_stdev_d_prop=rhs.m_stdev_d_prop;
m_stdev_d_prior=rhs.m_stdev_d_prior; m_stdev_d_old_prior=rhs.m_stdev_d_old_prior;
m_stdev_d_acc=rhs.m_stdev_d_acc; m_stdev_d_rej=rhs.m_stdev_d_rej;
m_mean_fsum=rhs.m_mean_fsum; m_mean_fsum_old=rhs.m_mean_fsum_old;
m_mean_fsum_prop=rhs.m_mean_fsum_prop;
m_mean_fsum_prior=rhs.m_mean_fsum_prior; m_mean_fsum_old_prior=rhs.m_mean_fsum_old_prior;
m_mean_fsum_acc=rhs.m_mean_fsum_acc; m_mean_fsum_rej=rhs.m_mean_fsum_rej;
m_stdev_fsum=rhs.m_stdev_fsum; m_stdev_fsum_old=rhs.m_stdev_fsum_old;
m_stdev_fsum_prop=rhs.m_stdev_fsum_prop;
m_stdev_fsum_prior=rhs.m_stdev_fsum_prior; m_stdev_fsum_old_prior=rhs.m_stdev_fsum_old_prior;
m_stdev_fsum_acc=rhs.m_stdev_fsum_acc; m_stdev_fsum_rej=rhs.m_stdev_fsum_rej;
return *this;
}
};
}
#endif