-
Tim Behrens authoredTim Behrens authored
xfibres.cc 10.16 KiB
/* Xfibres Diffusion Partial Volume Model
Tim Behrens - FMRIB Image Analysis Group
Copyright (C) 2005 University of Oxford */
/* CCOPYRIGHT */
#include <iostream>
#include <fstream>
#include <iomanip>
#include <strstream>
#define WANT_STREAM
#define WANT_MATH
// #include "newmatap.h"
// #include "newmatio.h"
#include <string>
#include <math.h>
#include "utils/log.h"
#include "diff_pvmoptions.h"
#include "utils/tracer_plus.h"
#include "miscmaths/miscprob.h"
#include "miscmaths/miscmaths.h"
#include "newimage/newimageall.h"
#include "stdlib.h"
#include "fibre.h"
#include "xfibresoptions.h"
//#include "bint/model.h"
//#include "bint/lsmcmcmanager.h"
//#include "bint/lslaplacemanager.h"
using namespace FIBRE;
using namespace Xfibres;
using namespace Utilities;
using namespace NEWMAT;
using namespace NEWIMAGE;
using namespace MISCMATHS;
const float maxfloat=1e10;
const float minfloat=1e-10;
const float maxlogfloat=23;
const float minlogfloat=-23;
inline float min(float a,float b){
return a<b ? a:b;}
inline float max(float a,float b){
return a>b ? a:b;}
inline Matrix Anis()
{
Matrix A(3,3);
A << 1 << 0 << 0
<< 0 << 0 << 0
<< 0 << 0 << 0;
return A;
}
inline Matrix Is()
{
Matrix I(3,3);
I << 1 << 0 << 0
<< 0 << 1 << 0
<< 0 << 0 << 1;
return I;
}
inline ColumnVector Cross(const ColumnVector& A,const ColumnVector& B)
{
ColumnVector res(3);
res << A(2)*B(3)-A(3)*B(2)
<< A(3)*B(1)-A(1)*B(3)
<< A(1)*B(2)-B(1)*A(2);
return res;
}
inline Matrix Cross(const Matrix& A,const Matrix& B)
{
Matrix res(3,1);
res << A(2,1)*B(3,1)-A(3,1)*B(2,1)
<< A(3,1)*B(1,1)-A(1,1)*B(3,1)
<< A(1,1)*B(2,1)-B(1,1)*A(2,1);
return res;
}
float mod(float a, float b){
while(a>b){a=a-b;}
while(a<0){a=a+b;}
return a;
}
Matrix form_Amat(const Matrix& r,const Matrix& b)
{
Matrix A(r.Ncols(),7);
Matrix tmpvec(3,1), tmpmat;
for( int i = 1; i <= r.Ncols(); i++){
tmpvec << r(1,i) << r(2,i) << r(3,i);
tmpmat = tmpvec*tmpvec.t()*b(1,i);
A(i,1) = tmpmat(1,1);
A(i,2) = 2*tmpmat(1,2);
A(i,3) = 2*tmpmat(1,3);
A(i,4) = tmpmat(2,2);
A(i,5) = 2*tmpmat(2,3);
A(i,6) = tmpmat(3,3);
A(i,7) = 1;
}
return A;
}
inline SymmetricMatrix vec2tens(ColumnVector& Vec){
SymmetricMatrix tens(3);
tens(1,1)=Vec(1);
tens(2,1)=Vec(2);
tens(3,1)=Vec(3);
tens(2,2)=Vec(4);
tens(3,2)=Vec(5);
tens(3,3)=Vec(6);
return tens;
}
class Samples{
xfibresOptions& opts;
Matrix m_dsamples;
Matrix m_S0samples;
vector<Matrix> m_thsamples;
vector<Matrix> m_phsamples;
vector<Matrix> m_fsamples;
vector<Matrix> m_lamsamples;
public:
Samples(int nvoxels):opts(xfibresOptions::getInstance()){
int count=0;
int nsamples=0;
for(int i=0;i<opts.njumps.value();i++){
count++;
if(count==opts.sampleevery.value()){
count=0;nsamples++;
}
}
m_dsamples.ReSize(nsamples,nvoxels);
m_dsamples=0;
m_S0samples.ReSize(nsamples,nvoxels);
m_S0samples=0;
for(int f=0;f<opts.nfibres.value();f++){
m_thsamples.push_back(m_S0samples);
m_phsamples.push_back(m_S0samples);
m_fsamples.push_back(m_S0samples);
m_lamsamples.push_back(m_S0samples);
}
}
void record(Multifibre& mfib, int vox, int samp){
m_dsamples(samp,vox)=mfib.get_d();
m_S0samples(samp,vox)=mfib.get_S0();
for(int f=0;f<opts.nfibres.value();f++){
m_thsamples[f](samp,vox)=mfib.fibres()[f].get_th();
m_phsamples[f](samp,vox)=mfib.fibres()[f].get_ph();
m_fsamples[f](samp,vox)=mfib.fibres()[f].get_f();
m_lamsamples[f](samp,vox)=mfib.fibres()[f].get_lam();
}
}
void save(const volume<float>& mask){
volume4D<float> tmp;
//So that I can sort the output fibres into
// files ordered by fibre fractional volume..
vector<Matrix> thsamples_out=m_thsamples;
vector<Matrix> phsamples_out=m_phsamples;
vector<Matrix> fsamples_out=m_fsamples;
vector<Matrix> lamsamples_out=m_lamsamples;
Log& logger = LogSingleton::getInstance();
tmp.setmatrix(m_dsamples,mask);
save_volume4D(tmp,logger.appendDir("dsamples"));
tmp.setmatrix(m_S0samples,mask);
save_volume4D(tmp,logger.appendDir("S0samples"));
//Sort the output based on mean_fsamples
//
vector<Matrix> sumf;
for(int f=0;f<opts.nfibres.value();f++){
Matrix tmp=sum(m_fsamples[f],1);
sumf.push_back(tmp);
}
for(int vox=1;vox<=m_dsamples.Ncols();vox++){
vector<pair<float,int> > sfs;
pair<float,int> ftmp;
for(int f=0;f<opts.nfibres.value();f++){
ftmp.first=sumf[f](1,vox);
ftmp.second=f;
sfs.push_back(ftmp);
}
sort(sfs.begin(),sfs.end());
for(int samp=1;samp<=m_dsamples.Nrows();samp++){
for(int f=0;f<opts.nfibres.value();f++){
thsamples_out[f](samp,vox)=m_thsamples[sfs[(sfs.size()-1)-f].second](samp,vox);
phsamples_out[f](samp,vox)=m_phsamples[sfs[(sfs.size()-1)-f].second](samp,vox);
fsamples_out[f](samp,vox)=m_fsamples[sfs[(sfs.size()-1)-f].second](samp,vox);
lamsamples_out[f](samp,vox)=m_lamsamples[sfs[(sfs.size()-1)-f].second](samp,vox);
}
}
}
// save the sorted fibres
for(int f=0;f<opts.nfibres.value();f++){
// element_mod_n(thsamples_out[f],M_PI);
// element_mod_n(phsamples_out[f],2*M_PI);
tmp.setmatrix(thsamples_out[f],mask);
string oname="th"+num2str(f+1)+"samples";
save_volume4D(tmp,logger.appendDir(oname));
tmp.setmatrix(phsamples_out[f],mask);
oname="ph"+num2str(f+1)+"samples";
save_volume4D(tmp,logger.appendDir(oname));
tmp.setmatrix(fsamples_out[f],mask);
oname="f"+num2str(f+1)+"samples";
save_volume4D(tmp,logger.appendDir(oname));
tmp.setmatrix(lamsamples_out[f],mask);
oname="lam"+num2str(f+1)+"samples";
save_volume4D(tmp,logger.appendDir(oname));
}
}
};
class xfibresVoxelManager{
xfibresOptions& opts;
Samples& m_samples;
int m_voxelnumber;
const ColumnVector m_data;
const ColumnVector& m_alpha;
const ColumnVector& m_beta;
const Matrix& m_bvals;
Multifibre m_multifibre;
public:
xfibresVoxelManager(const ColumnVector& data,const ColumnVector& alpha,
const ColumnVector& beta, const Matrix& b,
Samples& samples,int voxelnumber):
opts(xfibresOptions::getInstance()),
m_samples(samples),m_voxelnumber(voxelnumber),m_data(data),
m_alpha(alpha), m_beta(beta), m_bvals(b),
m_multifibre(m_data,m_alpha,m_beta,m_bvals,opts.nfibres.value()){ }
void initialise(const Matrix& Amat){
//initialising
ColumnVector logS(m_data.Nrows()),tmp(m_data.Nrows()),Dvec(7),dir(3);
SymmetricMatrix tens;
DiagonalMatrix Dd;
Matrix Vd;
float mDd,fsquared;
float th,ph,f,D,S0;
for ( int i = 1; i <= logS.Nrows(); i++)
{
if(m_data(i)>0){
logS(i)=log(m_data(i));
}
else{
logS(i)=0;
}
}
Dvec = -pinv(Amat)*logS;
if( Dvec(7) > -maxlogfloat ){
S0=exp(-Dvec(7));
}
else{
S0=m_data.MaximumAbsoluteValue();
}
for ( int i = 1; i <= logS.Nrows(); i++)
{
if(S0<m_data.Sum()/m_data.Nrows()){ S0=m_data.MaximumAbsoluteValue(); }
logS(i)=(m_data(i)/S0)>0.01 ? log(m_data(i)):log(0.01*S0);
}
Dvec = -pinv(Amat)*logS;
S0=exp(-Dvec(7));
if(S0<m_data.Sum()/m_data.Nrows()){ S0=m_data.Sum()/m_data.Nrows(); }
tens = vec2tens(Dvec);
EigenValues(tens,Dd,Vd);
mDd = Dd.Sum()/Dd.Nrows();
int maxind = Dd(1) > Dd(2) ? 1:2; //finding maximum eigenvalue
maxind = Dd(maxind) > Dd(3) ? maxind:3;
dir << Vd(1,maxind) << Vd(2,maxind) << Vd(3,maxind);
cart2sph(dir,th,ph);
th= mod(th,M_PI);
ph= mod(ph,2*M_PI);
D = Dd(maxind);
float numer=1.5*((Dd(1)-mDd)*(Dd(1)-mDd)+(Dd(2)-mDd)*(Dd(2)-mDd)+(Dd(3)-mDd)*(Dd(3)-mDd));
float denom=(Dd(1)*Dd(1)+Dd(2)*Dd(2)+Dd(3)*Dd(3));
if(denom>0) fsquared=numer/denom;
else fsquared=0;
if(fsquared>0){f=sqrt(fsquared);}
else{f=0;}
if(f>=0.95) f=0.95;
if(f<=0.001) f=0.001;
if(D<=0) D=2e-3;
m_multifibre.set_d(D);
m_multifibre.set_S0(S0);
if(opts.nfibres.value()>0){
m_multifibre.addfibre(th,ph,f,1);
for(int i=2; i<=opts.nfibres.value(); i++){
m_multifibre.addfibre();
}
}
m_multifibre.initialise_energies();
m_multifibre.initialise_props();
}
void runmcmc(){
int count=0, recordcount=0,sample=1;//sample will index a newmat matrix
for( int i =0;i<opts.nburn.value();i++){
m_multifibre.jump();
count++;
if(count==opts.updateproposalevery.value()){
m_multifibre.update_proposals();
count=0;
}
}
for( int i =0;i<opts.njumps.value();i++){
m_multifibre.jump();
count++;
recordcount++;
if(recordcount==opts.sampleevery.value()){
m_samples.record(m_multifibre,m_voxelnumber,sample);
sample++;
recordcount=0;
}
if(count==opts.updateproposalevery.value()){
m_multifibre.update_proposals();
count=0;
}
}
}
};
int main(int argc, char *argv[])
{
try{
// Setup logging:
Log& logger = LogSingleton::getInstance();
xfibresOptions& opts = xfibresOptions::getInstance();
opts.parse_command_line(argc,argv,logger);
srand(xfibresOptions::getInstance().seed.value());
Matrix datam, bvals,bvecs;
volume<float> mask;
bvals=read_ascii_matrix(opts.bvalsfile.value());
bvecs=read_ascii_matrix(opts.bvecsfile.value());
{//scope in which the data exists in 4D format;
volume4D<float> data;
read_volume4D(data,opts.datafile.value());
read_volume(mask,opts.maskfile.value());
datam=data.matrix(mask);
}
Matrix Amat;
ColumnVector alpha, beta;
Amat=form_Amat(bvecs,bvals);
cart2sph(bvecs,alpha,beta);
Samples samples(datam.Ncols());
for(int vox=1;vox<=datam.Ncols();vox++){
cout <<vox<<"/"<<datam.Ncols()<<endl;
xfibresVoxelManager vm(datam.Column(vox),alpha,beta,bvals,samples,vox);
vm.initialise(Amat);
vm.runmcmc();
}
samples.save(mask);
}
catch(Exception& e)
{
cerr << endl << e.what() << endl;
}
catch(X_OptionError& e)
{
cerr << endl << e.what() << endl;
}
return 0;
}